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Abstract: Parkinson’s disease (PD) usually presents in older adults and typically has both motor and
non-motor dysfunctions. PD is a progressive neurodegenerative disorder resulting from dopamin-
ergic neuronal cell loss in the mid-brain substantia nigra pars compacta region. Outlined here is
an integrative medicine and health strategy that highlights five treatment options for people with
Parkinson’s (PwP): rehabilitate, therapy, restorative, maintenance, and surgery. Rehabilitating begins
following the diagnosis and throughout any additional treatment processes, especially vis-à-vis
consulting with physical, occupational, and/or speech pathology therapist(s). Therapy uses daily
administration of either the dopamine precursor levodopa (with carbidopa) or a dopamine ago-
nist, compounds that preserve residual dopamine, and other specific motor/non-motor-related
compounds. Restorative uses strenuous aerobic exercise programs that can be neuroprotective.
Maintenance uses complementary and alternative medicine substances that potentially support and
protect the brain microenvironment. Finally, surgery, including deep brain stimulation, is pursued
when PwP fail to respond positively to other treatment options. There is currently no cure for PD. In
conclusion, the best strategy for treating PD is to hope to slow disorder progression and strive to
achieve stability with neuroprotection. The ultimate goal of any management program is to improve
the quality-of-life for a person with Parkinson’s disease.

Keywords: Parkinson’s disease; neurodegenerative disorder; substantia nigra; carbidopa/levodopa;
anti-inflammatory; antioxidants; integrative medicine; older adults; motor and non-motor symptoms

1. Introduction

It is estimated that one million people in the United States are living with Parkinson’s
disease (PD), with approximately 60,000 new cases diagnosed nationally each year [1–5].
The global prevalence of PD is believed to be up to 10 million people. PD symptoms occur
due to the progressive loss of dopamine-producing neurons in the substantia nigra pars
compacta region of the brain. Symptoms typically occur gradually over several years,
making diagnosis challenging [5]. PD is traditionally characterized as a motor system
disorder with four cardinal symptoms: bradykinesia (slowness of movement); rigidity
(stiffness of the limbs and trunk); postural instability (impaired balance and coordination);
and tremor (trembling in hands, arms, legs, and face) [6–9]. Though not as visible as these
motor symptoms, non-motor symptoms are also experienced by many PwP as a part of
their disease. The most common non-motor symptoms of PD include constipation, urinary
dysfunction, depression, psychosis, apathy, and sleep disorders [9–12].

PD occurs most commonly in people aged over 60 years old [5]. In this group, most
cases of PD occur sporadically and due to etiologies including neuroinflammation and
oxidative stress, dysfunction of the innate and/or adaptive immune systems, mitochondrial
activity disruption, genetic mutation, intracellular protein denaturation and aggregation,
and environmental factors [1–5]. Interestingly, cases of PD in younger people are usually
linked to particular genotypes [13]. At present, PD remains an incurable disease. As such,
treatment goals in PD management center on slowing or halting disease progression [1,14].
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The complexity of the factors that contribute to the development of the major sporadic
form of PD demands a multi-pronged therapeutic intervention and plan to halt or slow PD
progression. Accordingly, this review aims to describe a comprehensive and integrative
treatment protocol for PD.

2. Treatment Plan for PD

The traditional approach for treating PD typically begins with a pharmacologic
dopamine replacement strategy [1,5,14,15]. The first line for such therapy is either daily oral
carbidopa/levodopa or a dopamine agonist. Some drugs prolong the lifetime of endoge-
nous dopamine. Either along with or alternative to dopamine replacement, complementary
and alternative medicine (CAM) and integrative medicine approaches are used by many
to improve brain and overall health in PwP [16–21]. Lifestyle modifications can provide
therapeutic benefits, as different forms of strenuous aerobic exercise are neuroprotective,
on top of the general quality-of-life (QoL) benefits offered by regular exercise [10,12,22–42].
PD is a complicated disorder such that two PwP might have different symptoms with
varied rates of progression and likely follow different treatment strategies, despite diag-
nosis with the same disease. Non-motor symptoms are prevalent in PD. Thus, PwP must
communicate clearly with their healthcare team to address these issues and treat PD’s
motor and non-motor symptoms.

