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Missing data and prediction: the pattern submodel
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SUMMARY

Missing data are a common problem for both the construction and implementation of a prediction algo-
rithm. Pattern submodels (PS)—a set of submodels for every missing data pattern that are fit using only
data from that pattern—are a computationally efficient remedy for handling missing data at both stages.
Here, we show that PS (i) retain their predictive accuracy even when the missing data mechanism is not
missing at random (MAR) and (ii) yield an algorithm that is the most predictive among all standard missing
data strategies. Specifically, we show that the expected loss of a forecasting algorithm is minimized when
each pattern-specific loss is minimized. Simulations and a re-analysis of the SUPPORT study confirms
that PS generally outperforms zero-imputation, mean-imputation, complete-case analysis, complete-case
submodels, and even multiple imputation (MI). The degree of improvement is highly dependent on the
missingness mechanism and the effect size of missing predictors. When the data are MAR, MI can yield
comparable forecasting performance but generally requires a larger computational cost. We also show
that predictions from the PS approach are equivalent to the limiting predictions for a MI procedure that
is dependent on missingness indicators (the MIMI model). The focus of this article is on out-of-sample
prediction; implications for model inference are only briefly explored.
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1. INTRODUCTION

1.1. The problem

Missing data are problematic for both estimation and prediction. The statistical literature has been focused
on addressing the impact of missing data on parameter estimation and inference. However, forecasting
with incomplete predictor information is also highly problematic. The misspecification of an influential
predictor can be very costly in terms of prediction accuracy. Thus, it is important to have a validated and
robust approach for handling such instances.

In this article, we focus on what Wood and others (2015) call pragmatic model performance: the
model’s performance in a future setting where records may have partly missing predictors. For context,
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we consider the scenario of building clinical prediction models for use in hospital or out-patient settings.
But these methods are broadly applicable to any prediction setting. The problem arises when one attempts
to apply an established prediction algorithm to a new (out-of-sample) individual who has an incomplete
predictor profile (i.e. some predictors are missing). It is not hard to imagine that the manner in which those
missing predictors are dealt with is critical for maintaining the predictive accuracy of any forecast.

It is often assumed that “proper” imputation of new individual’s missing predictors will, at the least,
maintain the predictive accuracy of any algorithm. Some have even claimed that certain types of imputation
can improve the accuracy of forecasts. However, we could find no rigorous justification for these claims
and our investigation indicates that this would be the exception rather than the rule. As we describe below,
imputation methods can maintain the predictive accuracy of a model when key assumptions about the
missing data mechanism are met. The predictive accuracy of our proposed approach, pattern submodels
(PS), is at least as accurate as imputation methods and does not depend on assumptions about the missing
data mechanism. In many cases, it is also more computationally efficient.

In our view, the impact of missing data on out-of-sample prediction performance is uniformly under-
stated in the statistical and clinical literature. A poor imputation algorithm, e.g. zero-imputation or mean
imputation, can drastically reduce a model’s prediction performance in practice. This a highly practical
problem with wide applicability.

1.2. Current approaches to imputing missing predictors

When applying prediction algorithms, strategies for dealing with missing predictors are often driven by
practical constraints. Common strategies include zero imputation and mean imputation, which are trivial
to implement, but often lead to poor predictions when the missing predictors are influential. Conditional
mean imputation and multiple imputation (MI) are now regularly implemented when fitting a model, but
they are rarely used in real time when the model is applied to new individuals that are missing predictors
(Janssen and others, 2009). The advantages and drawbacks of imputation methods for out-of-sample
imputation are listed in Table 1. The obvious issue, not well addressed in the literature, is the extent to
which these approaches degrade prediction performance.

MI is typically used in the model construction stage. MI draws multiple placeholder values from
conditional distributions derived from the observed data (van Buuren, 2012; Janssen and others, 2010;
Harrell, 2013) and uses those placeholder values to fit the model. The coefficients from each of these
fits are combined using Rubin’s rules (Rubin, 2009). When the data are missing at random (MAR), MI
can substantially increase the efficiency of inferential procedures by leveraging partial information from
incomplete data records. The “best” predictions from a multiply imputed prediction model are the averaged
predictions over all imputation sets (Vergouwe and others, 2010; Wood and others, 2015). The popularity
of MI for handling missing data in both the construction and forecasting stages has recently grown (Harrell,
2013; Janssen and others, 2009).

However, the applicability of the approach described above is limited when the user only has access
to published parameter estimates. Making predictions from a multiply imputed model when predictors
are missing is not straightforward, and it generally requires access to the original data in addition to the
published parameter estimates. In order for the real time imputations to be reflective of the MI procedure
used during model construction, the additional out-of-sample record should be combined with the original
data, and the full imputation algorithm should be refit to properly fill in missing predictors. This nuance is
especially important when using predictive mean matching or K-nearest neighbor imputation techniques
(as we do here). Of course, this requires access to the original data, the imputation datasets, and substantial
on-demand computing power, which is typically impractical in real world settings. Moreover, because
of its heavy computational burden, MI is not easily incorporated into web applications. One option is to
simply ignore this issue and use the multiply-imputed model along with a one-step imputation procedure
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Table 1. Comparing imputation methods for an out-of-sample individual with missing data

Out-of-sample Imp.
Requires Pros Cons

Zero imputation Nothing Neglible computation time Zero may not be an appropri-
ate value
Probably results in incorrect
predictions

Mean imputation Unconditional means Neglible computation time Only works for the average
individual

Conditional mean
imputation

Conditional mean imputation
model for every missing data
pattern

Lower computation time Large bias/variance tradeoff
for MNAR

Can approximate a MI pro-
cedure

CCS Submodels to be fit Negligible computation time Large bias/varaince tradeoff
for MNAR

May be advantageous if data
are MAR
Fittable for unobserved pat-
terns

PS Submodels to be fit Negligible computation time May be less efficient if data
are MAR

Works for any missingness
mechanism

Patterns with low member-
ship may not fit well

MMI Original data/conditional dis-
tribution

Works for any missingness
mechanism

High computational cost

Computer/imputation engine Allows for efficient parame-
ter estimation

Not viable in the clinic

MI Original data/conditional dis-
tribution

Established method High computational cost

Computer/imputation engine Works when data are MAR Not viable,in the clinic
Large bias/variance tradeoff
for MNAR

rooted in the chain equations or fitted conditional distributions. But this process is not likely to be congenial
with the original fitting approach and it did not perform well in our investigations.

