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Introduction: Functional magnetic resonance imaging (fMRI) often involves long
scanning durations to ensure the associated brain activity can be detected. However,
excessive experimentation can lead to many undesirable effects, such as from learning
and/or fatigue effects, discomfort for the subject, excessive motion artifacts and
loss of sustained attention on task. Overly long experimentation can thus have a
detrimental effect on signal quality and accurate voxel activation detection. Here, we
propose dynamic experimentation with real-time fMRI using a novel statistically driven
approach that invokes early stopping when sufficient statistical evidence for assessing
the task-related activation is observed.

Methods: Voxel-level sequential probability ratio test (SPRT) statistics based on general
linear models (GLMs) were implemented on fMRI scans of a mathematical 1-back task
from 12 healthy teenage subjects and 11 teenage subjects born extremely preterm
(EPT). This approach is based on likelihood ratios and allows for systematic early
stopping based on target statistical error thresholds. We adopt a two-stage estimation
approach that allows for accurate estimates of GLM parameters before stopping is
considered. Early stopping performance is reported for different first stage lengths,
and activation results are compared with full durations. Finally, group comparisons are
conducted with both early stopped and full duration scan data. Numerical parallelization
was employed to facilitate completion of computations involving a new scan within every
repetition time (TR).

Results: Use of SPRT demonstrates the feasibility and efficiency gains of automated
early stopping, with comparable activation detection as with full protocols. Dynamic
stopping of stimulus administration was achieved in around half of subjects, with typical
time savings of up to 33% (4 min on a 12 min scan). A group analysis produced similar
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patterns of activity for control subjects between early stopping and full duration scans.
The EPT group, individually, demonstrated more variability in location and extent of the
activations compared to the normal term control group. This was apparent in the EPT
group results, reflected by fewer and smaller clusters.

Conclusion: A systematic statistical approach for early stopping with real-time fMRI
experimentation has been implemented. This dynamic approach has promise for
reducing subject burden and fatigue effects.

Keywords: real-time fMRI, adaptive fMRI, dynamic experimentation, SPRT (sequential probability ratio test), early
stopping fMRI

INTRODUCTION

Analysis of task-based fMRI scans is typically performed with
fixed, predetermined experimental designs. As a result, subjects
must often endure stimulus protocols that are overly long in
order to ensure the neural activity can be statistically discerned
in the noisy data. However, this can lead to fatigue, learning
effects and excessive motion, such as from agitation, as well
as being costlier to administer due to longer scan times and
potentially less reliable measurement. Also, the experimenter
does not know if the neural activity is detectable until long after
the scanning session is over. Real-time functional MRI (RT-
fMRI) provides an opportunity to ameliorate these issues. RT-
fMRI has been successfully applied in the field of neurofeedback
and biofeedback from neural responses, where subjects may
be trained to alter their brain activity based on real-time
information provided from the fMRI scans. This has been
reported in ADHD (Alegria et al., 2017), healthy subjects with
no psychiatric or neurological disorders (Lawrence et al., 2014;
Sherwood et al., 2016), Alzheimer’s disease (Hohenfeld et al.,
2017) and Parkinson’s disease (Subramanian et al., 2011, 2016).
Its uses have also been described in psychoradiology to aid
diagnosis and treatment planning in psychiatric disorders (Lui
et al., 2016). Real-time resting state fMRI has for instance been
studied and implemented as well using TurboFIRE (Vakamudi
et al., 2020). A largely unexplored application of RT-fMRI is
to dynamically and statistically determine when a stimulus has
been sufficiently presented in terms of replication of blocks to
terminate early. The magnitude of effort and variability in neural
activity while completing a task will vary from person to person.
Trial administration within a block design can be stopped early
if sequentially updated statistical inference on activation can be
determined with sufficient accuracy based on the observed BOLD
(blood oxygen level dependent) signal response up to that point.
This application will be explored in detail.

The benefits of adaptive RT-fMRI include:
(1) Shorter scan times for fMRI testing: Shorter scan times
cannot only save in technology and personnel costs, but fatigue
and learning effects can be avoided, improving signal quality.
Scanning becomes less burdensome on the subject as well, which
is an especially important consideration for children or elderly
subjects. (2) Real-time quality control: greater consistency in
activation classification error can be obtained, through statistical
error-based benchmarks for stopping rules and real-time

feedback on classification performance and adjustment of
stimulus durations. (3) Richer information: Paradigms can
become more complex and sophisticated. With greater time
efficiency and flexibility, more variations of a stimulus, such
as reflected by a broader range of difficulty levels, can be
administered in the same amount of time. (4) Wide applicability:
Dynamic adjustment of stimuli based on BOLD response in
real-time can be generally applied across a range of focus areas
that investigate localization of brain activity, including cognition
and motor functioning.

Since the advent of RT-fMRI in the mid 1990s (Cox et al.,
1995), a handful of mainstream software packages have been
developed for use by the fMRI community. These include Turbo
BrainVoyager (Goebel, 2012), AFNI’s real-time plugin (Cox et al.,
1995), FSL-based FRIEND (Sato et al., 2013) and Python-based
OpenNFT (Koush et al., 2017). There have been a few previous
studies that have employed adaptive task-based RT-fMRI. It
has been used to determine ‘good’ and ‘bad’ brain states to
optimize learning (Yoo et al., 2012); to determine a person’s
brain state to judge their attention to a task (Debettencourt et al.,
2015); to elicit activity in particular brain regions by presenting
stimuli chosen based on the response to the previous stimulus
(Lorenz et al., 2016); and to estimate when brain activity was
mapped to a particular network (Lorenz et al., 2018). Each
study used different methods to perform the real-time analysis.
These include real-time general linear model (GLM) methods
(Yoo et al., 2012; Lorenz et al., 2016), multivariate pattern
analysis (Debettencourt et al., 2015) and a Bayesian optimization
algorithm (Lorenz et al., 2018).

Here, we extend the use of a statistically based dynamic
approach to RT-fMRI experimentation described in Feng et al.
(2015), addressing issues related to practical implementation.
This approach involves the sequential updating of voxel-level
likelihood ratio tests, known as sequential probability ratio
tests (SPRTs) and assessing after each scan whether there is
sufficient statistical evidence to determine whether or not an
associated parameter value indicates task activation. Such results,
considered in aggregate across a collection of voxels, can be used
as a basis for early stopping of experimentation. Most off-line,
post-hoc analyses of fMRI data use the general linear model to
test statistical associations of voxel activation magnitude to task
administration (Cox, 1996; Lazar, 2008; Jenkinson et al., 2012).
This approach involves the voxel-level estimation of task-related
regression parameters that indicate magnitude of association
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between an expected hemodynamic response signal from a task
and the observed BOLD signal. We have adapted this general
method for real-time fMRI by incrementally updating GLM
regression parameter estimates as soon as the brain volumes
are collected. At the individual voxel level, we can then assess
hypothesis tests related to activation that are based on these
estimates. In aggregate, the voxel level analyses inform decisions
on early stopping and the tailoring of fMRI experimentation
(Feng et al., 2015).

In comparison to Feng et al. (2015), we adopt a two-
stage estimation approach that allows for parameter values
that represent activation thresholds to be formulated in terms
of z-score scale at the voxel level. This adaptive specification
avoids the intractable problem of pre-specifying magnitudes of
GLM parameter values that would be considered as “active.”
Such magnitudes need to be scaled relative to estimation
variance, which should be stably estimated after a first stage.
We determine an appropriate duration of the first stage by
monitoring estimation convergence of key GLM parameters.
Also, while in Feng et al. (2015) serial independence was
assumed, here we use the “sandwich” estimator to recognize
potential serial covariance in inference (Carroll et al., 1998;
Kauermann and Carroll, 2001). The impact of early stopping on
group analysis is considered here as well. Importantly, we now
present a novel workflow to apply and implement these methods
on a Philips scanner, with a dynamic feedback system that
allows for real-time dynamic adjustment of the experimentation
with subjects. This was facilitated with adoption of numerical
parallelization techniques. This work supports the premise that
adaptive, individualized experimentation is feasible and can
lead to practical and useful savings in scan times by reducing
experimental redundancy.