The treatment plan described here incorporates these aforementioned traditional and
non-traditional approaches that could help keep PD from progressing. The treatment
strategy complements these options with an initial rehabilitation program to carefully
assess and address PD before beginning other treatment options and with surgery, in cases
where PD has resisted management by the other treatment options. Each of the five steps of
this treatment plan for PD offers a comprehensive healthcare strategy and therapy that has
been studied or found to be effective in either human or rodent animal studies. Described
here is an integrative medicine and health strategy for PD that features five treatment
options: rehabilitate, therapy, restorative, maintenance, and surgery (Figure 1).

2.1. Rehabilitate Options for Treating PD

Before PwP begin pharmacological therapy for PD, movement disorder specialists are
likely to recommend PwP visit a physical therapist, occupational therapist, or a speech
pathology therapist. The goal of such consultation would be to begin management of some
of the altered motor symptoms. The reduction of dopamine in PD typically softens the
voice and limits the body movements of PwP. Two programs called LSVT-LOUD [43–45]
and LSVT-BIG [31,46–48] are directly targeted to helping the PwP speak louder and make
larger movements, respectively.

The majority of PwP have speech/voice dysfunction negatively impact communica-
tion. LSVT (Lee Silverman Voice Treatment)-LOUD enhances the voice, increases vocal
loudness (by improving articulation, vocal quality, and intonation), and positively alters
PwP functional skills communication [43–45]. PwP also typically have a movement that is
slow (bradykinesia) and hesitant (akinesia) with smaller amplitude (hypokinesia). LSVT-
BIG uses intensive exercises of large-amplitude movements to overcome bradykinesia
and hypokinesia in PwP [31,46–48]. Furthermore, LSVT-BIG yields movement focused on
amplitude, resulting in bigger, faster, and increased movement precision.

LSVT-LOUD and LSVT-BIG require a neurologist trained to administer the programs,
as are the physical therapist (LSVT-BIG) and speech pathology therapist (LSVT-LOUD)
certified to oversee them. Both programs are for one hour per day, four days/week, for
a total of four weeks. Afterwards, PwP can use these exercises from each program to
continue on their own. While there are other programs that provide similar assistance,
LSVT-LOUD [43–45] and LSVT-BIG [31,46–48] pioneered these programs specifically to
help rehabilitate PwP [49].
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Figure 1. Treatment options for PD. As depicted, this PD-directed integrative and health strategy
features five areas where intervention can be used to manage the numerous symptoms of PD. A
treatment example from each category is given. Although drawn as a stepwise progression from
A–E, this is not suggesting that PwP engage all five treatment options at all or in order of their
presentation (Figure 1). Treatment option A (Rehabilitate) is considered a reversible entry and exit
point to the treatment wheel described by options B (Therapy), C (Restorative), D (Maintenance),
and E (Surgery). Please note that the various treatment options are not isolated silos that can only
be accessed after fulfilling the prior treatment option. It is more likely that PwP, with guidance
and advice from movement disorder neurologists, would likely use several components found in
treatment options A–D that may change as their disorder progresses before possibly moving finally
to option E (Surgery). Post-surgery-PD patients, assuming a successful response to surgery and
under continual guidance from their medical team, would re-engage the A–D treatment options.
Furthermore, aspects of the Therapy, Restorative, and Maintenance treatment options overlap and
complement one another to develop an effective PD treatment plan.

An essential feature of rehabilitation is regular exercise. As mentioned above, many
of the motor defects associated with PD cause stiffness, impaired balance, and slow move-
ment. Under the ongoing guidance of their movement disorder neurologists, PwP should
develop a regular exercise routine that incorporates stretching, movement, strength train-
ing, and aerobic exercise. There are many well-trained physical therapists with expertise in
exercise-specific routines for PD. There are also numerous exercise modalities that PwP
use to improve their QoL, including PWR!Moves, Rock Steady Boxing, and Dance for PD
programs, power walking with poles, stationary biking, tai chi, and yoga [8,16,22,24,50–52].
Thus, rehabilitation therapy should be utilized throughout all stages of the disorder.

