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Chronic and recurrent infections occur commonly in both type 1 and type 2 diabetes (T1D,
T2D) and increase patient morbidity and mortality. Neutrophils are professional
phagocytes of the innate immune system that are critical in pathogen handling.
Neutrophil responses to infection are dysregulated in diabetes, predominantly mediated
by persistent hyperglycaemia; the chief biochemical abnormality in T1D and T2D.
Therapeutically enhancing host immunity in diabetes to improve infection resolution is
an expanding area of research. Individuals with diabetes are also at an increased risk of
severe coronavirus disease 2019 (COVID-19), highlighting the need for re-invigorated and
urgent focus on this field. The aim of this review is to explore the breadth of previous
literature investigating neutrophil function in both T1D and T2D, in order to understand the
complex neutrophil phenotype present in this disease and also to focus on the
development of new therapies to improve aberrant neutrophil function in diabetes.
Existing literature illustrates a dual neutrophil dysfunction in diabetes. Key pathogen
handling mechanisms of neutrophil recruitment, chemotaxis, phagocytosis and
intracellular reactive oxygen species (ROS) production are decreased in diabetes,
weakening the immune response to infection. However, pro-inflammatory neutrophil
pathways, mainly neutrophil extracellular trap (NET) formation, extracellular ROS
generation and pro-inflammatory cytokine generation, are significantly upregulated,
causing damage to the host and perpetuating inflammation. Reducing these
proinflammatory outputs therapeutically is emerging as a credible strategy to improve
infection resolution in diabetes, and also more recently COVID-19. Future research needs
to drive forward the exploration of novel treatments to improve infection resolution in T1D
and T2D to improve patient morbidity and mortality.
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INTRODUCTION

The number of people with diabetes (PWD) globally will exceed
500 million by 2035. Type 1 diabetes (T1D) is an autoimmune
condition characterised by T-cell mediated pancreatic b cell
destruction and absolute insulin deficiency (1). T1D represents
up to 10% of all diabetes worldwide and a small percentage
(<10% type 1B) of affected individuals have no evidence of
autoimmunity with the pathogenesis being idiopathic (2, 3). A
complex interplay of genetic, epigenetic, environmental, and
immunologic factors is thought to contribute to the
pathogenesis of T1D. Genome-wide association studies have
identified more than 50 genetic risk loci to date but the main
genes predisposing to T1D are located within the human
leukocyte antigen (HLA) on chromosome 6 (4, 5). Alleles at
the HLA locus account for up to 50% of cases with familial
clustering (6–8). Epidemiological studies have implicated a
number of environmental factors in the pathogenesis of T1D,
including viruses and nutrients such as cow’s milk protein (4, 5).
These factors are thought to trigger an autoimmune response
consequent upon molecular mimicry in that pancreatic
autoantigens that resemble viral or dietary epitopes undergo
cellular destruction (9, 10). Pancreatic b cell destruction involves
both cellular and humoral immunity. Autoreactive T-cells are
thought to induce apoptosis in a pancreatic islet milieu rich in
pro-inflammatory cytokines including IL-1, TNF-a, and IFN-g
(11). The presence of circulating autoantibodies against
proinsulin and other autoantigens in b cells highlights the role
of humoral immunity in disease pathogenesis. Indeed,
circulating autoantibodies in T1D can occur before the
biochemical and clinical manifestations and the presence of
two or more autoantibodies in first-degree relatives strongly
predicts clinical progression to T1D (12).

In type 2 diabetes (T2D), which accounts for 90-95% of all
diabetes, a combined resistance to insulin both in skeletal muscle
and the liver, in addition to defective insulin production by
pancreatic b cells is present (13). In contrast to T1D, no
predominant genetic locus has been found to increase
susceptibility to T2D. Genomic studies reveal over 40 genetic
variants that increase the risk of T2D, however, overall these
genes account for 10% heritability (14, 15). A positive family
history is important nonetheless with a 38% life-time risk of T2D
in individuals who have one parent with T2D with this risk
increasing to 60% if both parents have T2D (16, 17). In addition
to multiple genes, environmental factors play a critical role in the
pathogenesis of T2D. A sedentary lifestyle in addition to
consumption of high-fat, high-calorie diets means the majority
of individuals with T2D are overweight (6). Obesity related
insulin resistance together with hypertension, dyslipidaemia,
glucose intolerance, and eventually frank hyperglycaemia
defines the metabolic syndrome and this clinical phenotype is
commonly encountered in many people with T2D (18). Several
mechanisms have been proposed to explain both insulin
resistance in T2D which occurs early in the disease and
pancreatic b cell dysfunction which is typically a late
phenomenon. Increased levels of non-esterified fatty acids,
Frontiers in Immunology | www.frontiersin.org 2
pro-inflammatory cytokines, adipokines, and mitochondrial
dysfunction are thought to drive insulin resistance (19).
Progressive b cell failure is thought to occur due to
glucotoxicity, lipotoxicity and direct cytotoxic effects from
deposition of islet amyloid polypeptide (19). There is
accumulating evidence that many of these mechanisms work in
concert and are underpinned by low-grade activation of the
innate immune system (20). This not only plays a part in the
pathogenesis of T2D but is also causally linked to associated
complications including dyslipidaemia and atherosclerosis (20).
Elevated levels of pro-inflammatory cytokines including IL-6 and
TNF-a and acute phase markers such as C-reactive protein are
thought to disrupt insulin signalling although effects on glucose
metabolism remain less clear (21). Humoral immunity may also
play a part in the pathogenesis of T2D. Elevated serum gamma
globulin levels, a nonspecific marker of humoral immune
activation, have been associated with an increased risk of T2D
in certain populations although the wider significance remains to
be elucidated (22). Despite differences in pathophysiology,
chronic hyperglycaemia is a fundamental biochemical
abnormality present in both T1D and T2D, which is a key
driver of aberrant neutrophil function. Increased susceptibility
to infection is found in both types of diabetes, therefore this
review will explore neutrophil function in the context of both
T1D and T2D simultaneously.

PWD are at an increased risk of infection at various sites
including skin and soft tissue (SSIs), urinary tract and the
respiratory system (23, 24). Abscesses can be the first clinical
presentation of diabetes in undiagnosed individuals, which occur
before later vascular and neuropathic symptoms (25, 26).
Infection resolution is often delayed and can lead to limb
amputation in the lower extremities (27, 28). Reliance on
antibiotic therapy means PWD receive increased prescriptions
of antibiotics (29, 30). Antibiotic resistance is a global health
concern and methicillin resistant Staphylococcus aureus (MRSA)
was isolated in 15-30% of cases of diabetic foot disease (DFD),
highlighting the importance of conservative antibiotic usage in
this cohort and a need for new therapeutic strategies (31–33).

The innate immune system is dysregulated in both T1D and
T2D (34, 35). Neutrophils are professional phagocytes of the host
immune system and are critical in the clearance of pathogens, in
particular S. aureus, which is the most common pathogen
isolated in SSIs in PWD (36–38). Neutrophils are equipped
with an arsenal of microbicidal effector functions. Upon
activation in the circulation neutrophils migrate to sites of
infection and inflammation by chemotaxis and respond to
infection by engulfing pathogens via phagocytosis for
intracellular killing by the release of cytotoxic granules and
reactive oxygen species (ROS) (39). Neutrophils also release
ROS, neutrophil extracellular traps (NETs) and granule
proteins extracellularly in response to pathogens, all of which
can damage host tissues (39, 40). Neutrophils are also central in
co-ordinating the immune response to infection and produce a
range of pro-inflammatory and anti-inflammatory cytokines
which have autocrine and paracrine actions (39). Neutrophils
rely predominantly on glucose as the sole energy source for the
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cell, and the impacts of hyperglycaemia and associated advanced
glycation end products (AGEs) are the key causes of altered
neutrophil function in T1D and T2D (41–45). T2D and obesity
are also inherently linked, with increased circulating saturated
fatty acids and the associated pro-inflammatory milieu also
having immune-modulatory roles (46, 47).