1.3. Proposed solution

Our proposed solution is to use an approach we call the PS procedure. The basic idea is to fit a pattern
mixture model and forecast from whichever pattern-specific model matches the new but incomplete
predictor profile. This simple idea turns out to be highly effective and quite flexible. How the PS are fit
is important; we suggest using data only from that pattern to avoid having to make assumptions about
the missing data mechanisms. Note that the fitting of PS requires no imputation because standard model
construction typically ignores predictors that are uniformly missing in an entire group. Details are provided
in Section 3.1. Forecasts from PS benefit from the reduction in prediction bias that comes with the pattern-
specific approach. The loss in efficiency in parameter estimation that can result often translates to a
relatively minor penalty in prediction measures. Moreover, as we show later, the PS approach is optimal
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in the sense that it minimizes the expected prediction loss in the class of models being fit. Because of these
advantages, we anticipate that the PS approach will have broad impact for big data applications where
prediction is paramount and MI is often computationally unfeasible, e.g. when using an entire system of
electronic medical records (EMR).

1.4. A notable relationship

There are some interesting mathematical connections between PS and MI. PS is the limit of a congenial
MI procedure where the mean model depends on the missing data indicators. This new MI procedure,
which we call multiple imputation with missingness indicators (MIMI)—gives limiting predictions that
are equivalent to the PS models. What is nice about the MIMI model is that it makes it clear what elements
of the model can be assumed identical across the patterns. However, to forecast from the MIMI model
requires imputation and therefore substantial computational commitment.

The MIMI model is also known as the missing indicator model and is known to perform poorly for
estimation purposes when simple imputation methods such as zero or mean imputation are employed
(Allison, 2001; Groenwold and others, 2012). However, a corollary of our approach is that the inclusion
of the missing data indicator in the mean model is not the root problem; rather it is how the missing data
placeholder is imputed that causes subsequent bias in parameter estimation. When MI is used to fill in
missing values in a MIMI model, the parameter estimates will remain unbiased under certain conditions
on the missing data mechanism. The lesson is that the utility of the missing data indicators can only be
realized through an imputation procedure; an often overlooked point. We will not explore this connection
in this article, but the connection is important to note in this context.

1.5. Organization

Section 2 defines our notation and provides essential background on key missing data concepts. Section
3 describes our proposed methods, provides a simple example, and draws connections between PS and
MI models in some generality. Section 4 describes extensive simulations of PS in comparison to standard
approaches. Section 5 describes the performance of PS compared with other imputation strategies applied
to the SUPPORT Study, a multi-center two phase study of 9105 patients, from which a day 3 Physiology
Score (SPS) was predicted (Knaus and others, 1995). Section 6 provides some brief concluding remarks.

2. NOTATION AND BACKGROUND

2.1. Notation

Let Y = (Y1, ..., Yn) be the vector of n-length observed responses. With our focus on prediction, we assume
all responses are observed. This assumption can be relaxed, but it is not pertinent to our discussion here.
Predictors (covariates) are denoted by a (n × p) matrix X = (X1, ..., Xp) where Xj = (X1j, ..., Xnj)

T for
j = 1, ..., p predictor vectors of length n. Let M = {Mij} be the (n × p) matrix of missing data indicators
where indicator Mij = 1 if Xij is missing and Mij = 0 if Xij is observed for i = 1, ..., n individuals and
j = 1, ..., p parameters. This notation is consistent with Dardanoni and others (2015) and White and
Carlin (2010), two of our key references, but reversed from the more common notation where observed
and missing predictors are assigned the values 1 and 0, respectively. XM is used to indicate the subset of
all available predictors in missing data pattern M .

To help differentiate between models, we will use different Greek symbols for their parameters. For
example, parameters in the PS will be donated with a γ . Parameters in a traditional regression model
E[Y |X ] = Xβ will be donated by β; these are the parameters that are typically of interest in an estimation
setting. Note that the assumption of a common mean model across all missing data patterns (i.e. some



240 S. F. MERCALDO AND J. D. BLUME

version of MAR) is obviously a strong one. Parameters representing the effects of the missingness indi-
cators, M , will be denoted by δ; these parameters distinguish the MIMI model (defined in Section 3.4)
from a traditional MI model.

2.2. Background on pattern mixture and selection models

Our approach has roots in the established literature on pattern mixture models (Little, 1993). The pattern
mixture model factorization is: P(Y , M |X , γ , π) = P(Y |X , M , γ )P(M |X , π), where π is a parameter
vector for the missingness mechanism (Little and Rubin, 2014). The pattern-mixture approach allows for a
different response (mean) model in each missing data pattern. Our PS models are the kernels P(Y |X , M , γ )

of the pattern-mixture model. By fitting a submodel using only data from that missing data pattern, we avoid
the reliance on assumptions about the forms of the missing data mechanism. An alternative formulation
is the selection model: P(Y , M |X , θ , ω) = P(Y |X , θ , ω)P(M |Y , X , ω) where θ and ω are parameter
vectors (Little and Rubin, 2014; Little and Wang, 1996). This factorization describes a (single) marginal
response model, possibly dependent on elements from of the missing data mechanism. In this article, we
will not explicitly consider selection models except to use them to simulate data from certain missing data
mechanisms. While the selection model allows for potential dependence of Y and M , the pattern-mixture
model is traditionally used when the response model changes by missing data pattern.

2.3. Missingness mechanisms

To describe missing data processes, we define the following mechanisms: missing completely at random
(MCAR; M ∼ c for some constant 0 < c < 1 ), missing at random (MAR; M ∼ Xobs), missing not at
random (MNAR; M ∼ XM ), MAR where the missingness depends on Y (MARY; M ∼ Xobs + Y ), and
missing not at random where the missingness depends on Y (MNARY; M ∼ XM + Y ) (White and Carlin,
2010; Little and Rubin, 2014). The latter two mechanisms can only be simulated in the selection model
formulation.

