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Abstract 

The widespread usage of electronic health records (EHRs) for clinical research has produced multiple electronic 

phenotyping approaches. Methods for electronic phenotyping range from those needing extensive specialized 

medical expert supervision to those based on semi-supervised learning techniques. We present Automated 

PHenotype Routine for Observational Definition, Identification, Training and Evaluation (APHRODITE), an R-

package phenotyping framework that combines noisy labeling and anchor learning. APHRODITE makes these 

cutting-edge phenotyping approaches available for use with the Observational Health Data Sciences and 

Informatics (OHDSI) data model for standardized and scalable deployment. APHRODITE uses EHR data available 

in the OHDSI Common Data Model to build classification models for electronic phenotyping. We demonstrate the 

utility of APHRODITE by comparing its performance versus traditional rule-based phenotyping approaches. 

Finally, the resulting phenotype models and model construction workflows built with APHRODITE can be shared 

between multiple OHDSI sites. Such sharing allows their application on large and diverse patient populations. 

Introduction 

Electronic phenotyping, as commonly understood, is the process of identifying patients with a medical condition or 

characteristic via a search query to an EHR system or clinical data repository using a defined set of data elements 

and logical expressions
1
. The goal of electronic phenotyping typically is to build patient cohorts by identifying 

patients with a particular medical condition, for example, patients with Type 2 Diabetes Mellitus (T2DM) or those 

who experienced a Myocardial Infarction (MI). The process of EHR-based phenotyping has matured over the years 

from using large sets of codes and rules manually curated by medical professionals into machine-learning driven 

methodologies and frameworks that can process large amounts of patient data with a wide variety of feature types 

and sources. With the formation of partnerships like PCORnet (the National Patient-Centered Clinical Research 

Network) which uses the Mini-Sentinel Common Data Model (CDM), and the OHDSI data network which uses the 

OMOP CDM, there is an increasing need for accurate, and fast methods for electronic phenotyping.  

In this work, we present APHRODITE, an electronic phenotyping R-package/framework that combines the ability 

of learning from imperfectly labeled data 
2
  and the Anchor learning framework for improving selected features in 

the phenotype models 
3
, for use with the OHDSI/OMOP CDM. The contributions of this package/framework on the 

operational front are that it allows for the potential redistribution of locally validated phenotype models as well as 

the sharing of the workflows for learning phenotype models at sites of the OHDSI data network.  

Background 

With the improved availability of EHR data for research, there has been a considerable amount of research focused 

on using aggregate patient data at point of care 
4
, extracting adverse event signals from clinical data 

5
, and 

generating clinical insights 
6
. One of the key tasks when using EHR data is to identify cohorts of patients that have a 

certain phenotype (or condition of interest). Co-ordinated research groups, such as the Electronic Medical Records 

and Genomics (eMERGE) network 
7
 create and validate electronic phenotypes from EHR data at multiple 

institutions 
8
, and make them available in online repositories such as the Phenotype KnowledgeBase (PheKB) 

9
.  

The eMERGE phenotyping effort relied heavily on expert consensus to build phenotype definitions that can be 

applied over a large set of EHRs. While time consuming, these initial effort yielded precise phenotypes for single 

diseases 
8
. These initial approaches to phenotyping were mostly query based and in some instances required very 

complex rules 
8, 10, 11

. Such query based approaches are typically not easy to port between sites due to the differences 

between EHR systems and institution-specific data models used to store patient data for research 
12, 13

.  

Therefore, in recent work, phenotyping efforts have focused on automated feature extraction from knowledge 

sources to reduce the manual effort involved in creating precise phenotypes 
14

. Natural Language Processing is often 

employed to take advantage of the richness of information found in clinical narratives written by doctors during a 

patient visit. Examples of approaches that use automated feature selection include regression-based phenotype 

models that use expertly labeled data for rheumatoid arthritis 
15, 16

.  
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More advanced machine learning approaches have been used for discovering new phenotypes 
17

. For example, in 
18

, 

the authors consider the clinical narratives, hypothesizing that clinical information about the diseases of a patient 

will be documented in the notes and thus can be captured through standard topic modeling. Other phenotyping 

efforts that focus on phenotype discovery involve Latent Topic Analysis 
19

, inductive logic programming (ILP) 
20

 

and tensor factorization 
21, 22

. Enhancing the use of traditional diagnosis codes and medications with images and 

clinical narratives has been shown to provide more specific information and to refine phenotyping models 
23-25

. 