Previous research investigating neutrophil function in T1D
and T2D covers an expansive body of literature spanning 60
years, with every function of the neutrophil shown to be
dysregulated in T1D or T2D. Early research in the field
focused on neutrophil chemotaxis and phagocytosis, with the
weight of evidence demonstrating a reduction of these functions
in those with diabetes (48–51). There were some conflicting
findings between early studies, perhaps caused by variations in
participant selection and early experimental designs (52, 53).
More recent research has predominantly focused on neutrophil
ROS generation, pro-inflammatory cytokine production and
aberrant neutrophil cell death mechanisms, which are proving
to be critical mediators in the weakened response to infection in
diabetes (54–57). Extracellular ROS production, pro-
inflammatory cytokine release and NET formation are
increased in diabetes, whereas neutrophil migration, apoptosis
and intracellular ROS production are reduced, which ultimately
impairs bacterial killing and inflammation (56, 58–61).
Phenotypic variations in neutrophil function are supported by
transcriptomic data, showcasing a fundamentally altered profile
in key pro-inflammatory genes in neutrophils in PWD (62, 63).

Research aiming to therapeutically modify neutrophil
function in response to infection in T1D or T2D lags
compared to the volume of studies reporting observational
differences between those with and without diabetes. However,
research aiming to restore aberrant neutrophil function in
diabetes is gaining momentum in the field, with a focus on
modifying neutrophil ROS production and NETosis to improve
infection outcomes (64–67). The enhanced susceptibility in
PWD to COVID-19 infection has garnered global interest
during the ongoing COVID-19 pandemic and approaches to
improve neutrophil responses in people with diabetes might have
important therapeutic potential (68–70). Furthermore, powerful
stress responses during COVID-19 lead to hyperglycaemia and
diabetic ketoacidosis among people with T2D, perhaps
explaining in part their increased susceptibility to severe
disease. Here, we will first explore the key drivers of neutrophil
function in the diabetic microenvironment and then review key
aspects of neutrophil function and how these critical functions
are modified in diabetes. We then explore how these pathways
have been therapeutically targeted to enhance infection clearance
in diabetes, and highlight future important directions
for research.
MEDIATORS OF NEUTROPHIL FUNCTION
IN THE DIABETES MICROENVIRONMENT

Hyperglycaemia is a key mediator of neutrophil dysfunction in
T1D and T2D. Elevated blood glucose concentrations resulting
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from insulin insufficiency and tolerance is a core pathology of the
disease. The impacts of hyperglycaemia on neutrophils are multi-
factorial and present a complex interplay of dysregulated cellular
mechanisms. Neutrophil metabolism is altered in response to
excess glucose, to ensure intracellular glucose levels do not
become toxic (42). Molecular shunting of glucose from
glycolysis into the polyol and hexosamine pathway occurs (42,
71, 72). Metabolism via these pathways decreases levels of the
intracellular ROS scavenger, glutathione and modifies
transcription factors regulating pro-inflammatory genes (NF-
kB, TGF-a, TGF-b) (42, 43, 71). Enhanced generation of
cytokines further activates subsequent neutrophils, causing a
feed forward loop of excessive inflammation in diabetes (73).
Furthermore, hyperglycaemia causes de novo synthesis of the
protein kinase C (PKC) activator, diacylglycerol (DAG),
upregulating the formation of NADPH oxidase complex at the
plasma membrane and leading to oxidative stress and NET
formation (44, 71). Hyperglycaemia alters the osmolarity of the
body fluids and hyperosmotic stress causes cell shrinkage and
calcium influx into neutrophils, leading to derangements in
phagocytosis and upregulation of pro-inflammatory cytokines
(74, 75). High intracellular calcium concentrations deplete
available ATP, impacting key energy dependant functions such
as phagocytosis (74, 76). High glucose also impacts maturing
neutrophils in the bone marrow. Hyperglycaemia induced
myelopoiesis and leucocytosis in streptozotocin (STZ) and
Akita mice (murine models of T1D) is mediated by the
production of neutrophil alarmins s100 calcium proteins 8 and
9 (S1008/9) (77).

Hyperglycaemia upregulates the receptor for advanced
glycation end products (RAGE) on the neutrophil cell surface
(78). Advanced glycation end products (AGE) are formed from
the non-enzymatic glycation of proteins (79). The pro-
inflammatory impacts of AGE, which are extensively reviewed
elsewhere, are of particular importance in mediating
cardiovascular sequalae in diabetes (79–81). In brief, AGEs
induce oxidative stress and pro-inflammatory gene expression
(NF-kB) in multiple cell types, including neutrophils (42, 82, 83).
AGE signals via the RAGE receptor on the neutrophil cell
surface, which importantly is a multi-ligand receptor also for
the alarmins S1008/9 and high-mobility group box 1 (HMGB1),
further perpetuating inflammation (84, 85). Epigenetic
modifications, which are the enzymatic alterations of
chromatin to manipulate gene expression, were found in
healthy murine macrophages co-incubated with AGE (86, 87).
Increased methylation of NF-kB and enhanced cytokine
transcription was subsequently found (86). Neutrophils display
‘metabolic memory’ in PWD, whereby modified cell phenotypes
are maintained after the restoration of normoglycaemia, further
prolonging deleterious effects (88–90). Investigation of
epigenetic alterations of neutrophils in T1D and T2D is
warranted to provide additional mechanistic understanding of
the persisting neutrophil phenotype. Furthermore, whether
hypoglycaemia or the oscillations between high and low blood
glucose concentrations promotes neutrophil dysfunction is not
yet known.
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Glucose is not the only pro-inflammatory mediator increased
in T1D and T2D. Lipid metabolism is altered in response to
insulin deficiency and resistance, which increases lipogenesis and
adipose tissue metabolism (91, 92). Circulating levels of free fatty
acids and lipoproteins are increased in T1D and T2D, which can
be further exacerbated by obesity and poor diet (93). The pro-
inflammatory impacts of lipids and neutrophils are reviewed
elsewhere and have shown to upregulate key pro-inflammatory
neutrophil functions including cytokine generation and ROS
production (91, 92, 94, 95). The negative impacts of ageing on
neutrophil function is well documented, and also contributes to
the neutrophil phenotype in older individuals with diabetes
(96, 97).