If the missingness mechanism is MCAR, then pattern mixture and selection models are equivalent
(Little, 1993). When the data are not MCAR, the parameters of the kernel functions associated with
the selection and pattern mixture models have different interpretations and care must be taken when
estimating and interpreting them. The selection model describes the marginal relationship of Y on X ,
while the pattern mixture model describes the relationship of Y on X conditional on M . Marginal effects
from the selection model are generally not identifiable in the context of a pattern mixture model, although
some parameterizations can be identified though complete case restrictions that essentially force equality
restraints on certain parameters (Little, 1993). Identifiability is obviously a problem when the goal is
estimation and data are MNAR. However, when forecasting is the goal, complex re-parameterizations of
marginal effects are not a major impediment, even if the mapping is not easily reversed. If a single marginal
model is truly of interest, one can always marginalize over the pattern-specific models. Of course, how
that model should be interpreted when the data are not MAR is not immediately clear.

2.4. Complete case approaches

A complete case analysis simply ignores the records with missing data and estimates a single model from
the complete data set. Complete-case models have poor prediction performance when the data are not
MCAR (Knol and others, 2010; Janssen and others, 2009). Moreover, the comple-case model still requires
some type of imputation when forecasting from incomplete records.

The complete case analysis should not be confused with complete case submodels (CCS). CCS are
similar to our proposed PS approach in that they fit a unique model for every missing data pattern. However,
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CCS use data from all patterns to estimate the fit in each pattern. This often entails re-using records and
discarding observed data. For example, if age were the only missing predictor, two models would be fit:
one with age and one without. The PS approach would fit each model submodel separately using the set
of records with age and the set of records without age. CCS, on the other hand, uses all the records to
estimate the submodel that excludes age; age is simply ignored in the records that have it. As a result,
the validity of CCS predictions depends on a very strong MCAR assumption, which is often violated in
practice. CCS has been explored by Janssen and others (2009) and it is the only other submodel approach
that we found that has been systematically examined.

3. METHODS

3.1. Pattern submodels

Let {f̂1, ..., f̂k} where f̂m = f̂m(XM , M ) be the set of pattern-mixture submodels for pattern m = 1, ..., k
where k ≤ 2p different patterns. This might encompass straightforward prediction algorithms such as
f̂m = E(Y |XM , M ; γ̂ m) where γ̂ m is the vector of estimated pattern-specific parameters or more complex
algorithms such as pattern-specific random forests. While the potential exists for fitting 2p different models,
in practice only a small fraction of those patterns are observed. Note that f̂m is fit only on the data in pattern
m.

For comparison, denote the set of CCS models as {ĝ1, ..., ĝk} for patterns m = 1, ..., k . For example, we
might have ĝm = E(Y |XM ; β̂∗

m). Note that ĝm is fit using all records that have the full set of existing data
for pattern m and hence depends on a different parameter vector β̂∗

m. In Section 3.4, we discuss how to fit
PS and CCS when a pattern is not observed or the observed data are too sparse.

The difference between f̂m and ĝm is illustrated in Table 2 using a linear model for continuous outcome
Y and two covariates X1, X2. There are only four missing data patterns: (i) X1, X2 both observed; (ii) X1

missing, X2 observed; (iii) X1 observed, X2 missing; (iv) X1, X2 both missing. We see in Table 2 that the
estimated PS response function for E[Y |X1, M1 = 0, M2 = 1] is f̂3 while the CCS analogue E[Y |X1] is
estimated by ĝ3. Here γp,m does not necessarily equal β∗

p for any m = 1, 2, 3, 4. It is tempting to assume
that the CCS pattern 1 model would yield a reliable estimate of the marginal model E[Y |X1, X2], but this
only happens when the data are MAR on the covariates (and not on the response) (see White and Carlin,
2010; Bartlett and others, 2014).

3.2. Prediction Performance of PS

PS is computationally efficient because it fits a series of models in which all the necessary data is observed.
Thus, we need only fit and cross-validate the pattern-specific models using standard techniques. Moreover,
minimizing the expected loss in each pattern is equivalent to minimizing the expected loss marginally.

Table 2. Comparison of pattern submodels and complete case submodels

Pattern PS (f̂m) CCS (ĝm)

1:X obs
1 , X obs

2 E[Y |X1, X2, M1 = 0, M2 = 0] = γ0,1 + γ1,1X1 + γ2,1X2 E[Y |X1, X2] = β∗
0,1 + β∗

1,1X1 + β∗
2,1X2

2:X miss
1 , X obs

2 E[Y |X2, M1 = 1, M2 = 0] = γ0,2 + γ2,2X2 E[Y |X2] = β∗
0,2 + β∗

2,2X2

3:X obs
1 , X miss

2 E[Y |X1, M1 = 0, M2 = 1] = γ0,3 + γ1,3X1 E[Y |X1] = β∗
0,3 + β∗

1,3X1

4:X miss
1 , X miss

2 E[Y |M1 = 1, M2 = 1] = γ0,4 E[Y ] = β∗
0,4

γp,m, β∗
p,m represents the effect of the pth covariate in pattern m
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3.2.1. Minimization of the expected prediction error. Minimizing the expected prediction error (EPE)

in each pattern will, in turn, minimize the overall EPE. Let L
(

Y , f̂
)

be a properly defined loss function

for outcome Y and forecasting algorithm f̂ . We then have:

EY |X [L(Y, f̂ (X ))] = EM

[
EY |XM ,M

[
L

(
Y, f̂m

)]]

=
∑

M

P(M )EY |XM ,M

[
L

(
Y, f̂m(XM , M )

)]

where f̂m = f̂m(XM , M ). Hence, the selection of f̂m that minimizes the pattern specific expected loss,

EY |XM ,M

[
L

(
Y , f̂m(XM , M )

)]
, will in turn minimize the overall loss EY |X [L(Y , f̂ (X ))].