The OHDSI collaborative has over 140 collaborators in 16 countries and is comprised of clinical researchers, 

computer scientists, biostatisticians and healthcare industry leaders. With a vision to improve health by empowering 

a community to collaboratively generate evidence that promotes better health decisions and better care 
26

, this 

community has developed both a standard vocabulary for transparency and consistent content representation, as well 

as a common data model (CDM) that allows the systematic analysis of otherwise disparate observational databases. 

This CDM is flexible enough to store EHR data, claims data, as well as the standardized vocabulary. Each table 

contains a minimal set of fields that are required to be populated at all sites. The patient network available in the 

common OHDSI CDM includes 84 databases, both clinical and claims, totaling over 650 million patients. In order 

to tap into this data network and CDM, OHDSI has released multiple open source software packages that cover uses 

from cohort building to population level exploration, and a comprehensive methods library available for researchers 

to build R packages 
27

.  

Our software framework is designed to enable phenotyping via supervised (or semi-supervised) learning of 

phenotype models. APHRODITE is designed to read patient data from the OHDSI CDM version 5. We combine 

two recently published phenotyping approaches 
2, 3

 that make the process of identifying a patient with a certain 

phenotype less cumbersome (not requiring long lists of rules) and nearly unsupervised (needing very minimal user 

input). In addition, to enable sharing and reproducibility of the underlying phenotype 'recipes', APHRODITE allows 

sharing of either the trained model or sharing of the configuration settings and anchor selections across multiple 

sites. 

Learning with noisy labels 

The main idea of learning with noisy labels leverages the result that imperfectly labeled data—used in larger 

amounts—can enable the learning of classifiers as good as those that can be learned from perfectly labeled data. A 

“noisy labeling” procedure is one that assigns a wrong class label with a certain probability. Assuming a random 

classification noise (RCN) model 
28

, the probability of flipping labels is characterized by a parameter, called the 

classification error rate (). As derived in 
29, 30

 and used by  
2
 the amount of data needed for training a good model 

with noisy labels scales as   (   ) , where  is the classification error rate. For =0 we have data with clean 

labels and =0.5 represents when the random flipping of labels destroys all signals, making learning impossible.  

As demonstrated in
2
, using noisy labeling, we can learn models with the same performance in terms of positive 

predictive value (PPV) and classification accuracy from 2,026 manually labeled, zero error training samples or from 

4135 noisy labeled training samples with a roughly 15% error rate. Given that we can retrieve large noisy labeled 

training samples relatively easily from a large patient population, this approach allows us to learn good phenotype 

models without the time-consuming task of creating manually labeled training data. 

A different noise model is considered in the Anchor and Learn framework
3
. Anchors are features that 

unambiguously signal a positive phenotype when present, but their absence is uninformative. If the anchors depend 

only on the true phenotype (i.e., are conditionally independent of other features as a function of the true phenotype 

label), then substituting anchors in place of labels can be thought of as learning under a positive only noise model
31

. 

Under this noise setting, models learned on noisy labels by a calibrated classifier like logistic regression, are 

proportional (differing only by a threshold) to models learned with clean labels 
31

. 

APHRODITE 

APHRODITE is a stable implementation of a proof of concept effort on learning using noisy labeled data called 

eXtraction of Phenotypes from Records using Silver Standards (XPRESS)
2
. When porting XPRESS into the OHDSI 

CDM, we had to restrict the original notion of using any phrase or words found in the EHR clinical text to perform 

the noisy labeling. Instead we are bound to the standard vocabulary and its concepts, limiting some of the power and 

flexibility of using any set of terms. However, in this paper we demonstrate that such a restriction does not impact 

the performance of APHRODITE on the same phenotypes XPRESS was tested on, and it even shows some 

fractional improvements, potentially due to the specific nature of clinical concepts found in the OHDSI vocabulary. 
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Figure 1. APHRODITE phenotype development/deployment framework schematics. Phenotype definitions are initially learned 

at development sites and exported for deployment. At deployment sites, users have a choice to use the final keyword list to learn 

their own site-specific models or use the pre-built classifier. 