2.2. Therapy Options for Treating Motor Symptoms of PD

Dopamine has the chemical structure of 3,4-dihydroxyphenethylamine and is a
member of the catecholamine and phenethylamine molecular families [53]. Like other
neurotransmitters, dopamine delivers messages throughout the central nervous system
(CNS) [54]. Dopamine is a derivative of the amino acid tyrosine (Tyr), where the enzyme
tyrosine hydroxylase converts Tyr to levodopa (DOPA) [53,54]. From there, DOPA decar-
boxylase removes carbon dioxide from DOPA to produce dopamine [53,54]. The structures
of dopamine and its precursors and some dopamine-regulating therapeutics are shown in
Figure 2.
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Figure 2. Structures of some of the key molecules involved in dopamine synthesis, drug therapy,
and PD.

Table 1 gives a list of the majority of drugs approved by the FDA that are avail-
able to treat the motor symptoms of PD [55]. As PD is first and foremost a disorder of
dopamine deficiency, dopamine replacement remains the standard therapeutic aim [56].
The combination of levodopa with carbidopa, an aromatic L-amino acid decarboxylase
inhibitor, provides the most significant amount of symptomatic relief with the least adverse
side-effects in treating PD [57,58]. The addition of carbidopa prevents the conversion of
levodopa (i.e., DOPA) to dopamine in peripheral tissues, allowing for a successful trans-
port of levodopa to the CNS [14]. Interestingly, the blood-brain barrier allows levodopa
access into the CNS but denies entry to both dopamine and carbidopa (compare molecular
structural differences in Figure 2). There are multiple formulations for carbidopa/levodopa
tablets (Table 1). Alternatively, Duodopa is a continuously infused intrajejunal gel of
carbidopa/levodopa [59]. Additionally, subcutaneous infusion of carbidopa/levodopa
is under evaluation [60,61]. The major side-effects of carbidopa/levodopa are the devel-
opment over time of dyskinesia and fluctuating ‘off-on’ periods of effectiveness [5]. The
potential neurotoxicity of carbidopa/levodopa has been suggested [62]. However, Ahlskog
recently reviewed and refuted the evidence that carbidopa/levodopa is neurotoxic [63].
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Table 1. Therapeutic Options for Treating the Motor Symptoms of Parkinson’s Disease.

Type Compound Drug Name Brand Name Additional Description

Dopamine replacement Carbidopa/Levodopa

Sinemet IR, Sinemet CR,
Rytary, Duopa Sustained-release capsules

Rytary

Duopa Enteral suspension in jejunum

Inbrija Enhaled powder of Levodopa
alone (no carbidopa)

Dopamine agonist (DA)