Despite what is already known about the influence of the
diabetic microenvironment on neutrophil function, there are still
potential drivers yet to be explored. Complement protein, C5a, is
a potent anaphylatoxin and critical mediator of inflammation
(98). Recent research demonstrates C5a was increased in the
plasma of PWD and in murine models of both diabetes types
(99). The impact of C5a on neutrophil function has not been
directly investigated in the context of diabetes previously.
However, there is a strong rationale to further investigate the
role of C5a as neutrophil phagocytosis, phagosomal maturation,
ROS production and apoptosis were impacted by C5a mediated
signalling in patients with critical illness and sepsis and similar
mechanisms may be of significant importance in diabetes (98,
100–102). Key mediators of neutrophil function in diabetes are
summarised in Figure 1.
NEUTROPHIL RECRUITMENT
AND CHEMOTAXIS

Neutrophil transmigration from the circulation to the tissues in
response to infection and inflammation is a well described
process (103). In brief, circulating neutrophils respond to
tissue derived signals for infection and injury which includes
chemokines, damage associated molecular patterns (DAMPs)
and bacterial products. This in turn triggers their interaction
with the blood vessel wall via surface ligands to endothelial cell P
and L selectins, facilitating the tethering and rolling of the
neutrophil across the surface of the endothelium (104, 105).
Sequential activation of neutrophils stimulates expression of
integrins, slowing neutrophil rolling and facilitating neutrophil
crawling along the endothelial cell surface, guided by
chemoattractant gradients to the source of infection (104, 105).
Neutrophils transmigrate predominantly through endothelial
cell junctions into the tissue interstitial space and onwards to
the site of injury or infection (103).

Chronically inflamed tissue such as in peripheral arterial
disease, a common sequela of T2D, notably modifies the
dynamics of neutrophil migration (106). Neutrophil
recruitment to infection sites was reduced in multiple animal
studies exploring infections caused by a range of pathogens, thus
demonstrating migration to be a fundamental defect in
neutrophil function in diabetes. They found neutrophil
Frontiers in Immunology | www.frontiersin.org 4
infiltration to the peritoneal cavity was reduced in alloxan
treated mice (T1D model) with polymicrobial sepsis, in
addition to reduced migration to the bladder in STZ treated
mice with a UTI, caused by uropathogenic Escherichia coli (107,
108). Furthermore, reduced infiltration of neutrophils was
demonstrated in a S. aureus hind paw infection in leptin
deficient mice (murine T2D model) (109). Reduced neutrophil
migration was associated with poor infection resolution and
increased mortality across a number of studies (107–109).

There are multiple causative mechanisms for aberrant
neutrophil migration with both the neutrophil and the
endothe l ium shown to be a l tered in the diabet ic
microenvironment. Internalisation of the chemokine receptor
CXCR2 was associated with reduced migration in a study of
sepsis in mice with alloxan induced diabetes, which is a shared
neutrophil dysfunction mechanism common to non-diabetes
sepsis models (107, 110). CXCR2 expression is downregulated
by TLR2 signalling, which involves G protein coupled receptor
kinase-2 (GRK2) (111). TLR2 is activated by high glucose
concentrations, AGEs, lipoproteins and DAMPS, which are
released at increased levels in diabetes (55, 112, 113).
Furthermore, the serum derived acute phase protein, a1-acid
glycoprotein, upregulates GRK2 and further contributes to
perturbations in neutrophil migration in vivo (107). Increased
a1-acid glycoprotein concentration and glycosylation were
found in people with T2D or with sepsis (114, 115).
Administration of insulin reduced concentrations of a1-acid
glycoprotein and restored neutrophil migration in a rodent
model of sepsis and alloxan induced diabetes in vivo (107).
Interestingly, Perieria et al. found an unknown serum protein
from alloxan treated rats which inhibited chemotaxis in vitro and
the activity of such was abolished by insulin, which one could
speculate was a1-acid glycoprotein, although further studies are
needed to corroborate this (116).

Neutrophil chemotaxis has been widely investigated in vitro
in numerous studies using animal models and volunteers with
T1D or T2D, with most of the research conducted in the 1970s -
1990s (Table 1). Despite some contradictory findings, which
may be accountable by variations in study and experimental
design, the burden of evidence suggests that neutrophil
chemotaxis in diabetes is reduced (49, 51, 122). Early research
using human volunteers found no correlation between increased
blood glucose concentration and aberrant neutrophil
chemotaxis, suggesting a reliance on existing blood glucose
lowering agents may not be sufficient to restore chemotaxis in
all individuals (48, 51, 118).

Despite a reduction in neutrophil migration and chemotaxis
to infection, neutrophil activation measured by CD11b cell
surface marker expression, and adhesion to the endothelium,
were increased in both rodent models of diabetes and people
with T2D in vitro (128–130). High glucose mediates increased
neutrophil adhesion, by increasing expression of endothelial
adhesion molecules (intracellular adhesion molecule-1, P-
selectin and E-selectin), which was dependant on PKC
signalling and nitric oxide production (131, 132). Increased
neutrophil adhesion in diabetes has predominantly been
June 2021 | Volume 12 | Article 678771
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investigated in the context of vascular sequalae and is therefore
outside the scope of this review (129, 130, 133).
NEUTROPHIL ROS PRODUCTION

In health, ROS production in neutrophils is tightly regulated,
since reduced or increased production impacts infection
resolution and tissue integrity respectively (134, 135).
Neutrophil ROS production, via the nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase complex, is
significantly impacted by hyperglycaemia in diabetes and has
been extensively studied previously in animal models, healthy
volunteers, and those with type 1 or T2D (Table 2). Formation of
the NADPH oxidase complex occurs at the phagosomal
membrane for intracellular killing of pathogens and at the
plasma membrane for extracellular ROS release (161, 162).
Frontiers in Immunology | www.frontiersin.org 5
EXTRACELLULAR ROS PRODUCTION
AND OXIDATIVE STRESS

Although laboratory assays that detect extracellular ROS in
isolation, such as the ferricytochrome c assay, are hampered by
technical limitations, this technique has shown that superoxide
production was significantly higher in those with diabetes and
poor glycaemic control, compared to well controlled diabetes
and healthy controls (Table 2) (59, 163). This was concomitant
with a significant increase in PKC activity and DAG (59). There
are previous studies showing no difference or reduced
extracellular ROS production in diabetes and due to large
differences in experimental design between studies it is difficult
to discern the cause of conflicting evidence in the field, but may
be due to differences in the ROS inducer employed and the
variations in animal and human subjects used (123, 144, 145).
Overall, the weight of evidence supports increased ROS
FIGURE 1 | Mediators of neutrophil dysfunction present in T1D and T2D. The microenvironment of T1D and T2D presents a complex interplay of mediators of
neutrophil dysfunction. Hyperglycaemia and the formation of advanced glycation end products in the circulation and the bone marrow modify circulating neutrophils
and myeloid precursors. Metabolic perturbations in lipid metabolism and increased synthesis of circulating free fatty acids further contribute to aberrant dysfunction.
Resulting activated neutrophils produce pro-inflammatory mediators adding to a cycle of inflammation. Increased age further impacts neutrophil function, in addition
to co-morbidities and infection, where altered neutrophil functions are previously shown e.g chronic obstructive pulmonary disease (COPD) sepsis and COVID-19.
Figure created with BioRender.com.
June 2021 | Volume 12 | Article 678771

http://BioRender.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Dowey et al. Neutrophil Function and Dysfunction in Diabetes
production in neutrophils, as additional studies using
chemiluminescent based assays that detect both intracellular
and extracellular ROS, found increased levels in human
subjects with T1D or T2D (151, 152, 158, 159).