Building an imperfectly labeled cohort 

Initial labeling using the OHDSI vocabulary 

To build our initial list of noisy labels, we used the OHDSI vocabulary and look for the concept we want to build a 

phenotype for, which in our example case of Figure 1 is Myocardial Infarction (MI). Using the vocabulary tables in 

the CDM we find all related synonyms and concepts that are related to myocardial infarction as child nodes in the 

ontologies comprising the vocabulary. Doing so allows us to obtain a broad set of concepts that are related to the 

phenotype on an automated way. However, this part will require human curation as the keyword list retrieved by the 

concept expansion might include concepts that might not be adequately related to our phenotype (MI), but are 

retrieved due to their position in the ontologies. By removing these concepts from the list, the user can keep only the 

ones related to the phenotype. As of CDMv5, clinical notes have to be annotated with the OHDSI vocabulary. 

Iteratively updating the noisy labels with a suggestion tool (Anchor learning) 

The anchor & learn framework introduces an iterative updating procedure that can be used to refine the set of labels 

used in a noisy labeling procedure. Once an initial set of anchors is found (i.e. concepts identified in section 

Building an imperfectly labeled cohort), they can be bootstrapped, with some human guidance, to find more anchors 

in a data driven manner. In the anchor-searching setting, we train a logistic regression classifier with strong L1-

regularization to predict the presence or absence of the initial anchors.  

The highly positively weighted terms are then presented as additional candidate anchors to a human judge, who 

determines whether they are indeed good anchors. The human judge has the option to add the anchor to the list of 

existing anchors and relearn the classifiers, generating a new list of potential anchors. The interaction stops when no 

more interesting anchors are found by the anchor suggestion tool. 

Empirically we have found that having a suggestion list helps users add more label sources and improves 

performance of the classifiers, especially when there is a limited amount of structured data available for the domain. 

For example, the initial labeling procedure from the OHDSI vocabulary does not include medications, whereas we 

can learn to use medications as part of the labeling procedure. 
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The method is interactive and requires a human judge, since not all of the highly weighted features of the 

regularized classifier are suitable as anchors. L1 regularization is useful because it concentrates weight on a small 

number of observations that are highly indicative of the desired label rather than spreading the weight between many 

observations with weaker correlations. Figure 1 shows APHRODITE and the steps involved (top and bottom row) in 

building a noisy labeled training set, finding relevant anchors, and learning a model. 

Model building and model sharing 

Figure 1 depicts the APRODITE workflow for development and deployment sites. Ideally a model built on one 

OHDSI site will generalize and can be shared with a completely new site as long as the vocabulary and CDM 

versions are the same. All configuration files and keywords lists are also shared, which will allow sites to have the 

option of building their own models under the same conditions as built on the initial site. This part of the framework 

has not been extensively tested. 

Data sources and experimental setup 

Data Sources 

The main patient dataset was extracted from the Stanford clinical data warehouse (SCDW), which integrates data 

from Stanford Children’s Health (SCH) and Stanford Health Care (SHC). The extract comprises 1.2 million patients, 

with 20.3 million clinical notes that include pathology, radiology and transcription reports, 51 million coded 

diagnoses and procedures, 130 million laboratory tests and 32 million medication orders. 

Out of the 20.3 million clinical notes we have extracted over 4 billion clinical terms using a custom text processing 

workflow which recognizes terms from 22 clinically relevant ontologies (SNOMED, Human Disease Ontology, 

MedDRA among others). Each term is mapped to an UMLS CUIs. We make sure to flag negative term mentions 

using NegEx regular expressions 
32

. The workflow additionally uses regular expressions to determine if a term is 

mentioned in the history or family history section of the note. The Stanford data extract has been fully mapped to the 

OHDSI CDM and it is made available internally on a highly indexed and optimized Postgres relational database. 

More details about the text processing pipeline used and comparison against other NLP toolkits can be found in 
33

. 

Phenotype Selection 

The selected baseline phenotypes for this work have been extracted from the rule-based definitions published by the 

Electronic Medical Records and Genomics (eMERGE) 
7
 and the Observational Medical Outcomes Partnership 

(OMOP) initiatives 
34

. We selected Type 2 Diabetes Mellitus (T2DM) from, eMERGE a rule-based definition which 

is provided in pseudo-code for site-specific implementation. This rule-based definition has been validated at the 

development institution via chart review, and iteratively revised and validated for quality control over multiple sites.  