The form of the loss function is flexible; it could be squared error loss or 0/1 loss (Hastie and others,
2009). The pattern-specific restriction of the loss function should not be overlooked; the result might not
hold for metrics where predictions in one pattern are compared with predictions in another. One example
of this is the Area under the receiver operating characteristic curve (AUC), with the overall AUC not
equalling the average of pattern specific AUCs.

This result implies that, in practice, prediction models should be constructed and cross validated within
each pattern in order to maximize predictive ability. Note the restriction of this result to a certain class
of models f . This class must remain constant across patterns. If a linear model of a certain form is fit for
the overall model, then a linear model of the same form must be fit for each pattern (with the obvious
exception that missing predictors are excluded in the PSs). If a cross-validated relaxed lasso is used to
develop the overall model, then a cross-validated relaxed lasso must be used within each pattern. Likewise
for random forests. The above result does not necessarily apply when the prediction class changes across
patterns or does not match the prediction class used for the overall model. Rather, the result only tells
us the optimal way to deal with the missing data in that class of prediction algorithms. We explore this
point using a relaxed lasso in our data example. Also, for the record, we note that while it is sometimes
possible to find a more parsimonious model that yields a smaller EPE, these tend to occur in âŁ˜smallâŁ™
samples, highly collinear settings, or low signal-to-noise contexts (see Shmueli, 2010), and this is not a
reason to avoid the PS approach.

In Section 1.1 in the supplementary material available at Biostatistics online, we revisit a simple
example given by Shmueli (2010) in which the EPE is evaluated for a “fully specified model” (large)
versus an “underspecified model” (small). We can visualize the EPE as a weighted average of the large
and small prediction models. The EPE for the correctly specified full model is just the irreducible error,
whereas the EPE for the underspecified model increases as the out-of-sample predictor moves away from
its population mean.

3.3. Practical considerations

Forecasting with MI comes with a substantial computational burden because the imputation algorithm
must be repeated with the addition of the new records to the original data. PS, on the other hand, do not
need to be re-computed. The upfront computational effort can be large for 2p patterns, but this is still minor
relative to repeated applications of MI. A drawback of PS is that when data are sparse within a pattern, it
may not be possible to fit the PS. In such cases it is necessary to make simplifying assumptions and CCS
is an alternative option. This hybrid approach has worked well for us in practice, in large part because the
contribution to the EPE for patterns that are sparse is often negligible.

If p is very large, and storing 2p prediction models is unreasonable, there are several options. First, fit
models only for observable patterns, ignoring patterns not observed. Second, only fit models for patterns

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy040#supplementary-data
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in which the missing variable, or combinations of missing variables, are “important” to the predictions.
Third, if the data are available in real time, it may be possible to fit the specific pattern mixture submodel
on demand. Lastly, an examination of the MIMI model during the model construction stage can indicate
how best to borrow strength over the patterns (Section 3.4).

When the number of predictors is large relative to the number of data records, our approach is no worse
than traditional approaches. There are no easy answers when the sample size is too small to permit a
meaningful exploration of the predictors space. And, of course, âŁœsmallâŁž is relative to the number of
missing data patterns and potential predictor space and the irreducible noise levels. In practice we use the
following rule of thumb: fit the PS when there are 2p data points in the missing data patterns, otherwise
fit a CCS. Alternatively, a lasso model might work well in these settings. When the number of predictors
and the amount of data are both large (e.g. EMR data), MI can be nearly impossible to implement due
to computational limitations. In these cases, the PS approach is not only feasible, it is to be preferred.
It is actually easier, in a computational sense, to break the problem up into to a large number of smaller
challenges that can be dealt with in parallel.

3.4. PS as the limit of MIMI model

The MIMI model is a MI model that is dependent on the indicators Mi from i = 1, .., p. Consider the case
of a linear model with p = 2 covariates, X1 and X2. In this case, we could write:

E[Y |X1, X2, M1, M2] = β0 + β1X1 + β2X2 + δ1M1 + δ2M2

+ δ3X1M1 + δ4X2M2 + δ5X1M2 + δ6X2M1

(3.1)

where the β parameters represent the traditional direct effects of interest and the δ parameters, which we
call auxiliary parameters, explain how the direct effects change according to missing data pattern. If the
data are MCAR, then δi = 0 ∀ i. Beyond MCAR, the traditional effects might have complex dependencies
with the auxiliary parameters. An examination of the magnitude of the δ parameters provides some insight
into the apparent influence of the observed missing data mechanism. If it appears that the missing data
indicators contribute little to the mean model, then the MAR mechanism may be a sufficient approximation.
Shrinkage methods may also be applied to the delta δ parameters to help assess which covariates appear
to be influenced by non-ignorable missing data mechanisms. The shrinking and interplay of auxiliary
parameters is the subject of ongoing work.

Molenberghs and others, 2008 describes a longitudinal setting where every MNAR model can be
decomposed into a set of MAR models. Molenberghs and others, 2008 rightly asserts that this duality is
problematic for inference about a parameter. However, as noted in the article, these representations yield
different predictions and so the implications of this duality in our context are less problematic. The result
is relevant here only in what is implied about the non-longitudinal setting: that predictions must match
those from the pattern mixture model in order to retain predictive optimality.

Note that model 3.1 cannot be fit unless the missing predictors are imputed. When the missing data are
imputed by a proper MI algorithm, the coefficients are identified by that algorithm’s imputation scheme and
the auxiliary parameters become estimable under those assumptions. When conditional mean imputation
is used for missing out-of-sample predictors in the MIMI model, direct substitution shows the subsequent
forecasts are equivalent to PS predictions.