Apomorphine
Apokyn Nonergoline receptor

Kynmobi antagonist

Pramipexole
Mirapex

Stimulates D2 dopamine receptors
Mirapex ER

Ropinirole
Requip

Stimulates D2 dopamine receptor
Requip XL

Rotigotine Neupro Transdermal patch

MAO-B Inhibitors

Selegiline
Eldepryl

Blocks the breakdown of
dopamine

Zelapar

Rasagiline Azilect

Safinamide Xadago

COMT Inhibitors

Opicapone Ongentys
Catechol-O-methyl- transferase
(COMT) inhibitors make more

levodopa available for transport
across the BBB

Entacapone Comtan

Carbidopa, levodopa, and Entacapone Stalevo

Tolcapone Tasmar

Anticholinergic
Trihexyphenidyl

Cogentin Provides relief from tremor
Benztropine mesylate

Anti-influenza drug Amantadine

Symmetrel
Provides relief for most motor

symptoms, but effect is short-term.Gocovri

Symadine

Dopamine agonists mimic dopamine by binding to dopamine receptors in the CNS.
They are used as a monotherapy for many PwP early in the treatment of their disease [64].
The original drug used to treat PD is apomorphine injection, a dopamine agonist, which is
comparable in effect to levodopa but it has a shorter duration time [65]. Dopamine agonists
are also frequently paired in combination with carbidopa/levodopa, especially as a “bridge”
to stabilize the on–off periods PwP may experience on long-term carbidopa/levodopa
therapy [1,14]. There are multiple dopamine agonists with both immediate- and extended-
release forms (Table 1). There are several troubling side-effects that a minority of PwP
encounter with dopamine agonists, mostly centered around impulse control disorders (e.g.,
pathologic gambling, shopping, internet use, and hypersexuality) [1,14].

Monoamine oxidase B (MAO-B) inhibitors are substances that inactivate the enzyme
responsible for the inactivation of dopamine [66]. The MAO-B inhibitors Selegiline and
Safinamide are used adjunctively with carbidopa/levodopa while Rasagiline is used either
as monotherapy or in concert with carbidopa/levodopa (Table 1) [5]. MAO-B inhibitors
may provide relief from symptoms as they help regulate the degradation of dopamine in
peripheral tissue, which leads to increased half-life and availability of levodopa in the CNS.
The SELEDO (from Selegiline plus Levodopa) study was a 5-year trial to assess the potential
advantage of combining Selegiline and Levodopa in PD [67]. In treating early-stage PD,
the combination of Selegiline and Levodopa was better than Levodopa alone.

Inhibitors of cathecol-O-methyl transferase (COMT) enzymes prevent the processing
of levodopa to 3-O-methyldopa [68,69]. COMT inhibitors increase the half-life of levodopa,
allowing more levodopa remain in the patient’s CNS for a longer period of time. Sim-



Biomolecules 2021, 11, 612 6 of 17

ilar in concept to the MAO-B inhibitors but different in mechanism, COMT inhibitors
preserve levodopa in PwP experiencing motor fluctuations with carbidopa/levodopa
therapy. Similar to MAO-B inhibitors, COMT inhibitors can be used adjunctively with
carbidopa/levodopa [1,5].

The history behind the use of Amantadine in PD is fascinating [70,71]. Amantadine
was made and used initially as an anti-influenza medication. It turns out that PwP taking
Amantadine to prevent the flu showed better control over their tremor. Amantadine
provides help with most PD motor symptoms and it might be useful in PwP who have a
prominent tremor or levodopa-induced dyskinesia.

2.3. Therapy Options for Treating Non-Motor Symptoms of PD

PD can also be considered a neuropsychiatric disorder [72]. Several neuropsychiatric
symptoms are related to emotional and cognitive problems [73]. The neuropsychiatric
symptoms are a significant disruption that contributes to disability in PwP [74,75]. There
are symptoms related to the disease itself, including apathy, depression, and anxiety [76,77].
These non-motor symptoms are frequently present in the earliest PD stages, even preceding
the origination of the motor symptoms. This suggests that both non-motor and motor-
related symptoms of PD are associated with reduced dopaminergic production.

The second type of PD neuropsychiatric symptoms exists as a side effect of dopamin-
ergic replacement therapy [73,78]. The impact of the medication can result in addiction,
hypomania, nocturnal hyperactivity, and punding [73,78]. Managing the non-motor symp-
toms of PD presents a challenge to the physician because they must differentiate the
contribution from medication, disorder progression, and the PD patient’s emotional state.

Table 2 lists most of the drugs approved by the FDA that are available to treat the
non-motor symptoms of PD related to depression and anxiety, excessive drooling, and
gastrointestinal problems [79–83]. Depression occurs in up to 50% of PwP at some point
during the disorder [84]. PwP with depression are typically treated with a standard
antidepressant from the class of SSRIs, SNRIs, and other similar neurotransmitter reuptake
inhibitors (Table 2). Anxiety in PD takes many forms but is generally described as feelings
of worry, panic, unease, and jitteriness [84]. Besides psychotherapy, medication options
include SSRIs, and Buspirone appears to deal with generalized anxiety effectively. The
benzodiazepine compounds are also effective at reducing symptoms of panic and worry
(Table 2).