In the OMOP initiative, phenotypes or health outcomes of interest (HOI) are defined by systematically reviewing 

published literature on diagnostic criteria, operational definitions, coding guidelines and validation studies for 

phenotypes. These definitions are then applied via SQL queries to an observational database, validation of results is 

then evaluated, and finally the best practices for the HOI definitions are published. In total, both eMERGE and 

OMOP have over 30 phenotype definitions each, all available to the public for free. 

Experimental setup 

Since APHRODITE combines two previously published approaches, we evaluate our framework's performance 

against the results by
2
. By reusing the same patient data as the original effort, we compare performance of the 

OHDSI CDM implementation to the original method devised in
2
. Since Anchor learning was developed at a 

different site using different data, we just demonstrate a comparison of its performance when using Stanford data 

and improvement over the baseline performance of the models built from imperfectly labeled data. 

Rule-based phenotype definitions 

In Agarwal et al.
2
 the authors implemented rule-based definitions for T2DM and MI as SQL queries on Stanford's 

data extract. These results for the rule-based phenotype implementation are used as a baseline.  

Noisy-labeled training set 

Using APHRODITE, we create a noisy labeled a training set for each phenotype based on the absence or presence of 

medical concepts that are intuitively related to the respective phenotypes. Textual mentions found in clinical notes 

cannot be stored directly in the OHDSI CDM. Therefore, we look for text-derived concepts stored in the 
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Observations or Conditions table that represent the phenotypes. This is the main difference between APHRODITE 

and the original XPRESS framework. The term mentions are extracted as described in 
33

 and then mapped to OHDSI 

standard concepts via UMLS unique concept identifiers (CUI) and text-matching using the Usagi 
35

 tool and regular 

expressions. The concept space used by the OHDSI common data model is a subset of the UMLS. 

In the basic APHRODITE setup (without using anchors), this is the only step at which human supervision is 

required as there is manual curation step required for selecting keywords/concepts to perform the labeling step for 

the training data, as well as exclusion keywords/concepts. For this work we used a modified version of the keyword 

lists used by 
2
 that is mapped to OHDSI concepts restricted to the Observations and Conditions domain. Once the 

terms and concepts are chosen, the labeling step (Figure 1 - step 1) is done automatically by APHRODITE. At 

Stanford, we find 28,451 ‘noisy labeled’ potential cases for T2DM and 29,912 potential cases for MI.  

Clinician reviewed gold-standard sets used for evaluation 

We used a set of clinician reviewed records for evaluation in site A. This evaluation set was constructed by having 

five clinicians review patient charts and label them as cases (phenotype is present) and controls (no phenotype is 

present). Each record was voted a case (or control) if two clinicians agreed, and a third clinician approved as 

indicated in
2
. We ensure that the potential cases and controls found in the noisy-labeled sets are completely disjoint 

from this manually reviewed evaluation set.  

APHRODITE configuration 

In order to perform the evaluation we randomly sample patient records for each of the two phenotypes. We select 

750, 1,500 and 10,000 'noisy-labeled' cases from the previously extracted training set and select 750, 1,500 and 

10,000 patients as controls. Both these sets of patient records completely disjointed from the gold-standard and each 

other. In terms of features used, we used all measurements, drug exposures, conditions and observations available 

from the Stanford patient data in OHDSI CDM format. These unstructured and structured data sources directly 

correspond to the laboratory test results, prescriptions, diagnosis codes and note terms (extracted from the free-text 

and mapped into concepts). The conditions, drug exposures and diagnoses are used by normalizing their counts and 

the measurements are broken down into categories (low/high or normal/abnormal) and then normalized as well. 

The total number of features we obtained for MI was 21,311 for MI and 20,451 for T2DM. The feature space is 

smaller than described in the original work in 
2
 due to the fact that the OHDSI vocabulary contains less concepts 

than available concepts for the original study and the lack of direct mappings of some measurements into the 

OHDSI standard vocabulary. We then trained and evaluated a L1 penalized logistic regression model for each 

phenotype using 5-fold cross-validation. APHDRODITE uses the R Package caret 
36

 that provides  interfaces to the 

glmnet 
37

 and RandomForest 
38

 packages.  

