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ABSTRACT
Sediment community oxygen consumption (SCOC) is a proxy for organic matter
processing and thus provides a useful proxy of benthic ecosystem function. Oxygen
uptake in deep-sea sediments is mainly driven by bacteria, and the direct contribution
of benthic macro- and mega-infauna respiration is thought to be relatively modest.
However, the main contribution of infaunal organisms to benthic respiration, par-
ticularly large burrowing organisms, is likely to be indirect and mainly driven by
processes such as feeding and bioturbation that stimulate bacterial metabolism and
promote the chemical oxidation of reduced solutes. Here, we estimate the direct and
indirect contributions of burrowing shrimp (Eucalastacus cf. torbeni) to sediment
community oxygen consumption based on incubations of sediment cores from 490 m
depth on the continental slope of NewZealand. Results indicate that the presence of one
shrimp in the sediment is responsible for an oxygen uptake rate of about 40 µmol d−1,
only 1% of which is estimated to be due to shrimp respiration. We estimate that the
presence of ten burrowing shrimp m−2 of seabed would lead to an oxygen uptake
comparable to current estimates ofmacro-infaunal community respiration onChatham
Rise based on allometric equations, and would increase total sediment community
oxygen uptake by 14% compared to sedimentwithout shrimp.Our findings suggest that
oxygen consumption mediated by burrowing shrimp may be substantial in continental
slope ecosystems.

Subjects Ecology, Ecosystem Science, Environmental Sciences, Marine Biology
Keywords Burrow, Chatham Rise, Metabolism, New Zealand, Eucalastacus cf. torbeni,
Sediment community oxygen consumption

INTRODUCTION
Deep-sea soft sediment communities play an important role in global carbon cycling (Jahnke
& Jackson, 1992, Archer & Maier-Reimer, 1994). The input of particulate organic carbon
(POC) from surface waters is the main driver of benthic metabolism in deep-sea sediments
(Smith, 1987; Pfannkuche, 1993), which in turn is influenced by surface (e.g., seasonal
and inter-annual variability in climate; Lampitt et al., 2001; Smith et al., 2006), and water
column processes (e.g., hydrodynamics, POC recycling and remineralisation by bacteria;
Lampitt & Antia, 1997; Turner, 2002). Processing of organic material and overall
metabolism in deep-sea sediments are assumed to be dominated by bacteria and small fauna
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(e.g., Schwinghamer et al., 1986; Pfannkuche, 1993; Beaulieu, 2002;Hubas et al., 2006) while
the contribution of larger fauna is often assumed to be relatively small (Rowe et al., 2008).

Benthicmacro- andmegafauna contribute to sediment community oxygen consumption
(SCOC) both directly through respiration and indirectly through processes such as feeding,
defecation, enzyme release, and bioturbation that stimulate bacterial metabolism and pro-
mote the chemical oxidation of reduced solutes (Riemann & Helmke, 2002; Lohrer, Thrush
& Gibbs, 2004; Papaspyrou, Thessalou-Legaki & Kristensen, 2010; Bonaglia et al., 2014).
Studies in coastal habitats have shown that the main contribution of infauna to SCOC is
mediated by these indirect effects and that infaunal respiration itself makes a relatively small
contribution (Glud et al., 2000; Glud et al., 2003). Thus, the overall contribution of the in-
fauna to deep-sea ecosystem function is most likely underestimated by allometric equations
used to derive the direct contribution of fauna to overall oxygen consumption based only
on body size (e.g., Rowe et al., 2008; Leduc, Pilditch & Nodder, 2016). Analyses comparing
diffusive oxygen uptake, which is calculated from vertical oxygen gradients in the sediments
and is thought to provide a measure of oxygen consumption by microorganisms, and total
oxygen uptake based on changes in oxygen concentrations in overlying water during incu-
bations, suggest that fauna-mediated respiration accounts for an average of about 40–60%
of total benthic oxygen consumption on the upper continental slope (Glud, 2008).However,
uncertainty remains about the interpretation of diffusive oxygen flux measurements, and
the relative contributions of bacteria and other organisms to deep-sea benthic metabolism
is still a matter of debate (Rowe & Deming, 2011). Moreover, the contribution to total
oxygen uptake of large burrowing macroinfauna living deep in the sediments and in
relatively low densities may be underestimated in incubations which are typically based on
small areas of sediments (0.01–0.1 m2).