Increased ROS, together with decreased activity of the ROS
scavenging enzyme superoxide dismutase, is not uncommon in
diabetes and the use of antioxidants to reduce excess ROS in
experimental models of diabetes has been explored (158, 164,
165). The antioxidant, astaxanthin, significantly reduced
extracellular ROS from neutrophils in alloxan treated rats at
baseline, but not when stimulated with artificial ROS inducer
Phorbol 12-myristate 13-acetate (PMA) (158). Astaxanthin also
significantly lowered ROS in retinal and pancreatic cells in rats
with STZ-induced diabetes and is currently undergoing clinical
trials for treating diabetic retinopathy (NCT03702374) (166–
168). A further antioxidant Captopril, an angiotensin-
converting enzyme inhibitor, was shown to be effective in
reducing ROS in human subjects with T2D and STZ-treated
rats in vitro (155, 169).
INTRACELLULAR ROS PRODUCTION

Unlike extracellular ROS, intracellular ROS is most often
reported to be significantly decreased in neutrophils in studies
of T1D or T2D, which is thought to contribute to susceptibility to
infection (Table 2) (49, 154, 170). This was demonstrated in both
a model of S. aureus hind paw infection in leptin deficient
diabetic mice, and a model of polymicrobial bacterial sepsis in
Frontiers in Immunology | www.frontiersin.org 6
obese diet-induced diabetic mice (model of T2D) (65, 109).
Reduced levels of ROS were associated with lower bacterial
clearance and increased mortality (65, 109).

Hyperglycaemia causes reduced ROS production due to the
molecular shunting of excess glucose from glycolysis to the
polyol pathway, which increases the requirement for NADPH
and thereby reducing the availability to produce ROS (171, 172).
Multiple approaches to increase neutrophil ROS production have
been studied including via Tolrestat and Epalrestat, which are
inhibitors of aldose reductase, a key enzyme in the polyol
pathway. The inhibitors significantly increased ROS in
neutrophils in both human and rodent models of diabetes
(148, 171, 172). Also, enhancing ROS using granulocyte-colony
stimulating factor (G-CSF) was effective in increasing ROS in
multiple studies of patients with DFD (145, 173, 174).
Interestingly, a Cochrane review of 5 randomised controlled
trials (RCTs) with a total of 167 patients concluded that G-CSF
should not be recommended as an adjuvant to current therapies
for treating DFD, as it did not improve infection resolution
(175). However, G-CSF treatment did reduce the need for
surgical interventions and length of hospital stay in some
studies. The RCTs reviewed were graded as low quality and
were not statistically powered to robustly explore treatment
differences. Further, large scale RCTs were recommended
(175). An alternative therapeutic approach to increasing
neutrophil ROS production was demonstrated in a placebo-
controlled clinical study of 30 patients with T2D, using the
NADPH precursor nicotinamide (149). However, until recently,
there has been little, if any, further research in this area, perhaps
TABLE 1 | Studies investigating neutrophil chemotaxis in diabetes.

Study Animal model/human volunteer type Chemotaxis phenotypes reported in diabetes

Studies reporting a decrease in neutrophil chemotaxis in T1D or T2D compared to control
(48) HVs + T2D volunteers ↓ in chemotaxis towards casein and human serum
(117) HVs + 17 children with T1D ↓ chemotaxis towards Staphylococcus epidermidis & albumin
(118) HVs + those with T2D (mild to severe periodontitis) No difference between HVs and those with mild periodontitis+T2D.

Significant ↓ in severe periodontitis + T2D.
Endotoxin activated plasma and fMlp used as chemoattractant

(116) Alloxan treated rat model ↓ in chemotaxis. Incubating healthy rat neutrophils in diabetic rat plasma also ↓
chemotaxis

(119) HVs+ volunteers with T1D ↓ chemotaxis towards zymosan-activated plasma. No difference towards fMlp and
Escherichia coli supernatant

(49) HVs + people with T1D and T2D ↓ chemotaxis towards fMlp but no difference towards healthy control serum
(55) Akita mouse (point mutation in Ins2 gene- inability to produce insulin-

T1D model)
↓ chemotaxis towards fMlp and WKYMVm but no difference in random (unstimulated)
migration.

(120) Alloxan treated rats No WT rats used in the study.
↓ chemotaxis towards casein and fMLP in rats with severe compared to mild diabetes

(121) Neutrophils investigated from WT rats incubated in serum from Alloxan
treated rats or WT

No difference in chemotaxis towards fMLP or Leukotriene B4.
↓ chemotaxis towards LPS-activated rat sera in diabetic serum group

(122) HVs + people with T2D undergoing tooth extractions ↓ chemotaxis towards fMLP
(51) HVs + people with insulin dependent diabetes ↓ chemotaxis towards fMLP
(123) Low dose STZ-treated mice ↓ chemotaxis towards casein
Studies reporting no difference in neutrophil chemotaxis in T1D or T2D compared to control
(124) HVs + people with T1D or T2D). Mixture of children and adults in both

groups.
No difference in chemotaxis to zymosan activated serum

(53) HVs + those with T2D No difference in chemotaxis towards fMLP
(125) HVs + people with diabetes and periodontitis No difference towards zymosan activated serum
(126) HVs + people with T2D and periodontitis No difference towards zymosan activated serum
(127) HVs + people with T1D or T2D No difference in chemotaxis towards fMLP
HVs, Healthy volunteers; fMlp, N-Formyl-methionyl-leucyl-phenylalanine; WT, Wild-type.
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as a result of an increased focus on reducing oxidative stress to
manage diabetic complications as opposed to increasing ROS to
aid pathogen handling. Nonetheless, enhancing neutrophil ROS
production in sepsis is a novel clinical context where this
therapeutic approach may be of value. The administration of
granulocyte macrophage- colony stimulating factor (GM-CSF),
significantly increased ROS production and survival in obese
diabetic mice with sepsis (65). People with diabetes and sepsis
have a worse prognosis than those with sepsis alone, and
Frontiers in Immunology | www.frontiersin.org 7
enhancing ROS production for acute infections, may outweigh
the negative impacts of oxidative stress long term (176).
NEUTROPHIL EXTRACELLULAR
TRAP FORMATION

As a last resort in the anti-microbial defence strategy neutrophils
undergo a programmed cell death known as NETosis, in order to
TABLE 2 | Studies Investigating Neutrophil ROS production in Diabetes.

Study Animal model/human volunteer type Changes in neutrophil ROS production reported in diabetes
group compared to healthy control

Studies investigating neutrophil extracellular ROS production
(54) HVs + people with T2D ↑ in response to PMA and zymosan
(136) HVs + people with T2D ↑ in response to PMA

↓ in response to zymosan
(137) HVs + PWD (does not specify type) No difference in response to PMA
(138) HVs + people with T1D ↑ in unstimulated neutrophils. ↓ in response to fMLP and no

difference when using PMA
(55) Akita mouse (point mutation in Ins2 gene- inability to produce insulin-T1D model) ↑ in response to fMLP
(139) HVs+ well controlled T1D No difference in response to PMA
(140) HVs+ volunteers with poor, moderate or well controlled T1D or T2D ↑ in response to fMLP in poorly controlled diabetes only (>8%

HbA1c)
(123) Low dose STZ-treated mice vs. WT ↓ in response to PMA
(141) Healthy cats vs. diabetic cats (partial pancreatectomy) ↑ in response to PMA
(142) HVs + patients with diabetes (T1D or T2D) ↑ in unstimulated neutrophils but decreased in response to PMA and

zymosan
(143) HVs + people with poorly controlled T2D ↓ in response to a mixture of zymosan, phorbol and NaF
(144) HVs + patients with odontogenic bacterial infections or oral candidiasis with or without

diabetes
↓ in response to PMA

(59) HVs+ people with T1D or T2D with and without varying severities of periodontitis ↑ ROS in response to PMA and fMLP in participants with moderate
(7-8%) or poor (>8%) glucose control

(145) HVs + people with DFD ↓ in ROS in response fMLP. G-CSF increased ROS.
Studies investigating neutrophil intracellular ROS production
(122) HVs + people with T2D undergoing tooth extractions ↓ in ROS (stimulus not reported)
(146) HVs + people with T2D and varying stages of diabetic nephropathy ↑ ROS. Greatest increase in patients with stage 4 nephropathy.