Experimental Results 

We characterize performance in multiple ways. First we show the performance of the rule-based phenotype 

definitions, and the misclassification rate of the noisy labeling process using the gold standard. We then continue to 

show the performance of the models trained using the imperfectly labeled training data and compare the resulting 

models with XPRESS
2
. Finally, the performance of the models is also evaluated against the clinician-reviewed gold 

standard. In addition, we demonstrate how the use of anchors improves the quality of the models. All our analyses 

use the rule-based phenotype definitions as the baseline comparison found mentioned in italics.  

Speed of phenotype model creation 

From patient data extraction to model building, APHRODITE took 2.5 hours to run for both phenotypes with the 

patient data extraction being the most time consuming step. In comparison, the manually curated phenotype for 

T2DM from PheKB was reported to take several months to develop as reported by 
2
. 

Quality of the noisy labeling process 

We compare the ability of the keywords used to create the training data to correctly identify patients in the set of 

chart reviewed gold-standard patients (both positive and negative controls) for site A. Table 1 shows the mean 

classification accuracy and positive predictive value (PPV) of potential patients flagged by APHRODITE as having 

the respective phenotype, against the true and negative cases in the gold-standard. None of the gold-standard 

patients were used to derive the set of keywords used. The performance of the rule-based phenotypes taken from 

OMOP and PheKB is usually pretty high given the fact that those definitions have been through a specialized 

curation process over several months and multiple institutions, making them very accurate and with a high PPV. 
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Table 1. Performance of noisy labeling process 

  Cases Controls Accuracy Recall PPV Cases Controls Accuracy Recall PPV 

Source Myocardial Infarction (MI) Type 2 Diabetes Mellitus (T2DM) 

OMOP / PheKB Definition2 94 94 0.87 0.91 0.84 152 152 0.92 0.88 0.96 

XPRESS Noisy labels 2 94 94 0.85 0.93 0.8 152 152 0.89 0.99 0.81 

APHRODITE Noisy labels 94 94 0.94 0.87 1.00 152 152 0.91 0.98 0.87 
 

As seen in Table 1, the APHRODITE assigned noisy labels show comparable results to the baseline results (OMOP 

and PheKB definitions). Besides accuracy and PPV, we also report that for the MI and T2DM phenotypes our noisy 

labeling procedure showed specificity of 0.98 and 0.85 respectively. These results show that our labeling process is 

able to assign case and control labels with close enough accuracy as a rule-based phenotype definition. The goal at 

this point is to quickly derive a set of keywords that allow us to label a set of patients for training with high PPV and 

specificity. A very interesting thing we find is that the APHRODITE noisy labels for MI have a perfect PPV. In our 

evaluation we found that we had no false positives when comparing the labeled set against our gold standard 

negative cases. While this happens with Stanford data, for this particular phenotype, there is no guarantee and most 

likely will not happen at any other OHDSI site, since it is very closely tied to how we mapped our clinical text 

extracted concepts into the OHDSI vocabulary. In fact this result provides a great rationale to why it is necessary to 

try to share models rather than just keywords between sites. If we shared our keyword list, it is unlikely to have a 

perfect PPV at another site; whereas the models will have a better underlying foundation based on other features 

found in the data that help identify patients as a certain phenotype. Table 2 shows the first 5 keywords used for 

labeling each phenotype. 

Table 2. First 5 noisy labeling keywords 

Myocardial Infarction (MI) Type 2 diabetes mellitus (T2DM) 

Old myocardial infarction Type 2 diabetes mellitus with hyperosmolar coma 

True posterior myocardial infarction Type 2 diabetes mellitus 

Myocardial infarction with complication Pre-existing type 2 diabetes mellitus 

Myocardial infarction in recovery phase Type 2 diabetes mellitus with multiple complications 

Microinfarct of heart Type 2 diabetes mellitus in non-obese 
 

Upon close inspection of Table 2, we find that multiple concept names are the same, all of these are kept. We do so 

because the OHDSI vocabulary covers multiple medical ontologies that have the same concept names and different 

sites may use different ones depending on their mapping practices (using SNOMEDCT vs MeDRA). 