Burrowing shrimp are common in soft sediment environments of temperate and tropical
regions, and their burrowing and feeding activities mix surface and subsurface sediment
resulting in substantial sediment turnover (Stamhuis, Schreurs & Videler, 1997; Berkenbusch
& Rowden, 1999; Papaspyrou, Thessalou-Legaki & Kristensen, 2004). The presence of bur-
rowing shrimp in coastal systems results in a 70–80% increase in sediment oxygen demand
compared to sedimentwithout shrimp,most of which is due to chemical oxidation reactions
and increased microbial respiration (Ziebis et al., 1996; Webb & Eyre, 2004). Burrowing
shrimp are likely to impact benthic metabolism in deeper environments such as the
upper continental slope where they may also be common (Sakai & Türkay, 1999; Sakai,
2005); however, no studies have been conducted on their ecology or contribution to ecosys-
tem function in the deep sea. Here, we estimate for the first time the direct and indirect con-
tributions of the burrowing shrimp Eucalastacus cf. torbeni to sediment community oxygen
consumption based on incubations of sediment cores from the upper continental slope of
New Zealand.

METHODS
The Chatham Rise is a submarine ridge that extends eastwards from the South Island
of New Zealand at depths ∼250–3,000 m. It lies under the Subtropical Front (STF), a
region where warm subtropical surface water to the north meets cold, high nutrient-low
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Figure 1 Map of study area east of New Zealand’s South Island and the position of sampling site (black
filled circle) on Chatham Rise and 250, 500, 1,000 and 2,000 mwater depth contours.

chlorophyll subantarctic surface water to the south (Boyd et al., 1999), which is associated
with heightened primary productivity (Bradford-Grieve et al., 1997; Murphy et al., 2001).
Five undisturbed sediment core samples were obtained at a site at 489 m water depth on
the southern flank of the rise (43.8533◦S, 178.5783◦E) (Fig. 1). The samples were collected
during a single deployment of an Ocean Instruments MC-800A multicorer (MUC; core
internal diameter = 9.52 cm) in August 2015 (NIWA voyage TAN1511, station 181). The
samples were collected under Special Permit (542) issued by the Ministry for Primary
Industries pursuant to section 97(1) of the Fisheries Act 1996.

Estimates of sediment community oxygen consumption (SCOC; in µmol O2 m−2 h−1)
were obtained using shipboard incubations. Details of the incubation set-ups and measure-
ment protocols are provided in Nodder et al. (2007) and Pilditch et al. (2015). Briefly, the
upper 13–15 cmof sediment and the overlyingwater fromundisturbedmulticore tubeswere
carefully extruded into transparent plastic incubation chambers (total volume= 2.0 L) with
the same internal diameter. Chambers were then sealed and placed inwater baths at ambient
bottom water temperature (7.3±0.1 ◦C) where they were held in the dark for 28–39 h. A
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magnetically driven impeller fitted to the chamber lids gently circulated water during the
incubations. Approximately 6 h after the chambers were placed in the water bath, O2 con-
centrations weremeasured with a pre-calibrated PreSensMICROX Imicro-optode. Four to
six more O2 measurements were made during the incubation period, which was terminated
when the initial concentrations had decreased by ∼15%. SCOC was estimated from the
decline in O2 concentration with time (linear regression, r2 > 0.95).

Sediment pigment concentrations (i.e., chlorophyll-a and phaeopigment content) were
determined to provide a measure of food availability in the incubation chambers. Imme-
diately after the incubations, the overlying water in the incubation chambers was carefully
siphoned out and a sediment sample was obtained using a subcore (internal diameter =
18 mm) to a depth of 5 cm. Sediment samples were kept frozen at −80 ◦C and pigment
concentrations were determined in duplicate using standard techniques (Nodder et al.,
2003; Nodder et al., 2011).

Following subcoring for pigment analyses, the remaining sediment was processed for
macro-infaunal analyses to help determine any potential differences between cores with
and without shrimp. The sediments were sieved onto a 300 µm sieve at sea and fixed in 5%
formaldehyde. Samples were sorted using a dissecting microscope and the abundance of
major taxa (e.g., polychaetes, amphipods, ophiuroids) was quantified.