Adding missingness indicators to a model is often criticized. The classical missing-indicator approaches
assigned a constant (often zero or the overall mean) for the missing values and augmented the design matrix
with a binary indicator for each covariate with missing values. This leads to biased parameter estimates
(Allison, 2001; Groenwold and others, 2012). However, when conditional mean imputation is used to
impute missing predictors, the missing-indicator method will yield unbiased parameter estimates in the
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same scenarios where complete case estimation is unbiased (Jones, 1996; Dardanoni and others, 2011,
2015). That is, when Mi and Y are conditionally independent given Xi, then for any choice of imputation
matrix, the ordinary least squares (OLS) estimate of (3.2) coincides with the OLS estimate of β in the
complete case model (Bartlett and others, 2014; Jones, 1996; Dardanoni and others, 2011; White and
Carlin, 2010). Thus, the MIMI model is essentially an extension of Jones (1996) to a more flexible MI
setting.

The connection between the MIMI model and PS can be seen through a simple rearrangement of the
mean model 3.1. PS are most easily understood as projections of the true pattern-specific model into the
space of observed covariates. Applying the plug-in principle, the MIMI mean model reduces to the PS
when conditional mean imputation is used to impute missing covariates. Denote the imputed covariates
as X ∗

i = E[X1|X2] = α0 + α2X2 if Xi1 is missing and Xi1 otherwise.

Rearranging the MIMI model we have:

E[Y |X1, X2, M1, M2] =(β0 + δ1M1 + δ2M2)

(β1 + δ3M1 + δ5M2)X1

(β2 + δ4M2 + δ6M1)X2

which is just the PS model. For illustration, we have:

E[Y |X1, X2, M1 = 0, M2 = 0] = β0 + β1X1 + β2X2

E[Y |X1, X2, M1 = 1, M2 = 0] = (β0 + δ1) + (β1 + δ3)E[X1|X2] + (β2 + δ6)X2

= (β0 + δ1) + (β1 + δ3)(α0 + α2X2) + (β2 + δ6)X2

= (β0 + δ1 + β1α0 + δ3α0) + (β2 + δ6 + β1α2 + δ3α2)X2

= γ0 + γ2X2

Here model E[Y |X1, X2, M1 = 1, M2 = 0] = γ0 +γ2X2 is just the submodel including only the covariate
X2 fit within the group of individuals who are missing the covariate X1 (this is why the conditioning on M
is important). This is just f̂2 in Section 3.1. Hence, PS and MIMI are two parameterizations of the “same”
mean model. There are some differences; the MIMI model forces constant variance across all missing
data patterns, whereas PS as implemented here allows the variance to vary across patterns. Essentially,
PS is a series of models based on the observable total effects that can be estimated from the data at hand,
while MIMI tries to reparametrize those effects into pattern-specific direct effects.

4. SIMULATIONS

We present simulations in a simple linear model case under a wide variety of missing data mechanisms. The
behavior, in principle, would extend to the generalized linear model (GLM) setting and complex prediction
machines. To start, we generated n multivariate normal predictor vectors according to

( x1
x2

) ∼ N (μ, �),
where μ = (3, 3) and � = (

1 0.5
0.5 1

)
, for example, are set to provide certain predictor profiles in terms of

their correlation. Simulated outcomes Y are generated from various combinations of x1 and x2. The pattern
mixture model formulation uses X to induce one of three missing data mechanisms, MCAR, MAR, or
MNAR. The outcome Y is then generated from the MIMI mean model using the true X values and the
simulated missing data indicators. Here, the missingness may only depend on the predictors vector X . In
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contrast, the selection model formulation simulates Y from the marginal model Y = β0 +β1X1 +β2X2 +ε,
where ε ∼ N (0, 1). Missing data indictors are then induced according to the desired mechanism. Note
that here the missingness may depend on the outcome Y .

We simulated the following five missing data mechanisms for this situation: MCAR, MAR, MNAR,
MARY, and MNARY. The latter two mechanisms could only be simulated in the selection model formula-
tion. We forced the missingness data mechanism to be consistent between the in-sample and out-of-sample
populations, and ν0 is empirically calculated to maintain the desired probability of missingness. The
missing data mechanisms are described more in the Table 1 of the supplementary material available at
Biostatistics online.

Parameters profiles explored were β1 = 1, 3, 5, ρ = 0, 0.5, 0.75, P(M1 = 1) = 0.20, 0.50, 0.75, and
n = 50, 200, 500, 1000. We present here only one case that was largely representative of our findings:
β1 = 3, ρ = 0.5, P(M1 = 1) = 0.50, and n = 1000. For the out of sample population, we assumed
one-by-one enrollment. Missing data was imputed by zero imputation, unconditional mean imputation,
single conditional mean imputation using a Bayesian conditional mean model, single conditional mean
imputation using a frequentist conditional mean model, or MI (predictive mean matching, 10 imputations).
We fixed the imputation engine based on the in-sample population to closely mimic real-world application
of these methods.

4.1. Simulation procedure

We compared the performance of PS, complete case model predictions, CCS predictions, traditional MI,
and the MIMI imputation model. The full simulation procedure was as follows: (i) data are generated and
missing data indicators are generated according to described; (ii) missing data are imputed; (iii) the MI
model, MIMI model, CCS, and PS models are fit; (iv) step 1 is repeated to obtain a new out-of-sample
population; (v) individuals are imputed one by one, using the above imputation procedures, assuming
a fixed imputation engine from the in-sample population; (vi) individual predictions and performance
measures are computed; (vii) steps 1 through 6 are repeated 1000 times.

A squared error loss function was used to compare performance of the approaches. For example, the
squared error loss across all missing data patterns in the PS is 1

n

∑
i

∑
j P(Mi = 1)(Yij − Ŷij)

2 where
j = 1, , n subjects and i = 1, , m patterns. This loss is averaged over the 10 000 simulations to approximate
the expected loss. Table 2 of the supplementary material available at Biostatistics online shows the average
squared imputation error for predictor x1 as a function of imputation strategy and missingness mechanism.