Evaluating concordance of “noisy” label usage 

We evaluate the concordance of the modeling results found in 
2
 with the models built on APHRODITE. From the 

28,451 ‘noisy labeled’ potential cases for T2DM and 29,912 potential cases for MI, we select a random sample of 

750, 1,500 and 10,000 patients as training cases. We select an equal number of controls via random sampling from 

the patients without the phenotype associated key words, and then build our classification models, using those cases 

and controls. We used a L1 penalized logistic regression model for each phenotype using 5-fold cross-validation. 

Table 3 presents the model performance for APHRODITE and, for reference, the original performance of XPRESS. 

Table 3. Performance of classifiers trained with noisy labeled training data 

  Cases Cont. Acc. Recall PPV Acc. Recall PPV 

Myocardial Infarction (MI) Type 2 Diabetes Mellitus (T2DM) 

XPRESS 2 750 750 0.86 0.89 0.84 0.88 0.89 0.87 

APHRODITE 750 750 0.9 0.92 0.89 0.89 0.92 0.87 

APHRODITE 1,500 1,500 0.9 0.93 0.9 0.91 0.93 0.88 

APHRODITE 10,000 10,000 0.91 0.93 0.91 0.92 0.94 0.89 
 

When interpreting the performance of the models built using the noisy labels, it is important to note that no gold-

standard patients have been used to build the models and the accuracy and PPV is evaluated on a held out set of 

noisy labeled candidate patients that were not used in training.  Here we again show comparable performance 

between XPRESS and APHRODITE built model and the baseline phenotype definitions. This evaluation is 

presented to demonstrate that performance of the models developed using both frameworks is comparable even after 

the design changes needed while implementing APHRODITE to use the OHDSI data model. It is worth mentioning 
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that the sets of patients used on both frameworks are completely disjoint. We also observe that using more data to 

learn the models marginally improves performance. 

Performance of classifiers trained with noisy labeled data on a gold-standard test set 

Assessment of the performance of APHRODITE models using our gold-standard patients, demonstrates that 

APHRODITE makes available for the OHDSI data network the same proof-of-concept framework presented in 
2
. 

Table 4. Performance assessment of classifiers trained with noisy labeled training data using a gold-standard 

  Cases Cont. Acc. Recall PPV Cases Cont. Acc. Recall PPV 

Source Myocardial Infarction (MI) Type 2 Diabetes Mellitus (T2DM) 

OMOP/PheKB definition 2 94 94 0.87 0.91 0.84 152 152 0.92 0.88 0.96 

XPRESS 2 94 94 0.89 0.93 0.86 152 152 0.89 0.88 0.9 

APHRODITE (750) 94 94 0.91 0.93 0.90 152 152 0.91 0.95 0.88 

APHRODITE (1,500) 94 94 0.92 0.93 0.91 152 152 0.92 0.95 0.89 

APHRODITE (10,000) 94 94 0.92 0.94 0.91 152 152 0.93 0.96 0.89 
 

As shown on Table 4, the APHRODITE models can identify cases almost as well as the rule-based definitions for 

phenotyping and can do so better than the XPRESS models. APHRODITE presents modest improvement over 

XPRESS in classification accuracy and PPV for the MI phenotype and just in accuracy for the T2DM phenotype. 

Table 4 also shows that the APHRODITE models built with more ‘noisy labeled’ training data have a small 

performance increase, showing the advantages of learning with more data (when available). The results presented on 

Tables 1, 2 and 4 suggest that it is feasible to train good classifiers using noisy labeled training data. In the next 

section we demonstrate the use of anchors learning to improve the model’s performance.  

Model improvement using anchors 

The keyword based labeling approach implemented in APHRODITE allows the noisy labeling procedure to use 

Condition and Observation concepts from the OHDSI vocabulary. By using Anchors we expand this labeling 

heuristic to use other types of features as keywords, specifically those found in the OHDSI CDM such as drug 

exposures and measurements. To learn potential anchors
3
, APHRODITE builds a L1 penalized logistic regression 

model for the target phenotype using 5-fold CV and presents the user with a list of possible anchors based on the 

top-k features found in the patient data. If no further improvements are needed, models can now be shared. 

As discussed in section: Building an imperfectly labeled cohort, the user then reviews this, using his or her domain 

expertise to evaluate whether some of these features might be suitable to use as anchors. A good anchor is a feature 

whose value is conditionally independent of the values of all other features given the true (unknown) value of the 

phenotype. A subset of the anchor suggestions are then used to expand the set of keywords, and the model is 

retrained resulting in the final APHRODITE model. 