Table 2. Therapeutic Options for Treating Non-Motor Symptoms of Parkinson’s Disease: Depression and Anxiety, Drooling,
and Gastrointestinal Problems.

Symptom/Type Compound Drug Name Brand Name Additional Description

Depression and Anxiety

Benzodiazepine

Alprazolam Xanax, Xanax XR, Niravam Anxiety and panic

Clonazepam Klonopin Anxiety and panic

Diazepam Valium Anxiety and panic

Lorazepam Ativan Anxiety and panic

Selective Serotonin Reuptake
Inhibitors (SSRI)

Fluoxetine Prozac Depression, panic, anxiety

Sertraline Zoloft Depression, panic, anxiety

Serotonin/Norepinephrine
Reuptake Inhibitors (SNRI)

Duloxetine Cymbalta Depression and anxiety

Desvenlafaxin Pristiq Depression and anxiety

Milnacipran Savella Depression and anxiety

Venlafaxine
Mirapex

Depression and anxiety
Effexor/Effexor XR
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Table 2. Cont.

Symptom/Type Compound Drug Name Brand Name Additional Description

Tricylic compounds

Amitrytiline Elavil Depression, anxiety

Imipramine Tofranil/Tofranil PM Depression, anxiety

Nortriptyline Pamelor Depression, anxiety

Additional anti-anxiety

Buspirone BuSpar General anxiety

Propanolol Inderal/Inderal LA Panic attack/anxiety

Quetiapine Seroquel Depression/anxiety

Trazodone Desyrel, Oleptro Depression/anxiety

Other anti-depressants
Bupropion

Wellbutrin SR/XL/SR/XL
Depression

Zyban

Mirtazapine Remeron/SolTab Depression

Excessive Drooling

Atropine drops Unwarranted drooling

Botulinum toxin A Xeomin Unwarranted drooling

Botulinum toxin B Myobloc Unwarranted drooling

Glycopyrrolate Unwarranted drooling

Scopolamine patch Unwarranted drooling

Gastrointestinal Problems

Constipation
Lubiprostone Amitiza Constipation

Polyethylenene glycol MiraLax Constipation

Nausea and Vomiting
Ondansetron Zofran Nausea, vomiting

Trimethobenzamide Tigan Nausea, vomiting

Sialorrhea, or excessive drooling, occurs not from making too much saliva but from
the slowing of the swallowing reflect the action that routinely happens [85]. Several
forms of treatment range from atropine drops, Botulinum toxin, and glycopyrrolate (an
oral anticholinergic) (Table 2). Constipation is a common gastrointestinal problem in
PD [86]. PwP should follow a good diet and preventative maintenance (e.g., drink plenty
of fluids, use dietary fiber products). Several medications can be used for treating constipa-
tion (Table 2), but Reglan, Compazine, and Phenergan should be avoided since they are
dopamine-blocking compounds.

Table 3 gives a list of the majority of drugs approved by the FDA that are available to
treat the non-motor symptoms of PD related to dementia and psychosis, sleep disorders,
cognition, orthostatic hypotension, and urinary incontinence [79–83]. Mild cognitive
impairment that progresses to dementia is a major concern to PwP [87]. The group of
acetylcholinesterase inhibitors (Donepezil, Galantamine, and Rivastigmine) are frequently
used in treating PwP for cognitive impairment and dementia. If PwP begin experiencing
visual hallucinations or delusions, in addition to other symptoms of psychosis [88], besides
a detailed assessment by the healthcare team, Pimavanserin, Clozapine, and Quetiapine
have been used in PD. An interesting side effect of Clozapine is an anti-tremor effect in
PD [89,90].