Another novel aspect of this work is the application of
adaptive RT-fMRI in a sample group of 12 healthy adolescent
subjects and 11 adolescents born extremely preterm (EPT). The
fMRI stimulus was a mathematical version of the well-known
1-back task. Early stopping was implemented using sequential
probability ratio test (SPRT) statistics and our server was a
Linux workstation located in a nearby building. Processing of
RT-fMRI was completed within 3 s, always before the next scan
arrived. We observed time savings of up to 33% based on early
stopping when 80% of voxels were classified, which equals up
to 4-min savings with a 12-min scan. The impact on activation
analysis from the selection of early stopping criteria is assessed,
as described in detail below. Finally, as an illustration, we conduct
a comparison of group analyses between difficulty levels for EPT
and healthy control subjects, to assess the effects of early stopping
in this context.

BACKGROUND INFORMATION

General Linear Model
Briefly, the general linear model involves convolving a double
gamma hemodynamic response function (HRF) with task
indicator variables that denote timing of administration to reflect

expected task-related BOLD responses. Voxel-level task-related
regression parameters are estimated and represent the association
of the observed response to expected task-activated BOLD signal.
Thus, activation is assessed through statistical inference on
regression parameters. For a given voxel up to time t (i.e., for
scans 1 through t), the GLM takes the form:

Y t = Xtβ + Et (1.1)

where Yt is a t × 1 vector of observed BOLD signal intensities
for the voxel up to time t, Et is a t × 1 vector that represents
the error terms, Xt is a t × p design matrix and includes the
expected BOLD signal values per condition and β =

[
b1...bj...bp

]′
is a p × 1 regression coefficients vector. In this formulation, a
regression parameter bj can represent magnitude of association
with condition j. Et is assumed to be distributed as multivariate
normal with mean zero and covariance Wt , where Wt is a
t × t covariance matrix. Error variances comprise the diagonal
elements. For spatial correlation, we conduct spatial smoothing,
so do not explicitly model the spatial correlation structure. Yt is
assumed to have a multivariate normal probability distribution as
follows:

f (Yt, β,Wt)

=
1

(2π)t/2
|Wt|

exp
(
−

1
2
(Yt − Xtβ)

′W−1
t (Yt − Xtβ)

)
(1.2)

where | Wt| is the determinant of Wt . At each voxel, the focus
is on estimation of cβ , where c is some 1 × p linear contrast.
Hence, we consider the more general scenario when inferential
interest can also be a linear combination of the task parameters,
which includes the single task parameter case. The standard linear
estimate for cβ at time t is:

cβ̂t = c
(
Xt
′Xt
)−1 Xt

′Yt (1.3)

This estimator is normally distributed and unbiased under
(1.2). We fit regression models in parallel for all voxels under
consideration in a target region of interest (ROI), which could
be a particular structure or include the whole brain. Real-time
analysis requires signal and image processing steps, as well as
the continual updating of statistical estimates as new scan data
are received from the scanner. Hence, given the large number
of voxels to be analyzed, real-time fMRI presents “big data”
computational challenges.

Sandwich Estimator
In our previous work (Feng et al., 2015), we assumed serial
independence for computational simplicity. Here we recognize
potential for more general correlation structure using the
nonparametric sandwich estimator v̂ar

[
cβ̂t
]

(Carroll et al., 1998;
Kauermann and Carroll, 2001). The sandwich estimator is a
robust, model-free variance estimator for cβ̂t that does not
require assumptions such as homoscedastic error variance or
serial independence. Importantly, it still provides asymptotically
consistent variance estimates, although convergence rates can
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be slow (Carroll et al., 1998; Kauermann and Carroll, 2001).
The approach is computationally feasible for real-time analysis.
This is in contrast to our initial autoregressive modeling
approaches for the covariance matrix W, which were too slow
to estimate for real-time implementations given our available
computational resources.

Sequential Probability Ratio Test
At the voxel level, we can use the sequential analytic framework
of Wald (1947); Wald and Wolfowitz (1948); Cox (1963);
Tantaratana and Thomas (1977); Li (2010); Feng et al. (2015),
to adaptively assess activation status using real-time fMRI. As
we will demonstrate, Wald’s SPRT test statistic can serve as the
basis of an efficient, incremental GLM testing approach that can
greatly reduce the need for experimental block administrations
compared with fixed designs while attaining similar classification
performance in simulation, and activation patterns with subject
data. This approach relies on a SPRT statistic to conduct
hypothesis testing, with the null hypothesis representing no
activation with respect to a task, and the alternative hypothesis
representing some threshold of activation, as represented by a
GLM parameter value (Feng et al., 2015). This statistic is updated
with each new observation, and its value is compared with
thresholds for stopping.

The general procedure of Wald’s SPRT is as follows. Consider
a one-sided hypothesis of the form H0 : cβ = cβ0 versus Ha :

cβ ≥ cβ1, where c(β1 − β0) > 0. Two-sided formulations are
described in Wald (1947) and Feng et al. (2015). Implementation
of Wald’s SPRT involves updating Wald’s likelihood ratio statistic
as new data are observed (Wald, 1947):

3t = log

(
f
(
cβ̂t|cβ1, v̂ar

[
cβ̂t
])

f
(
cβ̂t t|cβ0, v̂ar

[
cβ̂t
])) (1.4)

where f (cβ̂t|cβ0, v̂ar
[
cβ̂t
]
) and f (cβ̂t|cβ1, v̂ar

[
cβ̂t
]
) are the

respective normal probability densities functions of cβ̂t given
cβ0 or cβ1 is the true value of the parameter of interest and
conditioning on the estimated variance. After Yt is observed up
to time point, t, one of three possible decisions is made according
to the following rules:

1. Continue sampling, if B < 3t < A
2. Stop sampling and accept H0, if3t < B
3. Stop sampling and accept Ha, if A < 3t

where stopping boundaries are:

(A,B) =
(
log
(

1− βE
αE

)
, log

(
βE

1− αE

))
(1.5)

and the target Type I and Type II error levels are, respectively,
denoted as αE and βE. Note that both the Type I and Type II
error levels are controlled for with SPRT, as opposed to standard
hypothesis test formulations that only control for Type I error
level. Multiple SPRTs are conducted concurrently across voxels.
This can in principle be adjusted for by Bonferroni correction to
account for this simultaneous testing. If the specified Type I error
levels are too small, however, this can affect the feasibility of early

stopping. Although not done here, it is possible to also consider
post-hoc multiple comparisons methods after experimentation is
completed (Lindquist and Mejia, 2015).

A practical modification of the original SPRT formulation for
stopping is to consider the truncated SPRT (Sawasd Tantaratana,
1977), which will additionally call for stopping if an upper
bound for the number of observations is reached. In our case,
this is reached when the upper limit of blocks have been
administered. Additional modifications include conducting two-
stage estimation to allow sufficient observation for preliminary
estimates of the voxel-level error variance from a first stage
where stopping is not yet considered (Hall, 1962). With these
estimates, we can derive an alternative hypothesis value for a
linear contrast of task parameters cβ that will correspond to a
desired z-statistic value, denoted as zt . As an illustration, suppose
a z-statistic threshold value of 3.10 is selected, as will be done
below in our studies. (Note zt = 3.10 is associated with the one-
sided p-value = 0.001). Given an estimated value v̂ar

[
cβ̂t
]

from
a first stage of length t scans, we solve for the value of θ1 = cβ1
that satisfies:

θ1√
v̂ar

[
cβ̂t
] = zt (1.6)

This value becomes the alternative hypothesis, and it
represents the voxel-level targeted activation magnitude
threshold. For subsequent scans we fix the value of θ1 as
the alternative hypothesis value for cβ , so that the activation
magnitude threshold in the alternative hypothesis is held
constant. Note that zt will thus tend to increase across scans,
since v̂ar

[
cβ̂t
]

decreases with more data. This approach allows
for more comparable activation patterns across different scan
lengths, since respective activations reflect similar magnitudes.