(Multiple stimuli employed)
(147) Newly diagnosed T1D patients not yet undergoing insulin therapy, T1D patients with

disease duration of >3 months and healthy controls
↓ in ROS in response to PMA (greatest decrease in patients without
insulin therapy)

(148) HVs + people with T1D or T2D ↓ in ROS in response to PMA. Tolrestat increased ROS
(149) HVs + infection free people with poorly controlled T2D (HbA1C <7.5%) ↓ in ROS in response to PMA
(126) HVs + people with T2D and periodontitis No difference in response to PMA. ↓ in response to zymosan
(150) STZ-treated rats v.s WT rats ↑ ROS at basal level (no stimulus used)
(125) HVs + people with diabetes and periodontal disease No difference in response to PMA. ↓ in response to zymosan
(49) HVs + People with T1D or T2D No difference in response to PMA
(151) HVs + people with T1D or T2D ↓ in response to endotoxin activated plasma
(141) Healthy cats & diabetic cats (partial pancreatectomy) No difference in response to PMA
Studies investigating neutrophil intracellular and extracellular ROS production using chemiluminescence
(142) HVs + patients with diabetes (T1D and T2D) ↑ in unstimulated neutrophils but decreased in response to PMA and

zymosan
(152) HVs + people with T2D ↓ in response to PMA
(153) WT Wistar rats v.s STZ treated rats ↓ in response to fMLP
(154) HVs + people with T1D or T2D ↓ in response to PMA
(155) WT Fisher Rats + STZ treated rats ↑ in response to bradykinin
(143) WT Wistar rats v.s STZ treated rats ↓ in response to opsonised zymosan
(151) HVs + people with T1D or T2D ↑ in response to opsonised zymosan
(156) HVs + people with T2D ↓ in response to fMLP
(157) HVs + people with T1D and T2D ↑ ROS in response to cAMP-elevating agent- dibutyryl cAMP
(158) Healthy wistar rats v.s alloxan treated rats ↑ ROS in response to PMA
(159) HVs + people with T2D ↑ ROS at rest and in response to PMA
(49) HVs + people with T1D or T2D ↓ ROS in response to opsonised zymosan and PMA
(160) HVs+ poorly controlled T1D patients ↓ ROS in response to PMA
HVs, Healthy volunteers; fMLP, N-Formyl-methionyl-leucyl-phenylalanine; cAMP, cyclic adenosine monophosphate; NaF, Neutrophil activating factor; WT, Wild-type; G-CSF, Granulocyte
colony stimulating factor.
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capture extracellular bacteria. The release of NETs, which are
extruded DNA networks decorated with antimicrobial proteins
and histones, can occur via ROS dependant or ROS independent
pathways (177–180). Chromatin decondensation, a key part of
NETosis, is mediated by protein arginine deiminase 4 (PAD-4),
which citrullinates DNA, as well as myeloperoxidase and neutrophil
elastase (181–183). Elevated NETosis damages host tissue and
exacerbates inflammation and is widely investigated in the
pathology of multiple chronic diseases including chronic
obstructive pulmonary disease (COPD) (184, 185). In diabetes,
NETs are implicated in disease complications, contributing to poor
infection resolution in DFD, retinopathy and cardiovascular
sequalae, as well in the early pathophysiology of T1D (186–189).
NETosis is increased in the presence of high glucose concentrations
and is consistently shown to be upregulated in diabetes (56, 190–
193). The mechanism of hyperglycaemia induced ROS production,
as discussed above, also drives enhanced NETosis in diabetes and
the impacts on NETosis are durable, with elevated NET levels
persisting for up to a year post normalisation of blood glucose in
study of people with T2D (90, 193). Membrane bound and
intracellular proteases, such as neutrophil elastase, that are
externalised during the process of NETosis have greater activity in
people with diabetes, further contributing to the excessive
inflammation observed (194). The strong association between
increased NETosis and diabetes means it is a leading area in the
field for the investigation of immune-modulating therapies.

Wong et al., demonstrated for the first time that neutrophils
isolated from people with T1D, T2D or STZ-induced diabetic
mice were primed to undergo NETosis (56). Furthermore,
wound healing was impaired in STZ treated mice, which was
reversed in PAD-4 knockout mice, providing a rationale for
targeting PAD-4 therapeutically to reduce NETosis (56). Fadini
et al. (195) showed evidence of NETosis occurring in skin lysates
of diabetic mice, and that the PAD-4 inhibitor, cl-amidine,
improved wound healing in STZ-treated mice (195). However,
ROS dependant NETosis does not rely exclusively on PAD-4 for
NETosis, therefore different approaches to reduce ROS
production have also shown positive outcomes in lowering
levels of NETosis (182). Targeting PKCb2, using ruboxistaurin
improved wound healing and reduced NETosis in STZ treated
mice with sterile injury (64). Anti–vascular endothelial growth
factor therapy was also shown to be effective in reducing ROS-
dependant NETosis in retinas from STZ-treated rats, in the
context of diabetic retinopathy and has yet to be explored in
the context of active infection in diabetes (Wang et al., 2019).

Pathogen, rather than host therapeutic targets also show
promise. A monoclonal blocking antibody to S. aureus pore-
forming alpha toxin (MEDI4893), significantly reduced NETosis
and S. aureus wound burden, and increased wound resolution in
TALLYHO/JngJ mice (a polygenic T2D mouse model) (196). The
efficacy of MEDI4893 was supported in subsequent research and
provided a novel mechanism of NETosis inhibition. Low density
neutrophils (LDNs) are a sub-population of neutrophils, which have
an immature nuclear structure and are associated with increased
NETosis in other chronic diseases such systemic lupus
erythematosus (197, 198). A significant increase in the number of
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LDNs and neutrophils undergoing NETosis were detected in
diabetic mice (both db/db, a T2D model, and STZ treated mice)
following systemic S. aureus infection compared to non-diabetic
control animals (66). Interestingly, neutralising S. aureus alpha-
toxin with MEDI4893 inhibited TGF-b-mediated induction of
LDNs and NET production, and increased animal survival (66).
Improving the bactericidal capacity of NETs to improve infection
resolution has also been explored. Clarithromycin increased the
killing capability of NETs from people with T2D by increasing the
antimicrobial cathelicidin peptide, LL-37 (199). Manipulating
NETosis is an expanding area of research in the field and
provides a promising future avenue for immune-modulating
therapies to help reduce complications of T1D and T2D and
improve handling of infections.