4.2. Simulation results

Results are presented in Figure 1 for the following set of parameters: β0 = 1, β1 = 3, β2 = 1, δ1 = 1, δ3 =
1, P(M1 = 1) = 0.5, ν1 = 1, ν2 = 1, ν1,Y = 1, ν2,Y = 1. There were negligible differences in pattern-
specific and total squared error loss for the MCAR and MAR missing data mechanism. Differences in the
pattern-specific squared error were most apparent when X1 was MNAR and MNARY (MNAR where the
missingness is dependent on the outcome Y ). For all missing data scenarios, MI and conditional mean
imputations resulted in a biased parameter estimation. This bias appears most clearly in predictions for
observations without missing data (blue dots). When Y is added to the MI model, the model parameters
had negligible bias. However, since the out-of-sample Y is missing, the out-of-sample imputations of x1

have greater bias than the imputation model in which Y is not included resulting in a higher total prediction
error (e.g. see Table 4).

When Y is generated from a selection model formulation, all methods perform similarly (apart from MI
as described above) under the MAR missing data mechanism. When data are MNAR, PS, and the MIMI
models have slightly lower total and pattern-specific squared error loss compared with the traditionally
available methods. When Y is generated under the pattern mixture formulation with a MNAR missing data

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy040#supplementary-data
https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy040#supplementary-data
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Fig. 1. Simulation results set of parameters: β0 = 1, β1 = 3, β2 = 1, δ1 = 1, δ3 = 1, P(M1 = 1) = 0.5, ν1 = 1, ν2 =
1, ν1,Y = 1, ν2,Y = 1. The missing data mechanisms missing at random (MAR) and missing not at random (MNAR)
were generated under a pattern mixture Y (PMY) and selection model Y formulation. Triangles represent the total
prediction error (TPE) summed over all missing data patterns. Circles represent the prediction error (PE) for pattern
1, where there is no missing data. Stars represent the PE for Pattern 2, in which x1 is missing.

mechanism (MNAR PMY), PS and MIMI have both lower pattern-specific contributions to the prediction
error (PE) in the pattern where X1 is missing, and lower total prediction error compared with all other
methods.

As might be expected, PS and CCS have different out-of-sample prediction performance when the
missing data mechanism is not MAR. In fact, PS minimizes the expected prediction loss regardless of
missingness mechanism, while CCS tends to rival PS only when the data are MAR. We will see that when
the data are modified to induce a MNAR mechanism, PS has optimal predictions on average compared
with traditional methods.

As both the strength of the missingness mechanism and the beta coefficient associated with the missing
variable increase, the magnitude of the differences in methods favors PS/MIMI over all the other methods.
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Table 2 of the supplementary material available at Biostatistics online of out-of-sample imputations
of x1 provides insight into some of the biases seen in Figure 2. When Y is included in the imputation
model during model construction, parameter estimates tend to be unbiased. When Y is included during MI
performed using predictive mean matching and chained equations, the imputations of x1 have the largest
squared error of all the imputations procedures for every missing data mechanism apart from unconditional
mean imputation. Although the apparent bias in imputations for missing covariates seem small, their
total contribution over all individuals can be quite significant. These results show that âŁ˜biasâŁ™ in
imputing missing predictors leads to poorer downstream predictions and larger prediction error for the
outcome.

Articles have explored in detail the advantages of including Y in the imputation model (Moons and
others, 2006). Using Y in the imputation model during model construction leads to unbiased estimates of
regression coefficients. While this may be a fine approach during the model building stage, it is not practical
in the prediction setting where the outcome is unknown. When using chained equations imputation models
in which the covariate with the least amount of missing data (in these simulations Y ) is imputed first, the
next missing covariate of the chain (in these simulations X1) can have very biased imputations. We do
not present the situation in which Y was used in the in-sample imputation model to produce unbiased
regression estimates, but not included in the out-of-sample imputation model—a combination which would
have less propagated imputation bias. Even though it may seem that the inclusion of Y in the imputation
model will lower prediction error, careful thought and attention need to be placed on the practicality of
this, as well as the statistical implications.

5. APPLICATION: SUPPORT DATA EXAMPLE

The Study to Understand Prognoses and Preferences for Outcomes and Risks of Treatments (SUPPORT)
was a multi-center, two phase study, of 9105 patients. The primary goal of the study was to model survival
over a 180-day period in seriously ill hospitalized adults (Knaus and others (1995)). A component of the
SUPPORT prognostic model was the SUPPORT day 3 Physiology Score (SPS), a risk score created to
account for various sources of health variation and co-morbidities. The SUPPORT physiology score can
range from 0 to 100 and was derived from the following covariates: disease group (four levels), partial
pressure of oxygen in the arterial blood, mean blood pressure, white blood count, albumin, APACHE III
respiration score, temperature, heart rate per minute, bilirubin, creatinine, and sodium. The SPS model
allowed mean blood pressure, white blood count, albumin, temperature, HR, bilirubin, creatinine, and
sodium to have a nonlinear association with SPS, and included certain interactions with disease group and
albumin, and disease group and white blood count.

For our illustrative example, we choose to model SPS score because it was a known quantity. We
allowed for stochastic variation by using a less sophisticated predictive model (e.g. non-linear terms and
interactions were excluded and the disease group variable was dropped). This provides a controlled setting
in which we can adequately assess the behavior of our predictive models. We note that obtaining a valid
SPS score was important because it was the most important prognostic factor in the SUPPORT survival
model.

After excluding an individual missing SPS score, and one individual missing all covariates, 9103
individuals remained of which 3842 had complete data, 2323 were missing partial pressure of oxygen in
the arterial blood, 212 were missing white blood count, 3370 were missing albumin, 2599 were missing
bilirubin, and 66 were missing creatinine, resulting in 23 observed missing data patterns, and 1024 possible
missing data patterns. Ten-fold cross-validation was used to compare the squared error loss of MI, CCSM,
MIMI, and PS within missing data patterns, as well as total average squared error loss, weighted by
proportion of individuals in each pattern.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy040#supplementary-data
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For illustrative purposes, we dichotomize SPS at the median, and compare all methods under generalized
linear models with a logistic link function. We have also incorporated a relaxed lasso procedure within the
PS, permitting a more adaptive fit for the forecasting algorithm. In this case, two PS may be based on the
same predictor set but have different coefficients. For this set of examples, we compared logistic scoring
rules and brier scores. Both the Brier score and logarithmic scoring rules are proper scoring rules used
to estimate the accuracy of a risk prediction models. The Brier score is the average squared difference
between the outcome and the predicted probability of risk BS = 1