Ultimately, we aggregate the findings of the voxel-level SPRTs
to determine whether or not experimentation within a block
design should be terminated early. A “global” stopping rule that
considers all voxels in a region of interest (can be whole brain
or smaller ROIs) that we have adopted is to terminate task
administration when a predetermined percentage of voxels have
been classified by their respective SPRTs. For instance, we have
used 80% as a global stopping criterion. Note that 80% classified
means either as active or non-active. We choose this cut-off as it
is fairly strict, and yet approximately one half of the participants
still stop early. As we will see, it also facilitates correspondence
with full scan data results, particularly if the activation threshold
is adjusted to recognize longer scan durations. We also consider
other global stopping criterion here, 70 and 90%, and assess
impact on stopping times and resultant images arising from early
stopping. We also choose the SPRT target Type I and Type II
error levels that are relatively more stringent for Type I error.
Note that for cβ parameter values that are “in-between” the
null and alternative hypothesis values, the SPRT is indifferent
to preferring one hypothesis over the other. This leads to larger
numbers of scans needed before a stopping boundary is crossed.
So, we have to accept a lack of decisive stopping decisions for
these cases in order for overall experimentation to stop early. This
can be an acceptable trade-off for shorter experimental scan times
and the ability to tailor experimentation.
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METHODOLOGY

Participants
Twelve healthy subjects were recruited, 7 males. They were aged
15–16 years old and 11 were right-handed. They had no known
neurological conditions and a normal developmental history.
A group of 11 adolescents born EPT were also recruited, 1
male. EPT was defined as being born at <26-week gestation and
weighing < 1000 g. All were aged 15–17 years old and 8 were
right-handed, 2 left-handed and 1 ambidextrous. All subjects
were recruited as part of a larger study to evaluate functional
and structural differences associated with mathematical abilities
and working memory between those born EPT and those
born at normal term. The aim of the larger study is to
improve our understanding of mathematics disabilities and
potentially lead to improvements in pedagogical practices for
young people experiencing problems acquiring mathematics
skills. Adolescents were recruited as they can handle the stress
of fMRI experimentation, are mathematically advanced enough
and have had time to master the subject area compared to
younger children. This age range is also an advantageous time
to implement interventions to improve mathematical abilities
before leaving school, hence adults were not studied. EPT subjects
were included to show that differences with patient populations
are detectable with our methods. A subsection of the full study is
reported here to demonstrate the real-time analysis.

The subjects made one two-h visit to the MRI department
at University Hospitals Cleveland Medical Center (UHCMC).
Ethics approval was obtained from the UHCMC Institutional
Review Board office prior to the study and complied with the
Declaration of Helsinki for human subject research. Subjects and
their parents gave informed consent prior to taking part.

As part of our wider study, subjects also made
another, separate 3-h visit to the study offices to
undergo neuropsychological testing and a refresher of
fraction calculations. In the interests of brevity, the full
neuropsychological testing results are not reported here. One
finding that is particularly relevant to the fMRI task considered
here is that nearly two thirds (63.6%) of the EPT cohort have
lower working memory function, compared to just over one
third (35.7%) of controls subjects. Working memory level was
determined by sample quartiles of standardized z-scores based
on the Wide Range Assessment of Memory and Learning test
(WRMAL1, Sheslow and Adams, 2003). We denote “lower”
working memory function as having a standardized score that is
less than the sample median.

MRI Protocols
The subjects were positioned head-first supine on the scanner
bed with their head fixed in position using inflatable pads. An
8-channel head coil was used for data acquisition. Echo planar
imaging scans were acquired on a Philips Ingenuity 3T PET/MR
imager at UHCMC. The following fMRI scan parameters were
used: TR = 3.0 s, TE = 35 ms, in-plane resolution was 1.797 mm2

(matrix 128 × 128), slice thickness was 4 mm, number of

1www.proedinc.com

slices = 36 slices and flip angle = 90◦. A SENSE P reduction factor
of 2 was implemented and scans were acquired in an ascending
interleaved fashion.

In addition to the fMRI scans, a high-resolution T1-weighted
anatomical image of the brain was also acquired. This was taken
using a magnetic preparation gradient-echo sequence (3D IR
TFE). Imaging parameters were: TR = 7.5 ms, TE = 3.7 ms, in-
plane resolution was 1 mm2 (matrix 256 × 256), slice thickness
was 1 mm, number of slices = 200 slices and flip angle = 8◦.

Stimulus Protocols
During data acquisition subjects were presented with a
mathematical version of the well-known 1-back memory task. It
involved performing basic addition and subtraction calculations
and required the answer to be remembered and compared
to the next answer. Two difficulty levels were included. The
protocol was developed by our lab as part of a battery to assess
mathematical and working memory abilities in 14–17 year olds
to evaluate the functional differences between those born EPT
and those born at normal term. The stimulus was presented on
an MRI compatible LCD monitor (manufactured by Cambridge
Research Systems, Rochester, United Kingdom) positioned at the
end of the bore and viewed via a mirror attached to the head
coil. Equations were presented, for example, the subject may see
“2 + 3 = ?.” The subject was required to work out the answer
and then remember it while working out the next equation, for
example “1 + 4 = ?.” If they thought the answers matched, then
the subject pressed a button on a response box held in their
right hand. If they thought the answers did not match, then
they did nothing but remember the new answer to compare to
the answer of the next equation. An example sequence is shown
in Figure 1A.

The stimulus was presented in a block design, see Figure 1B
and Table 1. Eight equations were presented per block. Each
block lasted 36 s followed by 21 s of rest condition (fixation dot).
Two difficulty levels were presented. The easier level consisted
of single digit numbers to add or subtract and the answers
were always a single digit. The harder level involved addition
or subtraction of single or two-digit numbers and the answers
were always two digits. Blocks of difficulty levels were alternated
during the scan and a total of 6 blocks per level were presented.
Note: although only 2 difficulty levels are used here, the setup
is able to accommodate any number of difficulty levels. The full
duration of the task was 238 scans or 11 min and 54 s. This was
based on a moderate length of experimentation for a 1-back block
design (e.g., see Daamen et al., 2015; Poudel et al., 2015; Di et al.,
2020; Huang et al., 2020), allowing approximately 6 min for each
difficulty level.

Two difficulty levels were included to investigate differences
in neural responses associated with increasing task demand.
As the brain is ‘pushed’ to solve more complex problems,
differential networks may be apparent, and these may be different
between normal term and EPT subjects. Additionally, increasing
the difficulty level serves to maintain the subject’s attention
and, generally, increases their effort. This can have the effect
of increasing brain activation cluster sizes and magnitude as
well as causing recruitment of additional areas, which is of

Frontiers in Neuroscience | www.frontiersin.org 5 November 2021 | Volume 15 | Article 643740

http://www.proedinc.com
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-643740 November 2, 2021 Time: 15:14 # 6

Carr et al. Early Stopping RT-fMRI With SPRT

FIGURE 1 | (A) Sample 1-back protocols demonstrating the two difficulty levels. (B) Block design and timings of each difficulty level.

interest. Incorporating difficulty levels into protocols that can
separately be terminated early demonstrates the flexibility of the
proposed approach.

TABLE 1 | The scan number when each stimulus block is completed.