The importance of NETosis in COVID-19
COVID-19 caused by the novel SARS-CoV-2 virus is a complex
respiratory and multi-organ syndrome characterised by respiratory
distress, hyper inflammation, and coagulation. COVID-19
disproportionately impacts the elderly and those with underlying
health issues, and both T1D and T2D are associated with severe
COVID-19 disease and increasedmortality (200–204). In those with
diabetes, a high HbA1c, suggesting chronic hyperglycaemia, upon
hospital admission is an independent risk factor for poor prognosis
and mortality (205–208). An increased neutrophil/lymphocyte ratio
predicts poor clinical outcomes in COVID-19 patients and
increased NETosis is considered a key mechanism driving airway
inflammation and lung damage in this disease (68, 209–211). Serum
from people with COVID-19, as well as live SARS-CoV-2, induce
NETosis in neutrophils isolated from healthy donors, which in turn
have the capacity to cause lung epithelial cell death (69, 209).
Furthermore, circulating NET markers are high in people with
COVID-19 and NETs are visualised in both lung aspirates and
tissue specimens (69, 212). Developing new therapies to reduce
NETosis in COVID-19 is an active area of research in the midst of
the global COVID-19 pandemic (69, 213). It is possible that
successful anti-NETosis therapies for COVID-19 may help other
chronic diseases where NETs are implicated in the pathogenesis,
with diabetes being a key candidate for this.
NEUTROPHIL CYTOKINE PRODUCTION

Neutrophils produce a range of pro-inflammatory and anti-
inflammatory cytokines, which are integral to effective innate
and adaptive immune responses (214). Neutrophils isolated from
people with T2D generated significantly increased levels of pro-
inflammatory cytokines; IL-8, TNF-a and IL-1b at both basal
levels and when stimulated with LPS in vitro (215). Increased
gene expression of pro-inflammatory cytokines IL-6, TNF-a and
IFN-b, were demonstrated in a subsequent in vitro study of
neutrophils isolated from people with T2D and good glucose
control (HbA1c 6-7.5%) (216). However, there was not an
elevated cytokine profile in the sub-group of patients with
complications of diabetes such as DFD, neuropathy and
nephropathy, irrespective of glucose control, with the authors
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suggesting a ‘burnt out’ neutrophil phenotype in those with
severe complications, although a mechanism for this phenotype
was not explored (216). Furthermore, there were no differences
in serum cytokine levels between the T2D group and healthy
controls (216). This finding is at odds with previous studies
showing elevated pro-inflammatory cytokines (IL-1a, IL-4, IL-6)
in serum and whole blood from both children and adults with
either T1D or T2D (217, 218).

Increased pro-inflammatory cytokine generation can result from
hyperglycaemia and AGEs, which drive ROS production and
intracellular calcium concentration, activating NF-kB, and
promoting the transcription of pro-inflammatory cytokines (219–
221). Blood glucose lowering therapies; insulin, metformin and
glibenclamide, were demonstrated to reduce neutrophil cytokine
production in a rodent model and from neutrophils isolated from
people with T2D (222–224). However, suppression of IL-1b
production by neutrophils in patients receiving glibenclamide, was
associated with enhanced susceptibility to Burkholderia
pseudomallei infection in people with T2D, highlighting the need
for careful consideration of unwanted side effects when seeking to
modify excessive inflammation in diabetes (224). Nevertheless, the
usefulness of targeting cytokine production in response to infection
and inflammation is demonstrated by the efficacy of Tocilizumab, a
receptor inhibitor of IL-6, used for treating rheumatoid arthritis
(RA) and more recently shown to increase patient survival in severe
COVID-19 (225, 226). However, limited data suggests the
effectiveness of Tocilizumab was confounded in hyperglycaemic
patients with COVID-19 (both with and without diabetes) and
warrants further investigation to understand the potential efficacy in
treating inflammation in patients with diabetes (227).

Neutrophils produce anti-inflammatory cytokines in order to
downregulate inflammation. IL-1 receptor antagonist (IL-1ra) is
upregulated in people with T2D compared to healthy controls,
despite pro-inflammatory cytokines also being significantly
increased (214, 216, 228). A RCT of 39 patients with RA and
T2D were treated with anakinra, a recombinant IL-1ra (229). The
primary endpoint of the study was a reduction of HbA1c, which was
met with no adverse events (229). Anakinra is also under
exploration for treating COVID-19 associated inflammation, with
small scale trials showing clinical improvements in patients (229–
231). Anakinra was demonstrated to reduce IL-1 induction of NETs
in vitro, using cells isolated from people with pyogenic arthritis,
pyoderma gangrenosum and acne (PAPA) syndrome and in human
bronchial epithelial cells (232, 233). Owing to the importance of
NETs in the pathology of diabetes complications, detailed
exploration on the efficacy on anakinra in treating diabetes
associated neutrophil dysfunction would be an important novel
addition to the field.
NEUTROPHIL APOPTOSIS

Unlike NETosis, neutrophil apoptosis is an anti-inflammatory
form of programmed cell death. There are two main routes to
apoptosis; the extrinsic (initiated by membrane bound death
receptors) and intrinsic (regulated at the mitochondrial level)
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pathways, which share a common mechanism of caspase
mediated cell shrinkage, cytoskeleton breakdown and nuclear
fragmentation (234–236). Accumulation of neutrophils at sites of
inflammation, without undergoing apoptosis and clearance,
causes host tissue damage and release of pro-inflammatory
cytokines (237–241). Delayed neutrophil apoptosis is reported
in chronic respiratory diseases such as COPD (242–244).
Research in diabetes thus far presents a complex dysregulation
of neutrophil apoptosis, whereby apoptosis is reduced but there
is a weak response to anti-apoptotic (pro-survival) signals.

Manosudprasit et al. demonstrated reduced spontaneous
apoptosis in peripheral blood neutrophils from people with
T2D and those with T2D and periodontitis; a common oral
infection in PWD (57). Down regulation of the key proteases
involved in neutrophil apoptosis, caspases 3 and 9 were reported.
Within the patient group, apoptosis was delayed significantly in
those with a high HbA1C (>7.5%). However, this phenotype
could not be recreated using healthy donor neutrophils
incubated in high glucose media (25 mM) in vitro. Delayed
neutrophil apoptosis was observed in non-obese diabetic mice (a
T1D model) infected with S. aureus, which was associated with
enhanced production of TNF-a (58). Elevated levels of TNF-a
are implicated in the aetiology of chronic wounds in diabetes and
periodontitis (245, 246). In contrast, neutrophils from people
with diabetes do not have a cell survival advantage in response to
lipopolysaccharide (LPS), potentially enhancing susceptibility to
infection in humans (47, 247, 248). LPS is a cell wall component
of Gram-negative bacteria and is a well characterised pro-
survival stimulus in neutrophils (239, 249). LPS tolerance, in
which cells become less responsive to LPS, is observed in Goto-
Kakizaki rats (a T2D model), and mediated by impaired Toll-
like-receptor 4 (TLR4) signalling (47, 250) which may have
profound consequences on immune responses to infection.