N

∑N
i=1(yi − pi)

2, and the logarithmic
score is defined as LS = 1

N

∑N
i=1 (yi ln(pi) + (1 − yi) ln(1 − pi)), where yi and pi are the true outcome

and predicted probability, respectively, for individual i. It is known that the Brier score does not penalize
predictions that give very small probabilities when they should be giving larger probabilities, and therefore,
the Brier score does not necessarily make the right decision about which method of two forecasts is better
(Jewson, 2008). The logarithmic scoring rule (Log-Score) rewards more extreme predictions that are in
the right direction. This score can be grossly inflated by a single prediction of probability of 0 or 1 that is
in the wrong direction, and heavily penalizes classifiers that are confident about an incorrect classification.
The logarithmic scoring rule is a rescaling of the gold standard optimization criteria and so in a sense it
is the best accuracy score to use for binary outcomes.

5.1. SUPPORT example results

For each method, ten-fold cross validation of the prediction models was implemented. For the patterns
with less than or equal to N = (p + 1) ∗ 2 = 22 subjects, the CCS was used, and the hybrid PS/CCS
approach (as described in Section 3.2) was implemented. For the original SUPPORT data, all methods
performed similarly both across and within patterns. In our simulation, we saw similar results when data
were MAR, giving rise to the possibility that these data also follow a MAR mechanism. To exaggerate
the missing data mechanism, we induced a MNARY mechanism by adding 25 units to individuals SPS
scores who were missing the covariate partial pressure of oxygen in the arterial blood (pafi). This resulted
in a large reduction in PE under PS compared with traditional MI methods and CCS, for the patterns in
which partial pressure of oxygen in the arterial blood was missing.

The original data results are shown in the two sub-figures in the left of Figure 2. The total model PE
does not differ between the four methods. When a MNAR mechanism is induced in the support data, as
shown in the two left sub-figures, PS and MIMI outperform CCS and MI. In the patterns for which partial
pressure of oxygen in the arterial blood (pafi) is missing, the benefits of PS and MIMI compared with
CCS and MI are apparent. For these patterns, both the unweighted PE (Figure 2 top-right) and weighted
PE (Figure 2 bottom-right) show this reduction in PE. The model PE, which is the sum of all the pattern
specific contributions to the PE results in approximately a 50% reduction in PE for PS/MIMI compared
with MI, and a 40% reduction in PE for PS/MIMI compared with CCS.

The same general pattern holds when PS has an underlying logistic model. For the original SUPPORT
data, both the Brier score and Log-Score are approximately equal across all methods (Figure 2 of the
supplementary material available at Biostatistics online). In Figure 3, when a MNARY mechanism is
induced, we see slightly smaller Brier scores for PS and PS fit with a relaxed lasso (PS Relaxed Lasso)
compared with CCS and MI. The PS Relaxed Lasso and the MIMI model have the smallest Log-Score
compared with the other methods. It seems as though the PS Relaxed Lasso potentially has an advantage
over PS in the patterns with lower membership, and this ability to choose a more parsimonious model is
seen in the reduction of the Log-Score since the Log-Score more heavily penalizes incorrect predictions.
Note, inducing a MNARY mechanism is more challenging for a dichotomous outcome, and may not be
as strong a mechanism as seen in the linear example.

https://academic.oup.com/biostatistics/article-lookup/doi/10.1093/biostatistics/kxy040#supplementary-data


Su
pp

or
t E

xa
m

pl
e 

(In
du

ce
d 

M
N

A
R

)  
 

pafi
meanbp

wblc
alb

resp
temp

hrt
bili

crea
sod

X

X X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X

X
X

X

X
X

X
X

X X
X

X
X

X
X

X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X

X
X

X
X

X

PS PS
 R

el
ax

ed
 L

as
so

M
IM

I
C

C
S

C
C

S 
R

el
ax

ed
 L

as
so

M
I

M
od

el
 B

S
0.

19
4

0.
19

4
0.

19
5

0.
21

1
0.

21
3

0.
22

3

11115677101324303435569734
0

44
5

46
6

96
7

12
82

14
33

38
42N

Pa
tte

rn

0
0.

2
0.

6
1

1.
2

1.
6

2
Br

ie
r S

co
re

Su
pp

or
t E

xa
m

pl
e 

(In
du

ce
d 

M
N

A
R

)  
 

pafi
meanbp

wblc
alb

resp
temp

hrt
bili

crea
sod

X

X X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X

X
X

X

X
X

X
X

X X
X

X
X

X
X

X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X

X
X

X
X

X

PS PS
 R

el
ax

ed
 L

as
so

M
IM

I
C

C
S

C
C

S 
R

el
ax

ed
 L

as
so

M
I

M
od

el
 B

S
0.

19
4

0.
19

4
0.

19
5

0.
21

1
0.

21
3

0.
22

3

11115677101324303435569734
0

44
5

46
6

96
7

12
82

14
33

38
42N

Pa
tte

rn

0
0.

2
0.

6
1

1.
2

1.
6

2
Pa

tte
rn

 S
pe

ci
fic

 C
on

tri
bu

tio
n 

(B
S*

Pa
tte

rn
 W

ei
gh

t)

Su
pp

or
t E

xa
m

pl
e 

(In
du

ce
d 

M
N

A
R

)

pafi
meanbp

wblc
alb

resp
temp

hrt
bili

crea
sod

X

X X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X

X
X

X

X
X

X
X

X X
X

X
X

X
X

X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X

X
X

X
X

X

PS PS
 R

el
ax

ed
 L

as
so

M
IM

I
C

C
S

C
C

 R
el

ax
 L

as
so

M
I

M
od

el
 L

S
0.

61
3

0.
57

2
0.

57
3

0.
61

6
0.

61
8

0.
63

9

11115677101324303435569734
0

44
5

46
6

96
7

12
82

14
33

38
42N

Pa
tte

rn

0
0.