Shrimp respiration was estimated based on the allometric equation ofMahaut, Sibuet &
Shirayama (1995) relating respiration rate (R, d−1) to individual dry weight (W , mg C):

R= aW b

where a= 7.4×10−3 and b=−0.24. Shrimp carbon weight was determined by assuming
a wet:dry weight ratio of 4 and a dry:carbon weight ratio of 2.5 (Salonen et al., 1976). The
constants a and b were derived by Mahaut, Sibuet & Shirayama (1995), who conducted a
linear regression of all published respiration rates of deep-sea organisms. Shrimp respiration
(T ), expressed as the mass (mg) of carbon dioxide (CO2) released d−1, was estimated by
multiplying shrimp dry weight (W , mg C) by the mass-dependent respiration rate (R, d−1):

T =W ×R.

Because the equation of Mahaut, Sibuet & Shirayama (1995) is based on measurements
conducted at 2–4 ◦C, and the incubation was conducted at a higher temperature (7.3 ◦C),
estimated shrimp respiration was adjusted assuming a temperature coefficient (Q10) of 2.
Shrimp respiration was converted to oxygen (O2) consumption assuming that one mole
of O2 is consumed for each mole of CO2 released (Hargrave, 1973).

RESULTS AND DISCUSSION
A total of five undisturbed cores were recovered, which consisted of sandy silt with small
amounts of dark glauconite particles typical of the central Chatham Rise (Cullen, 1967;Or-
pin et al., 2008). A small burrowwith an opening approximately one centimeter in diameter
was present in the center of one of the cores, which was otherwise similar in appearance
to the other cores. At the end of the incubation, which lasted 28 h for the core containing
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Figure 2 Mean oxygen consumption in four cores without shrimp and one with a single live Eucalasta-
cus cf. torbeni shrimp specimen. Error bars represent the 95% confidence interval.

the burrow opening, the presence of a live shrimp was noted for the first time. The shrimp
was later identified as Eucalastacus cf. torbeni, with a length of 12 mm and wet weight of 3
mg. A gently sloping burrow of about eight millimetres in diameter, reaching to a depth of
6 cm below the sediment surface and with two branches leading to burrow entrances on
the edge of the chamber, were visible through the transparent chamber wall. The original
burrow opening in the center of the core was still present and was connected to the two new
openings by the recently built burrow. The total length of the burrowwas estimated as 27 cm,
corresponding to a surface area of about 68 cm2. The surface area of an undisturbed (flat)
sediment surface in the incubation chamber is 71 cm2, therefore burrow formation by the
shrimp led to a doubling of the surface area of the sediment-water interface. The shrimpwas
intact and moved freely in the burrow; brown particles could be seen in its intestine,
suggesting that it had recently been feeding.

Oxygen consumption in the chamber containing the shrimp was about three times
greater than the mean oxygen consumption of the chambers without shrimp (332 vs
110–134 µmol m−2 h−1) (Fig. 2).

Phaeopigment concentration in the shrimp incubation chamber was similar to concen-
trations in the chambers without shrimp (3.3 vs 2.1–4.4 µg/gsediment), whereas chlorophyll-a
concentration was two to three times lower in the incubation chamber with shrimp than
in chambers without shrimp (0.18 vs 0.47–0.62 µg/gsediment). These findings suggest that
variation in food availability among the incubation chambers is unlikely to account for
the elevated oxygen uptake associated with the presence of burrowing shrimp; on the
contrary, it appears that the feeding and burrowing activities of the shrimp may have led to
a decrease in chlorophyll-a concentrations in the top five centimeters of sediment relative to
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incubation chambers without shrimp. Similar decrease in sediment chlorophyll-a concen-
trations associated with the presence of burrowing shrimp have been observed in intertidal
field experiments, presumably as a result of ingestion or burial (Webb & Eyre, 2004).

The abundance of macro-infauna in the shrimp incubation chamber was slightly
higher than in the chambers without shrimp, but the difference was small (152 vs 54–151
individuals). Polychaetes were dominant in all chambers and accounted for 46–63% of
total macro-infaunal abundance. The next most abundant taxa were amphipods (7–17% of
total abundance) and nematodes (9–14%). Although biomass could not be determined in
the present study, no obvious difference in size of macro-infaunal organisms were apparent
among the cores. Thus, the elevated oxygen consumption associated with the presence of
shrimp is unlikely to be due to differences in the associated macro-infaunal community.