Tables 5 shows the top-20 features. We determined that a set of 14 features for MI and 12 for T2DM would be good 

candidates as anchors. The greyed and italicized terms are features we decided would not be appropriate for anchors. 

Specifically, in Table 5, we find very interesting anchors that are not directly related to the MI keywords used for 

noisy labeling, such as palpitations, hypercholesterolemia and prescription drugs such as clopidogrel which is used 

to treat heart problems, and zolpidem which has been shown to sometimes to cause heart attacks. This shows the 

power of finding anchors to improve our models. For the T2DM phenotype, Table 5 shows some laboratory test 

results (row 1, 2, 14 and 15) that are related to T2DM patients that we choose to use as anchors. 

Table 5. Anchors suggested for the MI phenotype and T2DM phenotype 

Myocardial Infarction (MI) Type 2 diabetes mellitus (T2DM) 

Source 
importance /  

rank 
concept_name Source 

Importance / 

rank 
concept_name 

obs 1.9036 1 Renal function lab 0.5637 1 
Serum HDL/non-HDL cholesterol ratio 

measurement 

obs 1.8554 2 Every eight hours lab 0.5466 2 Glucose measurement 

obs 1.7831 3 Chest CT obs 0.5328 3 Lipid panel 

obs 1.7108 4 Cataract obs 0.5156 4 Asthma 

obs 1.6386 5 Hypercholesterolemia obs 0.4984 5 Diabetes mellitus 

obs 1.5663 6 Osteopenia lab 0.4778 6 Hyaline casts 

obs 1.4699 7 Palpitations obs 0.4675 7 Pulmonary edema 
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obs 1.3735 8 Commode obs 0.4366 8 Obesity 

obs 1.3012 9 Tightness sensation quality obs 0.4228 9 Hypoglycemia 

obs 1.253 10 Afternoon obs 0.3987 10 Metformin 

obs 1.012 11 Deficiency obs 0.3816 11 Duplex 

drugEx 0.8916 12 ferrous sulfate obs 0.3712 12 Palpitations 

drugEx 0.7711 13 Dobutamine visit 0.3541 13 Obesity 

obs 0.7229 14 Fibrovascular lab 0.3334 14 Glucose 

lab 0.5542 15 
Sodium [Moles/volume] in 

Blood 
lab 0.3059 15 Hemoglobin A1c 

drugEx 0.4819 16 clopidogrel obs 0.2784 16 Subclavicular approach 

lab 0.3855 17 Lactic acid measurement obs 0.2303 17 Colonoscopy 

obs 0.3133 18 Pressure ulcer obs 0.2131 18 Cholesterol 

drugEx 0.1928 19 zolpidem drugEx 0.1925 19 Insulin, Regular, Human 

obs 0.0964 20 
Aspirin 81 MG Enteric Coated 

Tablet 
drugEx 0.0206 20 Oxycodone 

 

Table 6 shows how the combination of using noisy labels and anchors improves the classifier accuracy of both the 

MI and T2DM phenotypes. Note that a review of suggested anchors can be used to identify violations of the 

conditional independence assumption that could be leading to worse performance. For example, features number 2, 

8 and 10 in Table 5 (for MI) are clearly artifacts of how the Stanford data was mapped to the OHDSI CDM format. 

While these features are highly predictive of the noisy label assignment, they do not make sense clinically. We 

hypothesize that these features represent violations of the conditional independence assumption, and that these 

features are highly weighted because they often co-occur with the keywords used to create the noisy labels, not 

because of their utility in predicting the underlying phenotypes. Building upon this observation, we modify the 

feature vectors, removing any feature from the top-20 which we identify not to be an anchor based on clinical 

knowledge. As we show in Table 6 (last row for each phenotype), we find that doing so improves performance 

further. The combination of using additional keywords to expand the set of positive examples and the modification 

of the feature set by removing misleading features results in improvements in both PPV and accuracy. 