There are many different forms of sleep disorders in PD [91]. Sleeping disorders can
range from poor tremor control and reduced bed mobility, restless leg syndrome, insomnia
and rapid-eye-movement (REM)-sleep behavior (RBD). A related and frequent coexisting
problem in PD is obstructive sleep apnea, which is evaluated by an overnight evaluation
in a sleep laboratory. Combined with sleeping disorders is a widespread occurrence of
excessive daytime sleepiness. The healthcare team will carefully assess treatment strategies
to describe the sleeping history of the PD patient.
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Table 3. Therapeutic Options for Treating Non-Motor Symptoms of Parkinson’s Disease: Dementia and Psychosis, Sleep
Disorders, Cognition, Orthostatic Hypotension, and Urinary Incontinence.

Symptom/Type Compound Drug Name Brand Name Additional Description

Dementia

Acetylcholinesterase Inhibitors

Donepezil Aricept Dementia

Galantamine Razadyne/ER Dementia

Rivastigmine Exelon, Exelon Patch Dementia

Psychosis

Clozapine Clozaril, FazoClo Hallucinations/Psychosis

Pimavanserin Nuplazid Hallucinations/Delusions

Quetiapine Seroquel, Seroquel SR Hallucinations/Psychosis

Sleeping Disorders

Amitriptyline Elavil Insomnia

Clonazepam Klonopin REM Sleep Behavior Disorder

Doxepin Silenor Insomnia

Eszopicione Lunestra Insomnia

Melatonin Insomnia

Mirtazapine Remeron Insomnia

Trazadone Desyrel Insomnia

Cognition and Daytime Sleepiness

Methylphenidate

Concerta

Unable to focus, overly
sleepy during the day, fatigue

Daytrana Patch

Metadate CD

Methylin

Ritalin, Ritalin LA/SRF

Memantine Namenda PD related dementia

Modafinil Provigil Unable to focus, sleepy during the day

Orthostatic Hypotension

Fludrocortisone Florinef

Neurogenic Orthostatic HypotensionPyridostigmine Mestinon

Droxidopa Northera

Urinary Incontinence

Anticholinergics

Darifenacin Enoblex Overactive bladder

Oxybutynin Ditropan/XL, Glenique,
Oxytrol

Overactive bladder +/−
Incontinence

Solifenacin Vesicare Overactive bladder

Tolterodine Detrol/LA Overactive bladder

Beta-3-Agonist Mirabegron Mybetriq Overactive bladder

Alpha-1A blockers

Alfuzosin Uroxatral Overactive bladder, benign prostatic
hyperplasia (BPH)

Silodosin Rapaflo Overactive bladder, BPH

Tamsulosin Flomax

Terazosin

Serotonin, Norepinephrine Reuptake
Inhibitors (SNRI) Duloxetine Cymbalta Urinary incontinence from stress

Orthostatic hypotension is a significant decrease in blood pressure when someone
rises from a sitting or lying position to a standing position [92]. Orthostatic hypotension
can be enhanced by dopamine agonists and carbidopa/levodopa [93]. As mentioned above
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for sleep disorders, a careful history by the healthcare team may decide to lower the motor-
symptom medication, change in lifestyle (e.g., drink more fluids, wear support stockings)
before moving on to medications that increase blood pressure. The loss of bladder control
(urinary incontinence) and urinary urgency/frequency are relatively common issues in
PD [94,95]. There are several types of medications that help regain control of the bladder.
However, the healthcare team needs to fully assess this non-motor PD problem before
using medication to relax the bladder (e.g., exclude urinary tract infection and enlarged
prostate in men).

2.4. Restorative Options for Treating PD

One key goal for any PD treatment strategy is to achieve some form of neuroprotection.
Of the therapeutic compounds featured in Table 1, there is evidence of neuroprotection
from only Selegiline (Eldepryl, Zelapar) and Rasagiline (Azilect) in cell culture and rodent
models of PD [96]. In the DATATOP (Deprenyl and Tocopherol Antioxidative Therapy of
Parkinsonism) study, researchers showed a significant but small symptomatic benefit for
Selegine; however, it was not classified as truly neuroprotective [97,98]. Azilect was studied
in large follow-up clinical studies, named ADAGIO (Attenuation of Disease progression
with Azilect Given Once-daily) [99] and TEMPO (Rasagiline in Early Monotherapy for
Parkinson’s Disease Outpatients) [100]. Ultimately, the FDA did not give these studies
approval to label Rasagiline as neuroprotective. Thus, the long-term neuroprotective effect
for Selegiline and Rasagiline remains an open question.