Block Easy level Hard level

1 21 40

2 59 78

3 97 116

4 135 154

5 173 192

6 211 230

Real-Time Functional Magnetic
Resonance Imaging Acquisition
The visual stimulus was presented using an in-house custom
written program that was developed using the Python
programming language (Python Software Foundation2) and
libraries from PsychoPy - an open source visual presentation
program (Peirce, 2007, 2009; Peirce and MacAskill, 2018). The
program connected to a Cedrus Lumina controller to receive
stimulus responses from the subject and trigger pulses from
the MRI scanner (outputted every dynamic). The timing of the
presentation of the visual stimulus was synchronized to the
trigger pulses to ensure that stimulus images were displayed

2https://www.python.org/
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at the expected time. A Supervisor Window displayed on the
experimenter’s computer screen allowed the visual stimulus to be
tracked throughout. It displayed the current block number being
presented, how many remaining blocks there were and when the
subject responded. The program was also able to terminate one
or both of the difficulty levels if it received a signal indicating
the relevant areas in the fMRI data were sufficiently classified
across voxels. The program offered the flexibility to automatically
terminate the presentation or the experimenter could override
the termination instruction and continue stimulus presentation.
The software is freely available from the Bitbucket repository3.

Real-time image transfer was achieved by XTC (eXTernal
Control). This is a program integrated into the Philips scanner
software and enabled by a research clinical science key.
XTC communicates with the reconstruction and scanner
processes on the scanner computer and interfaces to a
network client application using a minimalistic CORBA
(Common Object Request Broker Architecture) (Schmidt et al.,
1998) interface which uses TCP/IP as the transport layer.
CORBA is platform independent, reliable, and has the ability to
process large amounts of data with minimum overhead. Each
CORBA message consisted of a hierarchical attribute collection
identified with UUIDs (universally unique identifiers) (ITU-T,
2005). Messages carried reconstructed image data and meta-data
containing details of scan protocols. Due to hospital network
security protocols the reconstructed images were placed in a
folder on the scanner computer and then pushed across to
a Linux computer. To achieve necessary image transfer speeds
to the scanner computer folder a modification to XTC was
installed on the scanner to disable two-way communications
as only one-way image transfer functionality was required.
However, XTC does support two-way communication between
the scanner and the Client.

The Linux computer was a custom-built server equipped with
a solid state hard drive and two 8-core Intel Xeon E5-2687W
processors running at 3.1 GHz and providing 40 MB L3 cache. It
was installed with Centos 7.4 operating system. As the scans were
received, custom written Python and Bash scripts implemented
the analysis using core-based parallelization to preprocess the
data and perform the SPRT statistical analysis. Preprocessing
was performed using standard modules from AFNI (Analysis of
Functional NeuroImages4) and FSL (FMRIB’s Software Library5).
The analysis sequence is detailed in the following section. The
setup is shown in Figure 2.

MRI Preprocessing
At the beginning of the scanning session a single fMRI scan (3 s)
was acquired and used for coregistration (motion correction)
purposes. In preparation, the skull was removed using FSL’s Brain
Extraction Tool (BET) (Smith, 2002) and a mask of the full brain
was created. During the real-time adaptive fMRI scan session,
new scans arrived every 3 s and were dumped in a folder on the
Linux workstation where the following actions were applied to

3https://bitbucket.org/tatsuoka-lab/fmri-presentation
4https://afni.nimh.nih.gov
5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

each one. AFNI’s ‘dcm2niix_afni’ command was used to convert
the .par/.rec files to NIfTI. Motion correction was performed
using coregistration techniques. Every fMRI scan was realigned
to the initial scan that was acquired before the task began, and
AFNI’s ‘3dvolreg’ command was used. Spatial smoothing was also
applied using an 8 mm kernel with AFNI’s ‘3dmerge’ command.
The full brain mask created at the beginning of the session was
applied using FSL’s ‘fslmaths’ command to remove noisy voxels
outside the brain (voxels of no interest). CSF and white matter
regions were included in the full brain mask. This was due to
time constraints at the beginning of the scanning session that did
not allow for segmentation of the brain. However, it is feasible
to create a ROI (full brain/segmented brain/particular structure)
prior to the start of the scan session. If a pre-existing scan of
the subject is not available for this purpose then the ROI can be
created using a template brain (e.g., MNI) and morphed to the
subject’s initial single fMRI scan. This process was tested as a part
of our study and is feasible to conduct, although not used here.

The resulting preprocessed images were then converted to
ASCII text files for statistical analysis with SPRT producing one
.txt file per fMRI scan. The text file contained the grayscale values
for every voxel in a 3D image. The conversion was accomplished
using ‘fsl2ascii’ command.

Functional Magnetic Resonance Imaging
Sequential Probability Ratio Test
Analysis
The SPRT analysis was applied using a highly optimized C++
program that used Intel Cilk Plus library for multicore and vector
processing of data. BLAS routines from Intel MKL were used
to enable instruction-based acceleration for matrix computation.
They are available from the Bitbucket repository at https://
bitbucket.org/tatsuoka-lab.

The design matrix was created prior to the scan session and
contained 8 columns. One column of ‘1s’ is for the intercept. Two
columns represented the easy and hard stimuli. They were created
using AFNI’s ‘3dDeconvolve’ command to model the HRF.
Easy and hard levels were modeled separately and the contrasts
applied post processing were easy or hard versus rest. We also
included in the design matrix cosine functions of increasing
periodicity to model major sources of noise in fMRI data.
These include brain metabolism, physiology, and spontaneous
fluctuations (Friston et al., 2000; Yan et al., 2009). For large
periodicities, cosine functions are approximately linear for the
time frame of scans we consider here, and hence are essentially
collinear from a GLM modeling perspective. Five regressors
were thus added to the design matrix and were formulated
based on the information given in Kiebel and Holmes (2006).
The frequencies were based on total/maximum scan duration
and were: maximum scan duration∗2, maximum scan duration,
maximum scan duration/1.5, maximum scan duration/2 and
maximum scan duration/2.5. It is also possible to include the
temporal derivatives of the HRF or other regressors in the design
matrix where applicable in studies. Temporal derivatives were
not included here due to the long durations of the block design
used to present the task. Motion parameters are also frequently
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FIGURE 2 | Schematic of the experimental setup of the dynamic real-time fMRI process. The equations were presented to the subject while the scans were acquired
using a dedicated computer. FMRI scans were exported in real-time from the scanner computer to the Linux workstation using the Philips XTC program and CORBA
interface. Scans were preprocessed on the Linux workstation and SPRT statistics were calculated. The results were relayed back to the stimulus presentation
program with an instruction to either continue or terminate the stimulus. The program allowed the flexibility to automatically terminate the presentation of the difficulty
level or it could be overridden by the experimenter to continue presenting the stimulus. Note: where hospital firewalls are not an issue, the setup can be simplified.

used as regressors to remove correlated activations produced by
movement. Here motion parameter regressors were not included
with the estimation of the discrete cosine transforms due to the
limitations of the computational resources.

Important design parameters for implementation were
selected through analysis of a training sample. For training,
each subject underwent the full duration of experimentation. We
determined design parameters through the following criteria:

(1) First stage duration: It is desirable for the voxel-level error
variance and beta parameter estimates to stabilize – we assessed
this qualitatively by assessing plots from a sample of voxels.
We tested 2 scenarios using either 2-blocks or 4-blocks of easy
and hard stimuli first stage administration before allowing early
stopping to occur. Where 2-blocks per difficulty level of stimulus
administration were used before allowing early stopping, the
first 78 scans were used for the first stage of experimentation.
Where 4-blocks were used, 154 scans were used for the first stage.
Recall, a full-length task protocol comprised 238 scans and lasted
11 min and 54 s.

(2) Activation threshold: We chose a z-score threshold of
zt = 3.10 after the first stage since this is a standard threshold value
for determining activation of a voxel. We then solved for θ1, as in
(1.6). After this first stage, the null and alternative hypotheses at
a given voxel are set as H0: cβ = 0 and Ha: cβ = θ1.