2
0.

6
1

1.
2

1.
6

2
Lo

g 
Sc

or
e

Su
pp

or
t E

xa
m

pl
e 

(In
du

ce
d 

M
N

A
R

)  
 

pafi
meanbp

wblc
alb

resp
temp

hrt
bili

crea
sod

X

X X
X

X
X

X
X

X
X

X
X

X

X
X

X
X

X

X
X

X

X
X

X
X

X X
X

X
X

X
X

X

X
X

X

X
X

X
X

X
X

X
X

X
X

X
X

X

X
X

X

X
X

X
X

X

PS PS
 R

el
ax

ed
 L

as
so

M
IM

I
C

C
S

C
C

 R
el

ax
 L

as
so

M
I

M
od

el
 L

S
0.

61
3

0.
57

2
0.

57
3

0.
61

6
0.

61
8

0.
63

9

11115677101324303435569734
0

44
5

46
6

96
7

12
82

14
33

38
42N

Pa
tte

rn

0
0.

2
0.

6
1

1.
2

1.
6

2
Pa

tte
rn

 S
pe

ci
fic

 C
on

tri
bu

tio
n 

(L
S*

Pa
tte

rn
 W

ei
gh

t)

Fi
g.

3.
T

he
co

nt
in

uo
us

SP
S

m
ea

su
re

m
en

t
w

as
di

ch
ot

om
iz

ed
at

th
e

m
ed

ia
n,

an
d

th
en

us
ed

as
a

bi
na

ry
ou

tc
om

e.
T

he
co

va
ri

at
es

in
cl

ud
ed

in
th

e
SP

S
pr

ed
ic

tio
n

m
od

el
in

cl
ud

e
pa

rt
ia

l
pr

es
su

re
of

ox
yg

en
in

th
e

ar
te

ri
al

bl
oo

d
(p

afi
),

m
ea

n
bl

oo
d

pr
es

su
re

(m
ea

nb
p)

,
w

hi
te

bl
oo

d
co

un
t

(w
bl

c)
,

al
bu

m
in

(a
lb

),
A

PA
C

H
E

II
I

re
sp

ir
at

io
n

sc
or

e
(r

es
p)

,t
em

pe
ra

tu
re

(t
em

p)
,h

ea
rt

ra
te

pe
r

m
in

ut
e

(h
rt

),
bi

lir
ub

in
(b

ili
),

cr
ea

tin
in

e
(c

re
a)

,a
nd

so
di

um
(s

od
).

T
he

re
ar

e
23

pa
tte

rn
s

pr
es

en
ti

n
th

e
SU

PP
O

R
T

da
ta

,a
nd

m
is

si
ng

co
va

ri
at

es
ar

e
de

no
te

d
w

ith
“X

”.
N

is
th

e
to

ta
l

nu
m

be
r

of
su

bj
ec

ts
in

ea
ch

m
is

si
ng

da
ta

pa
tte

rn
.P

at
te

rn
su

bm
od

el
s

(P
S)

,r
el

ax
ed

la
ss

o
PS

,
m

ul
tip

le
im

pu
ta

tio
n

w
ith

m
is

si
ng

ne
ss

in
di

ca
to

rs
(M

IM
I)

,
co

m
pl

et
e

ca
se

su
bm

od
el

s
(C

C
S)

,
re

la
xe

d
L

as
so

C
C

S,
an

d
tr

ad
iti

on
al

m
ul

tip
le

im
pu

ta
tio

n
(M

I)
m

et
ho

ds
ar

e
al

lc
om

pa
re

d.
T

he
to

p
tw

o
fig

ur
es

ar
e

th
e

br
ie

r
sc

or
e

(B
S;

un
w

ei
gh

te
d

pa
tte

rn
sp

ec
ifi

c
B

S
an

d
w

ei
gh

te
d

pa
tte

rn
sp

ec
ifi

c
B

S)
,a

nd
th

e
bo

tto
m

tw
o

fig
ur

es
ar

e
th

e
lo

g-
sc

or
e

(L
S;

un
w

ei
gh

te
d

pa
tte

rn
sp

ec
ifi

c
L

S
an

d
w

ei
gh

te
d

pa
tte

rn
sp

ec
ifi

c
L

S)
.T

he
pr

ed
ic

tio
n

m
ea

su
re

s
ar

e
cr

os
s-

va
lid

at
ed

(1
0-

fo
ld

),
w

ith
ne

st
ed

cr
os

s-
va

lid
at

io
n

of
th

e
su

bm
od

el
s.

250



Missing data and prediction 251

6. FINAL THOUGHTS

Statistical literature abounds with imputation methods for model inference, but there are very few practical
solutions for obtaining predictions for new individuals who do not present with all of the necessary
predictors. In this article, we have shown that PS provides optimal predictions for a variety of missing
data mechanisms, and has large gains in computation time since external data and imputation models are
no longer needed to make new predictions. PS is straightforward to implement and is easily be extended
to complex prediction algorithms. In the age of big data, this is an important consideration and driving
factor in most scientific contexts with big data.

As shown in our simulations and examples, there are common scenarios where the methods will perform
similarly. Specifically, if there are low amounts of missing data, the missing data are from non-influential
predictors, or missing data mechanisms are MCAR/MAR. In these cases, PS, MI CCS, will have very
similar predictive accuracy. However, even if out-of-sample predictions are equivalent, CCS and PS both
have the benefit of being computationally easy and efficient. For some specific remarks on features of PS,
see Section 1.5 of the supplementary material available at Biostatistics online.

Care should be taken when developing clinical prediction models when missing data are present.
Prediction models should be fit with PS and estimation could be conducted in the context of a MIMI
model, since these methods are effectively robust to a wide variety of missing data mechanisms unlike
MI and CCS methods.

7. SOFTWARE

The SUPPORT data used in the examples, software in the form of R code and documentation is available
at https://github.com/sarahmercaldo/MissingDataAndPrediction.

SUPPLEMENTARY MATERIAL

Supplementary material is available at http://biostatistics.oxfordjournals.org.
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