Furthermore, the impact of delayed apoptosis is exacerbated
in diabetes due to reduced macrophage efferocytosis (251, 252).
Promoting neutrophil apoptosis as an anti-inflammatory
strategy has been successfully demonstrated in experimental
models of other chronic diseases including COPD and in
human studies in vitro (150, 244, 253–256). However, this
therapeutic approach has not been widely investigated in
diabetes. Limited data demonstrates 1,25-dihydroxy-vitamin-
D3 (1,25VitD3) increased apoptosis in vitro in people with
T2D and periodontitis and presents an area where additional
research is warranted (257).
NEUTROPHIL PHAGOCYTOSIS

Neutrophil phagocytosis is the engulfment and internalisation of
organisms into membrane bound compartments (phagosomes)
prior to pathogen killing. Phagocytosis phenotypes have been
widely investigated in diabetes previously, predominantly in
small scale studies using volunteers with T1D or T2D and
rodent models (Table 3). The weight of evidence demonstrates a
reduction in neutrophil phagocytosis in response to a variety of
stimuli (123, 147, 264, 267). However, some studies report no
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difference in phagocytosis by neutrophils from PWD in
comparison to healthy controls (49, 145, 268). The majority of
studies reviewed do not recruit treatment naïve PWD, and
therefore it must be assumed that some participants will be
prescribed standard anti-hyperglycaemic therapies. Insulin
therapy restored blood glucose and neutrophil phagocytosis, in
leptin-deficient mice, highlighting the importance of accounting
for current treatments when designing studies using human
volunteers (271). Hyperglycaemia elevates intracellular calcium
levels as a result of cell shrinkage in response to osmotic stress,
which in turn dysregulates cellular signalling mechanisms
required for actin rearrangement in phagocytosis (74). Inhibiting
uptake of calcium, using the calcium ion channel blocker,
amlodipine (a treatment for hypertension and coronary heart
disease) increased neutrophil phagocytosis in patients with T2D
(263, 272). Furthermore, high glucose interferes with complement
protein C3 mediated opsonisation of S. aureus and Candida
albicans, which could further add to reduced neutrophil
phagocytosis and pathogen handling in T1D and T2D (273, 274).

Once phagocytosis is complete and bacteria are contained within
the phagosome, phagosomal maturation occurs in order to
conclude the killing process. Here the phagosome fuses with
intracellular granules to form a phaglysosome, into which
antimicrobial granule contents are discharged. Furthemore, the
phagolysosome becomes acidified, which is required for effective
pathogen killing (275). Phagosomal maturation has not been
studied widely in the context of diabetes previously. Limited data
in a db/db mice model, showed a significant reduction in
phagosome maturation and killing of S. aureus compared to
control mice and maturation was augmented by insulin treatment
(271). Phagosomal maturation relies on glycolysis, and
perturbations of glycolysis, mediated by pathogens including
Salmonella typhimurium have been demonstrated to reduce
acidification and bacterial killing in macrophages from healthy
volunteers (276, 277). Reduced activities of key glycolytic enzymes
(G6PDH and glutaminase) were demonstrated in STZ treated rats,
and whether aberrant glycolysis is an important factor in
phagosomal maturation is yet to be investigated in T1D or T2D
(278). Furthermore, complement protein C5a, was shown to impact
phagosomal maturation via phosphoinositide 3-kinase (PI3K)
signalling in neutrophils from critically ill patients in response to
S. aureus challenge in vitro (279). Further research is required to
explore whether phagosomal maturation is a fundamental defect in
those with T1D or T2D and to elucidate the causative mechanisms.
IMPACTS OF HYPOGLYCAEMIA ON
NEUTROPHIL RESPONSE TO INFECTION

Iatrogenic hypoglycaemia remains one of the major challenges in
the treatment of T1D and T2D (280). Data from self-reporting
studies, which are likely to be underestimates, suggest people with
T1D have approximately two hypoglycaemic episodes per week,
with an annual incidence of severe hypoglycaemia, where third
party assistance is needed, being 1.15 events per person per year in
T1D versus 0.35 events per person per year in T2D (281, 282).
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Mechanistic studies employing the hyperinsulinaemic-
hypoglycaemia clamps in both healthy individuals and those with
T1D and T2D, demonstrate that acute moderate hypoglycaemia
initiates a pro-longed pro-inflammatory state with upregulation of
C-reactive-protein (CRP), increased platelet reactivity and
mobilisation of pro-inflammatory leukocyte subsets (283–286).
Additionally, in response to low endotoxin challenge in healthy
volunteers, neutrophil counts were significantly increased in those
allocated to experimental hypoglycaemia 48 hours earlier when
compared to euglycaemic controls (284). However, whether
neutrophils released into the circulation in response to
hypoglycaemia have an altered function has not been widely
investigated. A small-scale study compared the neutrophil
oxidative burst in response to S. aureus in people with T1D
versus healthy controls, after an insulin induced hypoglycaemic
episode (287). A greater reduction in oxidative burst was shown in
the healthy control group compared to those with T1D (287). Sub-
populations of PWD are more prone to hypoglycaemic events;
including older people with multiple co-morbidities such as chronic
kidney and liver disease, those with a long disease duration, people
treated with insulin and sulfonylureas, those with impaired
awareness of hypoglycaemia and individuals with low c-peptide
levels (288–290). Investigating neutrophil function in observational
cohorts susceptible to hypoglycaemia in both T1D and T2D, could
provide novel insights into the impacts of hypoglycaemia on
neutrophil function in the free-living condition. Notwithstanding
potential confounding factors from unmeasured variables, these
data could be highly relevant in understanding the effects of
hypoglycaemia on neutrophil function in a ‘real-world’ setting.
This is because existing literature on neutrophil function from
hyperinsulinaemic-clamp studies is limited by supraphysiological
doses of intravenous insulin used that are almost never encountered
in routine clinical practice and insulin at these levels is known to
exert strong inflammatory effects (291, 292).
DISCUSSION

Increased susceptibility to recurrent and chronic infections is a key
clinical characteristic of both T1D and T2D. This literature review
has highlighted that there is an abundance of small-scale studies
observing phenotypic changes between either human volunteers or
animal models with and without diabetes, conducted over the last
60 years (summarised in Figure 2). Analysis of the breadth of
literature demonstrates that neutrophils in those with T1D or T2D
are fundamentally altered compared to neutrophils from healthy
donors. Neutrophil effector mechanisms pertinent to infection and
inflammation are aberrant in diabetes. Key neutrophil pathways
critical in the response to infection (recruitment, chemotaxis,
phagocytosis and intracellular ROS production) are impaired in
diabetes, whereas pro-inflammatory cytokine production,
extracellular ROS production, cell survival and NETosis, are
upregulated, and are emerging as critical mediators of diabetic
complications (47, 56, 122, 140, 147, 192). An avenue of under
explored research is the investigation of tissue resident neutrophils.
This is particularly important in DFD which is characterised by
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vascular and infectious tissue pathologies. Skin lesions from in vivo
diabetes models have provided evidence for the presence of NETs in
the tissue, which supports a role for the diabetic tissue environment
in modifying neutrophil function (56, 195). Tissue neutrophils in
other diseases have demonstrated to have tissue specific phenotypes
(293, 294). For example, increased release of neutrophil elastase was
shown in neutrophils isolated from bronchial lavage fluid but not in
circulating neutrophils from children with cystic fibrosis (295).
Phenotyping tissue neutrophils is challenging, particularly in light
of their sensitivity to ex vivo manipulation and short lifespan, but
doing so would allow us a greater understanding of the specific role
of the tissue microenvironment in modifying neutrophil function
in diabetes.