(3) Target Type I and Type II error levels: Typical values used
in the literature were used to test stopping time performance,

with αE = 0.001, βE = 0.1 (Banerjee et al., 2009; Cremers et al.,
2017). We also considered αE = 0.0001, βE = 0.1 and αE = 0.001,
βE = 0.01 combinations as well.

(4) Global stopping percentage: We investigate the scenarios
of classifying 70, 80, and 90% of voxels. Ideally, early stopping
occurs while there is still correspondence in activation patterns
to full scan durations, and general concurrence with expected
activations from neuroscientific literature.

The stopping rules were defined as described in Section
“Sequential Probability Ratio Test”:

1. Continue sampling, if B < 3t < A
2. Stop sampling and accept H0, if3t < B
3. Stop sampling and accept Ha, if A < 3t

where stopping boundaries are given in (1.4) and are based on
target Type I and II error levels. The error levels are specified
before testing begins.

Although our goal was to stop scanning early it was necessary
to acquire first full length datasets to fully verify our analysis
methods and check the feasibility of stopping early. In addition
to the subjects reported in the results, we tested early stopping
in 2 other subjects to confirm that our procedures worked.
Subject details and data are not reported for them as full datasets
are not available.
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This 1-back arithmetic task involves not only number sense
and mathematical calculations but also general cognitive skills
involving working memory and sustained attention. The brain
networks involved with each of these have been well characterized
in the literature and lends itself to the evaluation of this real-
time analysis method. There is a large amount of overlap for
the active brain areas that control each of these functions and
they appear as a frontoparietal network (Menon, 2016a,b; Chai
et al., 2018). The areas of the brain we expect to activate in
response to each contrast of easy versus rest and hard versus
rest are: the intraparietal sulcus, supramarginal gyrus, premotor
cortex, dorsal/ventral lateral prefrontal cortex, parietal lobe,
Broca’s area, occipital lobe, fusiform gyrus, precuneus, cingulate
gyrus, anterior insula and frontal eye fields. Assessment of the
location and extent of activations within this network will be
used as additional criteria for judging appropriate stopping times,
in addition to the statistical information determined through
the SPRT analysis. This will include how well the cluster peaks
coincide with the anatomical locations as well as their extent.

Group Analysis
There are many possible applications in the research setting
where individual level results may be the focus. A possible
clinical application may be in clinical assessments for presurgical
evaluation for brain surgery in patients with brain cancer or
epilepsy. Still, group analyses are commonly conducted and form
an essential aspect of fMRI analyses. The outputted results files
from the SPRT analysis can be used directly to perform a group
analysis using AFNI’s 3dMEMA command (Mixed Effects Meta
Analysis tool) (Chen et al., 2012), even with the variable scan
durations. However, a group analysis was carried out using FSL
which instead merges all subject data to conduct a combined
mixed models analysis. We demonstrate that the data collected
in real-time can still be used in a typical post-hoc analysis and
can be processed with different parameters to those specified in
SPRT. Raw data was preprocessed with FSL FEAT (Woolrich
et al., 2001). Motion correction was performed using a rigid body
transform, spatial smoothing with a full-width-at-half-maximum
Gaussian kernel of 6 mm was applied, high pass temporal filtering
of 90 s was carried out and coregistration to (MNI) standard
space was done before performing a first level individual GLM
analysis. The statistical output from these were used to perform
the higher level group statistics using FLAME 1 [FMRIB’s Local
Analysis of Mixed Effects, (Woolrich et al., 2004)].

RESULTS

Individual Subject Results of Sequential
Probability Ratio Test
The median control subject response time across both difficulty
levels was 1.44 s (SD 0.51 s), and median task accuracy was
90.8% (SD 20.2%). When these are broken down by difficulty
level, the easy level median task accuracy was 86.1% (SD 22.6%)
with median response time of 1.28 s (SD 0.54 s); and the hard
level median task accuracy was 90.0% (SD 18.4%) with median
response time of 1.56 s (SD 0.51 s). EPT subjects had a slightly

longer overall median response time of 1.91 s (SD 0.48 s) and
overall median task accuracy was lower at 65.8% (SD 21.2%).
For the easy level, the median accuracy was 72.2% (SD 24.2%)
and median response time was 1.63 s (SD 0.49 s). For the hard
level the median accuracy was 70.0% (SD 19.8%) with a median
response time of 2.10 s (SD 0.54 s). Note that there are statistically
significant differences in same subject differences in speed to
completion by difficulty level (Wilcoxon signed rank test, two-
sided p < 0.001). Comparing correctness percentages per subject
across birth status groups, there are significant differences with
the hard level (Mann-Whitney U-test two-sided p = 0.037), but
not with the easy one (two-sided p = 0.401). These results indicate
that the difficulty levels have different psychometric properties,
and affect the groups differently. We also see this in activation
patterns, as discussed in Section “Group Analysis Results” and
reflected in the group analysis results.

Real-time transfer speeds between the scanner and the single
Linux workstation were consistently fast, with individual scan
files taking less than 150 milliseconds to transfer. All subject scans
were processed within the 3 s TR period. Offline testing showed

TABLE 2 | Subject early stop durations of the 1-back task using SPRT.

Subject Scan when
80% Reached
2-Block Easy

Scan when
80% Reached
2-Block Hard

Scan when
80% Reached
4-Block Easy

Scan when
80% Reached
4-Block Hard

Control

1 4E/3H 2E/2H Not reached Not reached

2 3E/2H 3E/3H Not reached Not reached

3 3E/2H 2E/2H 5E/4H 5E/4H

4 4E/3H 3E/2H Not reached 5E/5H

5 3E/2H 2E/2H 5E/4H 5E/4H

6 2E/2H 3E/2H 5E/5H 6E/5H

7 2E/2H 3E/2H 5E/4H 4E/4H

8 3E/3H 3E/2H 5E/5H Not reached

9 2E/2H 3E/2H 4E/4H 4E/4H

10 3E/3H 2E/2H Not reached 4E/4H

11 3E/2H 3E/3H 5E/4H Not reached

12 3E/3H 3E/2H Not reached Not reached

EPT 2E/2H 2E/2H 4E/4H 4E/4H

13 3E/3H 2E/2H 5E/5H 6E/6H

14 3E/3H 3E/2H 4E/4H 5E/4H

15 3E/3H 3E/2H Not reached 5E/5H

16 2E/2H 2E/2H 5E/4H 6E/5H

17 2E/2H 4E/3H 4E/4H 6E/6H

18 3E/2H 2E/2H Not reached 4E/4H

19 2E/2H 2E/2H 4E/4H 4E/4H

20 Not reached 2E/2H Not reached Not reached

21 3E/3H 3E/2H Not reached 6E/6H

22 3E/3H 3E/2H Not reached Not reached

23 4E/3H 2E/2H Not reached Not reached

Analysis reported here uses αE = 0.001, βE = 0.1, and z = 3.10 threshold at first
scan after the first stage. Maximum number of possible scans is 238, minimum is
78 scans for 2 blocks first stage of easy and hard stimulus administration or 154
scans for 4 blocks first stage of easy and hard. Information given for the point where
80% of voxels have been classified as either active or non-active. E = administration
of easy level block, H = administration of hard level block.