The potential for exercise to be neuroprotective in PD has been widely
studied [10,12,22–42]. There is emerging evidence that neuroinflammation contributes to
the progression of PD [101,102]. Exercise is believed to help mitigate this pathogenic effect
and so has been studied as a potential therapy. Exercise studies of a mouse model of PD
found that exercise preserved remaining dopaminergic neurons and was associated with
both an increase in brain-derived neurotropic factors and a reduction of pro-inflammatory
markers [32,103–105]. Collectively, the animal results have shown that strenuous aerobic
exercise is neuroprotective in PD through the inhibition of alpha-synuclein accumulation.
Furthermore, the animal studies have suggested strenuous aerobic exercise promotes both
anti-oxidation and anti-inflammatory properties not only in the brain but systemically. Hu-
man studies have shown that moderate exercise improves QoL in PwP and that strenuous
aerobic exercise likely has a neuroprotective effect in PD [22,25,46,106,107].

Stress and mindfulness studies are beginning to demonstrate that being mindful can
substantially benefit PwP [108,109]. Exercise studies have also been performed to address
non-motor symptoms in PD [10–12,35,50]. Aerobic exercise continues to be a key treatment
in potentially being neuroprotective in PD [110,111]; however, as mentioned before, there
are several exercise routines that improve QoL in PD [8,16,22,24,50–52].

There is a growing interest in trying to understand the interplay between muscle and
bone factors synthesized in response to exercise [112–114]. Exercise has been found to promote
substances that have been termed ‘exerkines’, shown to influence homeostasis [115,116]. One
recently described exerkine is interleukin-13 (IL-13), which is produced in mouse skeletal
tissue and increases with exercise [117,118]. The impact of exercise led to the increased
synthesis of IL-13 that promoted endurance in the animal. This and other related find-
ings suggest these circulating bioactive substances may cross the blood-brain barrier and
possibly offer protection from PD and other neurodegenerative disorders.

2.5. Maintenance Options for Treating PD

With the exception of strenuous aerobic exercise, there is no known therapy or drug
treatment regimen found to slow down PD progression. In this absence of many neu-
roprotective options, numerous PwP have turned to a CAM and integrative medicine
strategy [16–21]. Such strategies aim to preserve remaining dopaminergic neurons with the
added potential to reduce neuroinflammation, maintaining PD from progressing further.
Discussed below are the potential benefit of various compounds in PD maintenance.
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There is renewed interest in understanding how vitamin D3 impacts the progression
of PD [119–122]. PwP with deficiencies in vitamin D3 have impaired motor function
and increased disease severity [120,122]. PwP with higher levels of vitamin D3 had better
cognitive performance with improved verbal fluency and verbal memory [121]. Magnesium
L-threonate has been shown to cross the blood-brain barrier and may assist dopaminergic
cell survival [123–125]. Vitamin B1 has been found to generally support cognition and
is vital for healthy nerves [126–128]. Taurine has been shown to down-regulate pro-
inflammatory microglial cells in a mouse model of PD [129–131].

The ultimate goal of CAM therapy is to help maintain the health of remaining dopamin-
ergic cells healthy in PwP. Curcumin is a well-known polyphenol with antioxidant proper-
ties [132–134]. Curcumin both inhibits NFkB and MAPK and prevents free radical damage.
Alpha lipoic acid and acetyl-L-carnitine have been shown to reverse and partially restore
mitochondrial function and reduce oxidative vulnerability in experiments using aging
mice [135–138]. This suggests that these compounds may offer benefit to the aging popu-
lation. N-acetyl-cysteine (NAC), one of the building blocks of the important antioxidant
glutathione, crosses the blood-brain barrier and reduces oxidative stress. However, NAC
also contributes to the reducing potential of the brain, as NAC is thought to be the rate-
limiting factor in the production of glutathione [139,140]. Trans-resveratrol is a potent
antioxidant capable of reducing free radicals in the environment of the brain [141,142].
Finally, melatonin regulates the sleep-wake cycle and also has been shown to protect mito-
chondria [143]. Collectively, these compounds may help preserve remaining dopaminergic
neurons in the PD brain. Their molecular structures are depicted in Figure 3.