Based on the allometric equation ofMahaut, Sibuet & Shirayama (1995) (and assuming
a temperature coefficient of 2 to account for temperature difference), respiration by
Eucalastacus cf. torbeni (0.59 µmol d−1) accounted for about 0.8% of total respiration in the
incubation chamber, and just over 1% of the average difference in oxygen uptake between
incubation chamberswith andwithout shrimp. This result is consistentwith previous results
suggesting that the majority of the increase in oxygen consumption associated with the
presence of burrowing shrimp is due to increased oxidation reactions and/or microbial
respiration resulting from the shrimp’s burrowing and feeding activities (Koike & Mukai,
1983; Webb & Eyre, 2004). Our estimates suggest that the presence of one Eucalastacus cf.
torbeni individual in the sediment is responsible for an oxygen uptake rate of about 1.7 µmol
h−1 or 40 µmol d−1. This value is about 20 times less than the oxygen uptake resulting from
the presence of a single burrowing Callianassa japonica or Trypea australiensis individual
in subtidal environments (Koike & Mukai, 1983; Webb & Eyre, 2004) which could reflect
the larger body size and burrows of the latter species relative to E. cf. torbeni and/or the
comparatively low metabolic rates of organisms living in cold deep-sea environments. The
relatively deep oxygenated layer of deep-sea sediments combined with low organic matter
concentrationsmay also limit the extent to which bioturbation can stimulate oxygen uptake
compared to shallow environments.

Data on sediment community oxygen consumption, which are typically based on in
situ or onboard incubations of small sediment cores that do not include large burrowing
fauna, are likely to be underestimating true benthic metabolism rates in deep-sea habitats
(Glud, 2008). No estimates are available on the population densities of burrowing shrimp
in deep-sea environments; however in shallow environments burrowing shrimp densities
range from a few individuals to several hundred individuals per square meter (Berkenbusch
& Rowden, 1998;Dumbauld, Armstrong & Feldman, 1996). Images of soft sediment habitats
on Chatham Rise often show high densities of burrows and mounds, which are consistent
with a high abundance of burrowing shrimp and other bioturbating macro-infauna
(Fig. 3). However despite the apparently wide distribution of Eucalastacus cf. torbeni on
New Zealand’s continental margin (S Mills, pers. comm., 2016), no data are available on
their densities due to the paucity of sufficiently large and/or quantitative sediment samples.
Based on our findings, the presence of ten burrowing shrimp per square meter of seabed, a
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Figure 3 Picture of the seabed taken using NIWA’s Deep Towed Imaging System (DTIS) on 13 June
2013 (RV Tangaroa voyage TAN1306, station 69) taken approximately 300 m away from study site.
Small burrows and mounds can be seen to occur at high densities. The surface area of the image is approx-
imately 1.25 m2 and the scale bar= 20 cm.

moderate shrimp density broadly consistent with burrow densities in seabed images in the
region, would increase oxygen uptake by 17 µmol m−2 h−1, equivalent to 14% of current
estimates obtained from sediment core incubations from the study site. This density of
burrowing shrimp would translate to an oxygen uptake comparable to current estimates
of total macro-infaunal community respiration on Chatham Rise based on allometric
equations (2–23 µmol m−2 h−1Leduc, Pilditch & Nodder, 2016).

Besides shrimp, other burrowingmacro- andmegafauna, such as echiurans, holothurians
and ophiuroids, are likely to make a substantial indirect contribution to sediment commu-
nity respiration. Because these relatively large organisms are vulnerable to physical distur-
bance from human activities such as bottom trawling (Clark et al., 2016), a decrease in their
density and/or diversity would likely result in a loss in ecosystem function. Evaluating the
magnitude of this loss, which is likely to be greatest in relatively high productivity upper
continental slope habitats where large benthic fauna are most abundant (Leduc, Pilditch
& Nodder, 2016), may be aided by the application of functional trait assessment approach
(Bremner, Rogers & Frid, 2003) and the use of in situO2 consumptionmeasurementmethod
capable of integrating larger and therefore more representative areas of the seabed, such as
in situ benthic chamber incubations (Lichtschlag et al., 2015) or the eddy correlation flux
method (Berg et al., 2009).
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