Frontiers in Neuroscience | www.frontiersin.org 9 November 2021 | Volume 15 | Article 643740

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-643740 November 2, 2021 Time: 15:14 # 10

Carr et al. Early Stopping RT-fMRI With SPRT

FIGURE 3 | The active voxel counts shown are for the voxels-in-common between the full duration scan and early stop scan and counts are for active voxels unique
to either the final scan or early stop scan. Top row: 2-block easy and hard levels, bottom row: 4-block easy and hard levels. Maximum number of possible scans is
238, minimum is 78 scans for 2 blocks first stage of easy and hard stimulus administration or 154 scans for 4 blocks first stage of easy and hard. Information given
for the point where 80% of voxels have been classified as either active or non-active. Results reported uses αE = 0.001, βE = 0.1, and z = 3.10 (p < 0.001) at first
scan after the first stage. The thick black line in each chart indicates the subject groups. Left of the black line (1–12) = control subjects, right of the black line
(13–23) = EPT subjects.

that the subject with the largest number of voxels (subject 21
with 135,379 voxels) required 145 s to conduct all SPRT analyses,
starting from scan 79. Less than 1 s is required to analyze the first
stage data. The subject with the fewest number of voxels (subject
14 with 77,359 voxels) required 79 s for SPRT analyses across the
scans. Overall real-time processing times in this workflow were
due in most part to pre-processing computations. For the subject
with the largest number of voxels, the maximum time to process
one scan in real-time would be about 1.6 s (0.54 s preprocessing
time + 0.91 s SPRT calculations + 0.15 s transfer time). This
would be even faster with more computational resources, faster
transfer speeds or reducing the number of voxels being analyzed.

Inspection of the z-score maps for easy and hard levels for
each subject showed that generally, across subjects, the largest
activations were centered bilaterally around the inferior and
superior parietal areas, taking in the intraparietal sulcus, a
region highly associated with mathematical functioning. Further
activations were seen in the cuneus. These are most likely
correlated with the visual processing associated with the task.
Additional activations were seen in the precuneus, bilateral areas
in the medial frontal gyrus, anterior cingulate, insula and inferior
frontal gyrus. These areas are often associated with attention and
memory systems (Cavanna and Trimble, 2006; Menon, 2016a).

The stopping times for the 2- and 4-block first stage lengths
for various criteria for each subject are given in Table 2. The
spatial overlap between early stopping and full duration maps
are explored in Figure 3 where we show the number of active
voxels in common between the two durations. The median spatial
overlap where early stopping occurs for control subjects was

20.0% (SD 27.0%) for the easy level, 2-blocks and 76.3% (SD
34.5%) for easy level, 4-blocks. For the hard level, there was
30.7% (SD 16.4%) and 77.2% (SD 26.5%) overlap for the 2-
block and 4-block first stages, respectively. For EPT subjects the
median overlap was 28.7% (SD 35.6%) and 82.7% (SD 34.5%) for
the easy level, 2- and 4-block first stages, respectively. For the
hard level, the median overlap values were 21.3% (SD 20.6%)
and 82.5% (SD 26.5%) for 2-block and 4-block first stages. In
Supplementary Table 1, maps of activations for instances where
there is less than 50% overlap are presented.

The median spatial overlap for the 2-block first stage is less
than 50% for both control and EPT groups. We see for instance
in Figure 4, error variance and beta estimates are generally not
stable after a 2-block first stage. It is important to “wait” until this
happens, as these parameters play a central role in inference and
on test statistic values. The 4-block first stage is more attractive
in this way. Figure 5 indicates how early stopping is affected
by the SPRT Type I error threshold values. Type II error levels
seemed to have higher impact. For βE = 0.01, although not shown,
early stopping appears somewhat less often and closer to the end
of the experiment.

Stopping was reached at 80% of voxels classified as either
active or non-active in all subjects with the exception of one
instance (EPT subject, easy level) for 2-block first stage. For 4-
block first stage, 7/12 control subjects stopped early for both
the easy and hard levels. Among the EPT group, 6/11 subjects
stopped early for the easy level and 9/11 subjects stopped early for
the hard level. The median stopping duration for both difficulty
levels for control subjects was 3 blocks of easy and 2 blocks of
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FIGURE 4 | Estimated standard deviations for the easy task parameter. Plots for 3 example active (left) and non-active (right) voxels from a control subject (subject 3)
showing how the estimates decrease over time (scan number). (A) Based on 2-block first stage estimation, (B) 4-block first stage estimation.

hard stimulus administration for 2-blocks first stage. For 4-blocks
first stage, the median stopping time was 5 easy, 4 hard for both
difficulty levels. In EPT subjects, the median stopping time for 2-
block first stage was 3 easy, 2 hard blocks of stimuli. For 4-blocks
first stage, the median stopping time was 4 easy and 4 hard for the
easy level and 5 easy, 5 hard for the hard level. Depending on the
number of first stage blocks, time savings of 1/3 to 2/3 (4 to 8 min
on a 12-min scan) can be achieved.

An early stopping rule based on a classification rate of at least
70 or 90% was also tested. Results reported in Figure 6. At 70%
classification most subjects stopped early. For the 2-block first
stage all subjects stopped early. Median stopping scan number
was 79 for both the easy and hard levels for both groups. For
the 4-block first stage – easy level, 1 EPT subject did not stop
early, and 1 EPT and 1 control subject did not stop early for the

hard level. Median stopping scan was 155 for both difficulty levels
for both groups. At 90% classification, most subjects stopped
early with 2-block first stage but most did not stop early with 4-
block first stage. For the 2-blocks first stage condition, 3 subjects
did not stop early for the easy level and 2 subjects for the hard
level. Only 1 subject stopped early under the 4-blocks first stage
condition for the easy level and the hard level. When analyzing
counts of voxels classified as active or non-active between these
rules, the 80% thresholds lead to more non-active classifications,
but the difference in active voxels is less systematic. Given that
early stopping occurs almost invariably with the 70% rule, this
value should also be considered. Supplementary Table 2 provides
plots of the percentage of voxels that are, respectively, classified
as active and non-active over the course of the full scanning
duration based on 80% of voxels being classified. A general trend
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FIGURE 5 | Comparison of early stopping times using αE = 0.001 and αE = 0.0001. Based on 80% of voxels being classified. Both 2-block (top row) and 4-block
(bottom row) first stage conditions are presented. βE = 0.1 throughout. The thick black line in each chart indicates the subject groups. Left of the black line
(1–12) = control subjects, right of the black line (13–23) = EPT subjects.

FIGURE 6 | A comparison of the early stopping scans at 70, 80, and 90% of voxels classified as either active or non-active. Conducted using αE = 0.001, βE = 0.1.
Both 2-block (top row) and 4-block (bottom row) first stage conditions are presented. The thick black line in each chart indicates the subject groups. Left of the black
line (1–12) = control subjects, right of the black line (13–23) = EPT subjects.

is that the percentage of non-active voxels gradually decreases
while that of active voxels increases. Longer scan durations
also allow for some adjustment in post-hoc analyses, and may
have some potential advantages for group analysis, as discussed
below. Hence, we present results for the more conservative 80%
rule, which leads to relatively longer durations even when early
stopping occurs.

In summary, these results indicate that early stopping is
feasible but that the parameters need to be carefully chosen.
The desire for earliest possible stopping must be balanced
with selections of a first stage estimation duration and a voxel
classification percentage which help insure that the number of
active voxels will significantly overlap with those from a full
scan, and that a sufficient amount of experimentation has been
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FIGURE 7 | Full brain activation maps showing the overlapping voxels
between the different stopping points (using 2-blocks first stage, 4-blocks first
stage and final scan). Top row shows the easy level and bottom row shows
the hard level for 1 subject (number 9). The voxels that are active only at full
duration are shown in blue. Those only active after 2-blocks or 4-blocks of
stimulus administration are in red. Yellow shows the overlap between full
duration and 2-block first stage early stopping scans. Green shows the
overlap between full duration and 4-block first stage stopping scans.
Thresholded at z = 3.10 at first scan after the first stage. Results overlaid on
MNI template, slice z = 56 shown. R = right, A = anterior.

conducted. Of the parameters we tested, our results indicate that
useful results were obtained using 4-blocks first stage with 80%
classification. We discuss this further in the Discussion section.