Hyperglycaemia and AGEs are the key drivers of altered
neutrophil function in diabetes, with dysregulated neutrophil
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function found in patients despite anti-hyperglycaemic therapies
(90, 192). However, there are gaps in the mechanistic understanding
yet to be explored. Epigenetic modification of neutrophils in T1D or
T2D has not been addressed previously and could provide further
insight as to how hyperglycaemia may impact neutrophil function
beyond what is already understood, potentially identifying new
therapeutic targets to treat dysfunction. Also, whether
hypoglycaemia in diabetes can alter neutrophil function is not
known. Furthermore, a pro-inflammatory neutrophil phenotype is
not unique to diabetes and aberrant neutrophil function is
implicated in multiple contexts including COPD and critical
illness (296–298). PWD often have comorbidities which may also
contribute to neutrophil dysfunction and understanding common
drivers of neutrophil function maybe a useful approach for
future research.
TABLE 3 | Studies investigating neutrophil phagocytosis in diabetes.

Study Animal model/human volunteer type Phagocytosis phenotypes reported in diabetes

Studies reporting a decrease in neutrophil phagocytosis in diabetes compared to control
(258) HVs + peoplewith T2D ↓ in phagocytosis of S. aureus- only acidotic diabetic group,

no difference in people with non-acidotic diabetes
(50) Alloxan treated rat model ↓ in phagocytosis of Streptococcus pneumoniae
(259) HVs + children with T1D ↓ in phagocytosis
(260) HVs + T2D ↓ in phagocytosis of S. aureus but no difference in

phagocytosis of S. epidermidis
(261) HVs + people with T2D ↓ in phagocytosis of Burkholderia pseudomallei
(262) Alloxan and diet induced diabetic mice ↓ in phagocytosis of LPS-coated fluorescent beads
(190) Alloxan treated rats- peritoneal neutrophils ↓ in phagocytosis of opsonised Candida albicans
(65) Abdominal sepsis model in diabetic diet induced mice ↓ in phagocytosis of Escherichia coli
(263) HVs + people with T2D and poorly controlled blood glucose (>120 mg/dL) ↓ in phagocytosis of oil droplets containing oil red O, coated

with E. coli derived LPS
(264) HVs + people with T2D ↓ in phagocytosis of opsonised oil droplets containing oil

red O, coated with E. coli derived LPS
(123) Low dose STZ-treated mice ↓ in phagocytosis of zymosan
(265) WT mice v.s db/db mice ↓ in phagocytosis of pHrodo Red S. aureus Bioparticles

Conjugate
(150) STZ-treated rats v.s WT rats ↓ in phagocytosis of opsonised and unopsonised

Saccharomyces cerevisiae
(147) Newly diagnosed T1D patients not yet on insulin therapy, T1D patients with disease duration of

>3 months and healthy controls
↓ in phagocytosis of E. coli (greatest decrease in new
diagnosed patients, not undergoing insulin therapy)

(122) HVs + people with T2D undergoing tooth extractions ↓ in phagocytosis of FITC- labelled opsonised E.coli
(266) HVs + people with diabetes controlled with insulin ↓ in phagocytosis Candida guilliermondii
(139) HVs + people with well-controlled T1D ↓ in phagocytosis Candida albicans
(267) HVs + people with T2D ↓ in phagocytosis- only in K1/K2 Klebsiella pneumoniae no

difference in non-K1/K2 serotypes
(151) HVs + people with T1D or T2D ↓ in phagocytosis of heat killed opsonised Candida albicans
(154) HVs + people with T1D or T2D all receiving insulin ↓ in phagocytosis of S. aureus
(144) HVs + patients with odontogenic bacterial infections or oral candidiasis with or without diabetes ↓ in phagocytosis of latex particles
Studies reporting no difference in neutrophil phagocytosis in diabetes compared to control
(268) HVs + people with T1D No difference on phagocytosis of Candida albicans
(49) HVs + people with T1D or T2D No difference when using C3 opsonized latex beads
(145) HVs + diabetic patients with active foot infection No difference in phagocytosis of S. aureus
(109) S. aureus hind paw infection model in db/db mice No difference in phagocytosis of S. aureus (bone-marrow

derived neutrophils)
(269) HVs+ poorly controlled diabetes (HbA1c ≥ 10%)+ well controlled diabetes (HbA1c < 7%) +

morbidly obese+ obese with metabolic syndrome + obese without metabolic syndrome
No difference in uptake of opsonised S. aureus

(149) HVs + infection free people with poorly controlled T2D (HbA1C <7.5%) No difference in phagocytosis of S. aureus but a downward
trend reported

(70) HVs +people with T1D + latent autoimmune diabetes in adults + people with T2D No difference in phagocytosis of FITC-labelled zymosan
(270) Akita mice lacking p47phox (Akita/Ncf1) (model of periodontitis and chronic hyperglycaemia) No difference in the phagocytosis of FITC- labelled zymosan

(in vivo)
(52) Lean zucker rat v.s obese zucker rat (T2D model) (peritoneal neutrophils) No difference in the phagocytosis of C. albicans
HVs, Healthy volunteers; WT, wild-type; FITC, Fluorescein Isothiocyanate.
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To build upon the wealth of phenotypic data already
collected, future research should focus on conducting RCTs.
Limited previous research shows that therapeutic modulation of
dysregulated neutrophil functions can restore host immunity
and improve infection resolution in diabetes (64, 65, 196). The
therapeutic reduction of pro-inflammatory ROS production and
NETosis is the main direction of emerging research, with positive
effects on infection resolution demonstrated in small scale
animal and patient research (64, 66, 158). Furthermore, the
exploration of investigative therapies shown to be useful in
modulating neutrophil function in other diseases such as sepsis
and RA should be prioritised in diabetes. For example, anakinra,
the IL-1ra antagonist targeting neutrophils in RA could be useful
in reducing chronic inflammation in diabetes (232, 233). The
urgency and necessity of continued research and development in
the field is exemplified by the susceptibility of PWD to develop
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life-threatening acute respiratory distress syndrome (ARDS)
with COVID-19 (299). Increased ROS and NETosis are drivers
of alveolar oedema, which is characteristic of ARDS and
therapies reducing these mechanisms would be of huge value
(300). To conclude, future research should focus on driving
forward investigation of novel experimental treatments targeting
neutrophil induced oxidative stress and increased NETosis in
diabetes, with the aim of conducting RCTs to translate the
abundance of previous phenotypic research into effective
treatments to improve the lives of people with T1D and T2D.
SEARCH STRATEGY

The following search strategy was used for this review. Literature
searches were conducted using the PubMed database (1964–2020).
FIGURE 2 | Summary of changes in neutrophil function in diabetes. Neutrophils in diabetes are functionally altered, due to exposure to the diabetic
microenvironment, including changes to blood glucose as well as other factors. Phagocytosis, chemotaxis, intracellular ROS production and apoptosis are reduced
in diabetes, whereas extracellular ROS, cytokines and NETosis are increased. Examples of mechanisms underpinning the functional changes are also noted.
extracellular superoxide dismutase (ecSOD), protein kinase C (PKC), nicotinamide adenine dinucleotide phosphate (NADPH), reactive oxygen species (ROS), Nuclear
factor-kB (NF-kB), low-density neutrophils (LDNs), G protein coupled receptor kinase-2 (GRK2). Figure created with BioRender.com.
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Key word searches included ‘Diabetes’ and ‘Neutrophil’ and then
either ‘Recruitment’, ‘Cytokines’ ‘Chemotaxis’,‘Phagocytosis’,
‘Reactive oxygen species’, ‘ROS’, ‘NETosis’, ‘Apoptosis’,
‘hypoglycaemia’, ‘hyperglycaemia. or ‘epigenetics’. All articles
that were found using the search terms were included.
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