Table 6. Performance results for anchored experiments 

  Cases Cont. Acc. Recall PPV Cases Cont. Acc. Recall PPV 

Myocardial Infarction (MI) Type 2 Diabetes Mellitus (T2DM) 

OMOP/PheKB definition 2 94 94 0.87 0.91 0.84 152 152 0.92 0.88 0.96 

XPRESS 2 94 94 0.89 0.93 0.86 152 152 0.89 0.99 0.9 

APHRODITE 94 94 0.91 0.93 0.9 152 152 0.91 0.98 0.88 

APHRODITE (Anchors) 94 94 0.92 0.97 0.89 152 152 0.92 0.95 0.9 

APHRODITE (Anchors + features 

mod) 
94 94 0.93 0.96 0.91 152 152 0.93 0.95 0.91 

 

Identifying useful feature types 

Since the number of features used to build predictive models using patient data ranges between a couple hundred to 

several thousands, there has been discussion over which portions of the patient record to use or how to perform 

feature engineering to reduce the number of features. In this section we evaluate how dropping certain sections of 

the feature space impacts performance in APHRODITE and the anchor selection process. Table 7 showcases the 

baseline experiments of Table 6 after excluding specific sections of the EHR data during model building. We 

exclude observations when we remove the text features extracted from the clinical notes, we exclude labs when we 

remove the laboratory test results, drugs when we remove all prescription data and visits when we remove all coded 

procedure/diagnosis data. 

Table 7. Performance results for data removal experiments 

  Cases Cont. Acc. Recall PPV Cases Cont. Acc. Recall PPV 

Source Myocardial Infarction (MI) Type 2 Diabetes Mellitus (T2DM) 

APHRODITE 94 94 0.91 0.93 0.9 152 152 0.91 0.98 0.88 

Observations removed 94 94 0.75 0.84 0.78 152 152 0.67 0.76 0.71 

Labs removed 94 94 0.87 0.85 0.82 152 152 0.69 0.78 0.72 

Drugs removed 94 94 0.85 0.85 0.82 152 152 0.83 0.9 0.84 

Visits removed 94 94 0.89 0.88 0.86 152 152 0.86 0.91 0.86 
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APHRODITE w Anchors 94 94 0.92 0.97 0.89 152 152 0.92 0.95 0.9 

Observations removed 94 94 0.77 0.89 0.79 152 152 0.7 0.77 0.73 

Labs removed 94 94 0.89 0.88 0.81 152 152 0.71 0.79 0.75 

Drugs removed 94 94 0.86 0.87 0.84 152 152 0.86 0.91 0.85 

Visits removed 94 94 0.91 0.9 0.87 152 152 0.88 0.9 0.84 

APHRODITE w Anchors (feat. mod.) 94 94 0.93 0.96 0.91 152 152 0.93 0.95 0.91 

Observations removed 94 94 0.76 0.87 0.77 152 152 0.74 0.8 0.76 

Labs removed 94 94 0.87 0.84 0.86 152 152 0.75 0.83 0.77 

Drugs removed 94 94 0.86 0.86 0.82 152 152 0.88 0.92 0.87 

Visits removed 94 94 0.91 0.91 0.89 152 152 0.89 0.92 0.86 
 

With over 20,000 features (on average) the regular APHRODITE models with and without anchors perform the best, 

but with very close performance to the models that exclude the visits data. For the phenotypes we present, this 

indicates that most of the coded data is not particularly useful in making the phenotype assignments. It is also quite 

evident that removing the text features (observations) results in nearly a 15% drop in accuracy demonstrating that 

access to the unstructured portions of the medical record is crucial for the success of training phenotype models with 

imperfectly labeled training data.  

Conclusions 

We have successfully implemented the framework proposed by Agarwal et al.
2
 and the Anchor learning framework 

by Halpern et al.
3
 to build and refine phenotype models using imperfectly labeled training data. We have 

demonstrated that it is possible identify anchors during the model building process to generate a better labeled 

training set which leads to a better performing model than just using keyword for noisy labeling (Table 6). 

Our main contribution is the APHRODITE package, which allows for the potential redistribution of locally 

validated phenotype models as well as the sharing of the workflows for learning phenotype models at multiple sites 

of the OHDSI data network. With the potential availability of 650 million patients in the data network, phenotype 

models can be built and refined to reach a broader population with relative ease and can be mostly data-driven with 

minimal expert input. 

With the open-source availability of APHRODITE at 
39

 we have laid the foundation for members of the OHDSI data 

network to start building electronic phenotype models that leverage machine learning techniques and go beyond 

traditional rule based approaches to phenotyping.  
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