The activation maps under the different conditions are shown
in Figure 7 for a sample subject (subject 9). For the 2-block first
stage, this subject terminated after 2 blocks of easy and hard
administration for the easy level (scan 79) and after 3 blocks of
easy and 2 blocks of hard administration for the hard level (scan
85). For the 4-block minimum, this subject terminated at scan
155, equal to 4 blocks of easy and hard stimulus administration,
for both difficulty levels. The images show that at scan 79
there is very little activity present and the majority of the voxel
classifications are non-active. By scan 155, there is much more
activity which has a similar pattern to the final scan. The extent
is not quite as large as the final scan, however, the foci of the
clusters do overlap showing good correspondence between the
two different time points. Other subject activation maps for
instances where there is less than 50% overlap are shown in
Supplementary Table 1.

By holding the alternative hypothesis threshold θ1 constant
after the first stage, note that the corresponding zt-score
associated with the θ1 threshold actually increases as the
scan durations increase. The decreasing variance of cβ̂t is
approximately proportional to c(X′X)−1c′ (as it would be under
constant error variance and no serial correlation). Hence, for
the easy level task, a zt-score of 3.1 for 154 scans approximately
corresponds to a zt-score of 4.0 for the final scan (238 scans),
holding θ1 fixed. At 78 scans, a zt-score of 3.1 corresponds to
a zt-score of approximately 8.37 at 238 scans, so there may be
less overlap between early stopping and full duration for shorter
first stage durations. See Supplementary Table 1 for images
resulting from different stop rules and first stage durations.
In Supplementary Table 2, the trends in percentage of voxels
classified as active and non-active reflect this phenomenon, at
least for some of the subjects.

Importantly, the issue of whether early stopping or full
duration provide better activation maps is best answered neuro-
scientifically, through the support of literature and hypotheses.
We used this training sample to assess whether early stopping
activation patterns were reasonable, or too early, and compared
them with full duration results. In the Supplementary, we add
plots for early stopping versus full duration for each subject for
which early stopping was invoked. Comparing these plots, we see
that in many instances that the cluster peaks are located in the
expected anatomical locations.

In summary, although there are similar rates of early
termination between the 2-block and 4-block first stage cases,
the detected activation patterns suggest that using 4-blocks of
stimulus administration is more suited to determining active
voxels. In Figure 4, to illustrate the rate of decrease of the
estimated v̂ar

[
cβ̂t
]

values, we present a plot of v̂ar
[
cβ̂t
]

values
for one subject across a set of voxels over the duration of
the experiment. These values give an indication that stopping
based on the θ1-values at the end of the 2-block first stage may
be too early for correspondence with full duration scans, as
the estimated standard deviations are relatively larger and the
corresponding θ1-values for z = 3.10 in the alternative hypothesis
can be larger as well, compared to a 4-block first stage.

Note that in a subset of subjects there was some volatility due
to subject movement. This may in part explain why sometimes
there is a lower number of active voxels for the easy task for
full duration than when stopping early. In most subjects the
active voxel count increases with scan duration. Subjects 13,
15 and 17 had the most pronounced decrease of active voxel
counts. Subject 13 demonstrates very few active voxels at all and
there is almost no consistency in location. Further investigation
shows large relative framewise displacement occurs frequently
throughout the scan and many of the responses have been missed
or have relatively long response times, 60.5% correct overall
and 2.08 s (SD 0.97 s) average response time (see plots for
subject 13 in Supplementary Table 3). Taken together these
suggest that either the task level may not have been aimed at the
right level and/or the subject may have been uncomfortable and
distracted in the scanner thereby attending to the task less than
required for robust activations to occur. Subject 15 demonstrates
consistent clusters but their size decreases over time. Framewise
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FIGURE 8 | Plots showing the number of subjects that pass the framewise displacement threshold of 0.9 mm for each scan. Top: EPT subjects, bottom: control
subjects.

displacement shows very little motion, particularly from scan 180
onwards. The response plots (in Supplementary Table 3) show
the subject is paying attention and responding appropriately.
Subject 17 has a similar pattern of decreasing cluster sizes. The
framewise displacement plots indicate a moderate amount of
motion throughout. Although the subject has missed many of
the task questions (65.8% correct), the pattern of responding
indicates they are awake and attending to the task. In general,
EPT subjects demonstrated more motion. The median number of
scans with framewise displacement above a threshold of 0.9 mm
[threshold determined from Siegel et al. (2014)] was 5 scans (SD
43 scans) for EPT subjects and 2.5 scans (SD 8 scans) for control
subjects. One EPT subject passed the threshold a total of 124
scans out of 238 scans. In contrast, the control subject with the
maximum number of threshold passes was 30/238 scans. This is
further demonstrated in Figure 8 where we show subject counts
for each scan when the threshold has been passed. For both EPT
and control subjects, it is clear that subjects are moving more
frequently in the second half of the scans and supports stopping
early to reduce motion artifacts and noise in the data. Formally,
we see statistically significant differences when comparing counts
of motion events with framewise displacement greater than
0.9 mm in the first versus second half of scanning (p = 0.003, two-
sided signed rank test). EPT group also has significantly more
movement in the first half of scanning (p = 0.035, two-sided
Mann-Whitney U-test), indicating a group-level proclivity for
more motion events.

Group Analysis Results
The results for the group 1-back easy and hard contrasts for
the 2- and 4-block first stage conditions for EPT and control
subjects are shown in Figure 9. Location of activity is listed

in Supplementary Table 4. The group results of full scan
durations are compared to the group results using only the
scans up to the early stopping point for each subject for each
difficulty level and number of blocks completed before early
stopping was allowed. We examined within-group differences
as well as between group differences. The EPT > control
(activity that is greater in the EPT group compared to the
control group) and control > EPT (activity that is greater
in the control group compared to the EPT group) contrasts.
The focus for the results here is within-group for the easy
and hard levels.

The control subjects show activations in the anterior cingulate
and bilateral parietal regions, see Supplementary Table 4, and
Figure 9. The cluster sizes and overlap are reported in Table 3.
The easy and hard 4-block first stage scans for the control group
appear similar to the final scans. There is less correspondence
between the 2-block first stage scans and the final scans, reflecting
the individual results reported above. The EPT group easy
level scans are inconsistent across stages and there is more
variability in the activations at both easy and hard levels. This is
discussed below.

DISCUSSION

Based on analysis of a training sample, we have presented a
workflow for the implementation of an adaptive real-time fMRI
system that allows for statistically driven dynamic adjustment
of experimentation based on voxel-level SPRT. We show that
this dynamic and adaptive statistical approach is under some
circumstances comparable to corresponding fixed experimental
designs in terms of detected activation.
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FIGURE 9 | Group results for the 1-back task. Analysis performed for control
and EPT subjects using FSL. Early stopping with 2- and 4-blocks being
initially administered is compared to full duration. Activations are overlaid on
the MNI template brain. Red (A) = easy level results, Blue (B) hard level
results. Group results thresholded at z = 3.10 (p < 0.001). Slice z = 59 is
shown. R = right, L = left, A = anterior, P = posterior.

Our implementation illustrates the importance of first
analyzing a training sample of full scan data, as we illustrate
here. Experts can then review the activation thresholds, first stage
duration lengths, stopping rule criteria, and the corresponding
activation patterns that arise from early stopping rules, to see if
they are plausible neuro-scientifically relative to those observed
from longer scans. Certainly, our examples, particularly the group
analyses are based on a small-scale neuroimaging study. In
general, a larger training sample would provide a stronger basis
for making these decisions.