Figure 3. Structures of the CAM maintenance compounds used for PD treatment.
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2.6. Surgery Options for Treating PD

Deep brain stimulation (DBS) is the surgery used for PD treatment typically in PwP
suffering long-term complications from carbidopa/levodopa therapy. Currently, DBS
surgery for PD is considered reversible, as brain tissue is not destroyed, stimulation can
be adjusted as the disease progresses, and DBS can be performed bilaterally without
significant increase in adverse events [144–148].

Refinement of the DBS technique has led to increased understanding of the connec-
tion between basal ganglia and PD pathophysiology [149–151]. Typically, DBS targets
three structures in the brain, specifically the thalamus, globus pallidus, and subthalamic
nucleus [144–148]. PwP are recommended for DBS surgery because of motor compli-
cations that do not respond further to medical therapy [5]. It should be noted that the
PD patient still has a good response to carbidopa/levodopa, but this is complicated by
excessive dyskinesia.

3. PD Clinical Trials in Progress and Novel (and Emerging) PD Therapies

MacFarthing et al. recently reviewed the current number of clinical trial pipelines
with a goal of either stopping, slowing, or reversing PD [152]. They found 145 registered
and ongoing clinical trials targeting PD spread out among Phase 1, Phase 2, and Phase 3.
Interestingly, 57 clinical trials are aimed at long-term disease modifying therapies while 88
clinical trials are centered on symptomatic relief. Furthermore, 50 of these clinical trials
are testing repurposed therapies [152]. One recent approved repurposed therapy is a new
inhaled version of levodopa (Inbrija), approved by the FDA in December 2018. Two such
compounds considered disease modifying therapy include Exenatide and glial cell-derived
neurotrophic factor (GDNF). Exenatide (currently there are five clinical trials) is a glucagon-
like peptide-1 receptor agonist that reduces glucose in type 2 diabetes; however, early
results suggest that Exenatide is neuroprotective in PD [152]. Based on neurorestorative
and neuroprotective effects in animal models of PD, there are currently three clinical trial
evaluating the influence of GDNF in PD [152]. This detailed review of on-going clinical
trials by MacFarthing et al. offers some encouraging results, describing a wide range of
therapeutic approaches in multiple phases of clinical testing and evaluation in PD [152].

The transplantation of neuronal cells (fetal midbrain tissue) into PD patients’ brains
has led to various stem cell therapy forms [153,154]. There are currently two clinical trials
using embryonic stem cells (ESC) therapy for PD (in Australia and China). A clinical
trial was recently started in Japan using induced pluripotent stem cell (iPSC)-derived
dopaminergic neurons [155]. Cell-based therapy offers a chance to renew and replace
dopaminergic neurons in PD; therefore, there is much interest in these necessary clinical
trials’ safety and outcome.

The red-light-helmet for treating PD is under investigation [156–158], which uses
a helmet lined with light-emitting diodes (LEDs) of wavelengths across the red to near-
infrared range (i.e., 670, 810, and 850 nm) with or without an intranasal LED device
(660 nm). Preliminary results are promising regarding improved symptoms of the tested
PwP [156–158].

4. Conclusions

PD is a complicated and chronic disorder featuring the development and progression
of both motor and non-motor defects. This review lays out a five-part management strategy
for PD. One of the confounding aspects of PD is the wide heterogeneity of patient presenta-
tions; one PwP may have had the disorder for many years with minimal symptoms while
another PwP may be newly diagnosed and experiencing significant disease progression.
Different disease presentations demand different management strategies. Hopefully, this
review may aid PwP and their care teams in developing comprehensive and personalized
management plans. In particular, it is hoped the overview provided here might help inform
how not only to manage PD symptoms but also to improve QoL for PwP.
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