We explored imposing two different first stage lengths before
early stopping was considered using either 2- or 4-blocks each
of easy and hard stimulus administration. The 4-block first stage
is justified over the 2-block because of the comparative stability
of the estimation of error variances and other GLM parameters.
In contrast, for the 2-block first stage, parameter estimation can
be more variable. Also, correspondence in early stop activation
patterns to full scan duration involves larger z-score threshold
changes over the scans from the initial 3.10-value that was
specified, and activation magnitude thresholds for stopping that
can be relatively higher. The 2-block first stage often led to
most voxels being classified as non-active. See Supplementary
Table 2. While the 4-block first stage provides less opportunity
for efficiency gains, as the window for early stopping is narrower,
but it is more prudent given the need for parameter estimates to

stabilize. It is possible that a 3-block initial stage could provide
comparable results as the 4-block initial stage, but this was
not explored here.

In the SPRT framework, other αE, βE pairs were considered as
well, to test how different combinations impact activity detection
and early stopping. For instance, given selection of αE = 0.001
and βE = 0.01, early stopping was common for the 2-block first
stage but arose less often for 4-block first stage and with much
smaller savings in scan time. In this case, the more stringent
choice of βE makes it more difficult to cross either of the SPRT
thresholds. We also saw that for either αE = 0.001 or αE = 0.0001
being paired with βE = 0.1, early stopping occurred for both of the
experimental conditions, with somewhat faster early stopping for
the less stringent αE.

In terms of the global stop rule threshold, we observed that
for the cases under consideration, stopping when 80% of voxels
in the full brain (or smaller ROI), respectively, satisfy their
SPRT-based stopping criterion generally leads to early stopping
of stimulus administration, while also leading to comparable
activation classification as with the full protocol. The stricter 90%
criterion was infrequently satisfied, and did not often lead to early
stopping of experimentation at 4-blocks first stage estimation.
Recall that when GLM parameter values are “in-between” the
null and alternative hypothesis values, SPRT-based stopping is
less likely at the voxel level. A 100% stopping rule is thus not
feasible, as are values relatively close to 100%. The 80% rule
seems conservative in that not all participants are stopped early,
but there are high levels of correspondence in individual and
group level activation maps with full durations, particularly when
the first stage is comprised of 4 blocks. The 70% rule is more
aggressive, and early stopping is invoked more frequently. Given
that the resultant images from early stopping in many cases
appear similar across these two rules, the 70% rule should be
considered as well.

The SPRT approach was effective at detecting brain activity
at the individual level with early stopping in both the control
and EPT groups. Note the individual variability among subjects
in early stopping performance. Factors that can affect stopping
times include the magnitudes of activation, variability in task
performance, sustained attention levels, motion, and the noise
levels in the BOLD signal. Those born EPT also can have
structural abnormalities of the brain which can affect fMRI
results and 2 subjects reported here had clear abnormalities
that were obvious even in this low-resolution fMRI data
(1.8 mm × 1.8 mm × 4.0 mm voxel size). Subtle abnormalities
may have been present in some of the other subjects.

The EPT group data demonstrated less consistent activity by
comparison to control group data across all stopping points.
In order to understand this result it is necessary to consider
neuropsychological skills and structural and functional brain
changes within the group. Working memory is a key skill
required for both mathematics and this numerical 1-back task.
Recall the lower accuracy and longer response times in the
EPT group. fMRI studies on dyscalculia (difficulty in learning
and performing mathematics) suggest that there is greater
heterogeneity in activations with a more diffuse pattern being
apparent (Berl et al., 2006; Kucian et al., 2006). Additionally,
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TABLE 3 | The number of active voxels that spatially overlap between early stopping and full duration group analyses are listed.

No of Active
Voxels

Voxels in Scan at Early
Stopping but not Final

Scan

Voxels in Final Scan but
not in Scan at Early

Stopping

% of Common
Voxels with Final

Scan

Standard
Deviation Values

EPT – Easy

2-Blocks 343 277 284 18.9 137.8

4-Blocks 439 234 145 58.8 92.6

Full duration 350 96.4

EPT – Hard

2-Blocks 1,103 841 339 43.6 113.1

4-Blocks 955 491 137 77.2 98.5

Full duration 601 93.9

Controls – Easy

2-Blocks 1,277 514 1147 39.9 122.3

4-Blocks 1,963 366 313 83.6 84.4

Full duration 1910 89.1

Controls – Hard

2-Blocks 1,976 1111 1065 44.8 103.3

4-Blocks 1,672 326 584 69.7 90.3

Full duration 1930 84.5

Images thresholded at z = 3.10 (p < 0.001). The percentage of voxels-in-common is given relative to the total number of active voxels detected at full duration. Stopping
based on 80% classification at the individual level. Standard deviation values are for the number of active voxels individually.

there is overlap in structural differences in white matter
integrity, as measured from diffusion weighted imaging studies,
between those born EPT and those with dyscalculia including
inferior fronto-occipital fasciculus and the inferior and superior
longitudinal fasciculi (Rykhlevskaia et al., 2009; Kucian et al.,
2014; Young et al., 2017; Loe et al., 2019). These connect crucial
areas associated with mathematics and working memory. A more
diffuse and variable pattern of functional activity, perhaps partly
due to structural differences, may confound a group analysis in
this instance. The control group variances are relatively much
lower throughout, as the extremely premature birth group was
neurologically and cognitively more heterogeneous. If group-
level analysis is a main objective, it is possible that groups could
be treated differently in how early stopping is approached based
on within-group heterogeneity and the need for more scan data
to help overcome this. This issue needs further investigation.
Certainly, relatively larger group sizes for patient groups also
would be helpful in overcoming greater within-group variability.

Based on our analysis of head movements, early stopping of
data collection could be particularly useful in populations where
attention is problematic, such as with young children or adults
with cognitive deficits. We see in our EPT population that head
movement became more frequent and had a greater amplitude
in the second half of the scans when compared to the control
subjects. This may be an indication of attentional fatigue. In
Table 3, it is seen for the easy level, the number of voxels classified
as active actually decreases a bit at full scan duration compared
with early stopping. This may be due to relative increases in
variability from loss of attention. In general, we believe that
there will be instances when early stopping can actually improve
statistical power by reducing the possibility of fatigue.

In the future, it is possible that the first stage length can be
tailored at the voxel level, once it is clear error variance and

other GLM parameter estimates are relatively stable, which is
expected at some point due to the convergence properties of
the estimators. This may facilitate earlier stopping. Alternatively,
if local computational resources are limited, note that stopping
can be assessed on an interval basis, and not necessarily after
every scan. Although not considered here, these BOLD signal-
based early stopping rules could also possibly be enriched by
incorporating individual motion displacement patterns, as well as
behavioral measures such as correctness rates in experimentation.

Here we demonstrated full brain analytics with parallelization
using MKL Intel libraries for matrix computation with two
Xeon E5-2687W 8-core processors. It is also feasible to consider
only partial brain volumes where experiments demand more
consideration of a particular area. Future directions for the study
are to implement the SPRT and Bayesian sequential estimation
methods using distributed computing approaches to increase
processing speed and allow advance in stopping rule methods
under shorter scan TR periods.

CONCLUSION

We introduce a systematic, statistically based approach to
dynamic experimentation with real-time fMRI. Saving in scan
time and accurate voxel activation detection can be achieved,
while redundant experimentation in block design is reduced.
We investigate different aspects of how to determine early
stopping rules. These analyses can be viewed as intended on
a training sample to guide implementation of early stopping
in future studies involving the same experiments and study
populations. These methods can be particularly useful such
as when investigating fragile patients and young children, as
shorter scan requirements can enhance patient experience and
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reduce fatigue effects. Another possible application is in real-
time quality control, where it is important to know if sufficient
testing has been conducted, or whether more experimentation
is needed. These methods lay a foundation for future dynamic
experimentation approaches and with real-time fMRI, including
for resting state, neurofeedback and presurgical evaluation. Use
of high-performance computing will enable the advent of more
sophisticated real-time experimental designs and dynamically
determined early stopping rules.
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