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Abstract

Background: The need for early antibiotics in the intensive care unit (ICU) is often balanced against the goal of
antibiotic stewardship. Long-course antibiotics increase the burden of antimicrobial resistance within colonizing gut
bacteria, but the dynamics of this process are not fully understood. We sought to determine how short-course
antibiotics affect the antimicrobial resistance phenotype and genotype of colonizing gut bacteria in the ICU by
performing a prospective cohort study with assessments of resistance at ICU admission and exactly 72 h later.

Methods: Deep rectal swabs were performed on 48 adults at the time of ICU admission and exactly 72 h later,
including patients who did and did not receive antibiotics. To determine resistance phenotype, rectal swabs were
cultured for methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE). In
addition, Gram-negative bacterial isolates were cultured against relevant antibiotics. To determine resistance
genotype, quantitative PCR (gPCR) was performed from rectal swabs for 87 established resistance genes. Within-
individual changes in antimicrobial resistance were calculated based on culture and gPCR results and correlated
with exposure to relevant antibiotics (e.g., did -lactam antibiotic exposure associate with a detectable change in (3-
lactam resistance over this 72-h period?).

Results: Of 48 ICU patients, 41 (85%) received antibiotics. Overall, there was no increase in the antimicrobial resistance
profile of colonizing gut bacteria during the 72-h study period. There was also no increase in antimicrobial resistance
after stratification by receipt of antibiotics (i.e, no detectable increase in 3-lactam, vancomycin, or macrolide resistance
regardless of whether patients received those same antibiotics). This was true for both culture and PCR. Antimicrobial
resistance pattern at ICU admission strongly predicted resistance pattern after 72 h.

Conclusions: Short-course ICU antibiotics made little detectable difference in the antimicrobial resistance pattern of
colonizing gut bacteria over 72 h in the ICU. This provides an improved understanding of the dynamics of
antimicrobial resistance in the ICU and some reassurance that short-course antibiotics may not adversely impact the
stewardship goal of reducing antimicrobial resistance.
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Introduction

Empiric antibiotics are the main pillar of sepsis treatment
in the intensive care unit (ICU). There is a 10-42% abso-
lute increase in sepsis mortality when initial empiric
antibiotics fail to appropriately treat infecting organisms
[1-3]. Clinical guidelines recommend that broad-
spectrum, empiric antibiotics be initiated as part of a
treatment bundle within 1h of presentation with sepsis
[4], and studies suggest that outcomes may improve when
antibiotics are given as quickly as possible [5].

Balanced against the imperative for early, broad-
spectrum antibiotics is the mandate for antibiotic stew-
ardship. Using fewer or more narrow-spectrum antibi-
otics avoids drug-drug interactions, avoids antibiotic side
effects, and furthers the stewardship goal of minimizing
the emergence of antimicrobial resistance [6].

Long courses of antibiotics in the ICU are associated
with increased gastrointestinal antimicrobial resistance
[7]. The impact of short-course antibiotics on antimicro-
bial resistance in the ICU is less certain. Large structural
microbiome changes can be seen within 72 h after oral
antibiotic intake in healthy, antibiotic-naive volunteers
[8]. Whether antimicrobial resistance can emerge so
quickly following intravenous antibiotics in the ICU is
not known.

This study gathered rectal swabs from ICU patients
immediately at the time of ICU admission and 72 h later,
and compared changes in gastrointestinal antimicrobial
resistance in those who did or did not receive antibiotics
among different classes. The goal of the study was to de-
termine if short-term antibiotics adversely impact
gastrointestinal antimicrobial resistance in the ICU.

Methods

Population

A random subset of 48 patients was selected from a pre-
viously described prospective cohort parent study [9,
10]. Adults > 18 years old were eligible for the parent
study if they were emergently admitted to the ICU from
2017 to 2019 at our institution, and if rectal swabs could
be obtained within 4h of ICU admission. The parent
study gathered rectal swabs on patients at ICU admis-
sion and 72h later (+4h). This 72-h timeframe repre-
sents a common minimum period after which antibiotic
discontinuation might be considered [4]. For this study,
48 patients were selected using a random-picking algo-
rithm from 179 patients within the parent study who
had available sequenced rectal swabs from both ICU ad-
mission and 72 h later. All patients in the study had sin-
gle rooms (no roommates) and gown and glove contact
precautions were used for the duration of the study for
patients with known MRSA, VRE, C. difficile, or
extended-spectrum [-lactamase (ESBL) Gram-negative
colonization. Informed consent was obtained from all
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subjects or from appropriate surrogates when subjects
lacked capacity. The study was approved by the institu-
tional review board of Columbia University.

Study assessments

At each study assessment (ICU admission and 72h
later), samples were taken and clinical information was
gathered. Two duplicate deep rectal flocked nylon swabs
[11] were collected with the patient in the lateral decubi-
tus position, with fecal staining of swabs used to verify
adequate sampling. Demographic information, labora-
tory data, and data related to interventions performed in
the ICU between study visits were extracted from the
electronic medical record. For laboratory data, test re-
sults were used from the first venous blood draw in the
ICU (corresponding to the first study assessment) and
from a venous blood draw either at or immediately pre-
ceding the 72 h mark (corresponding to the second study
assessment). ICU interventions were recorded including
antibiotics, proton pump inhibitors, mechanical ventila-
tion, hemodialysis, and enteral feeding. Clinical and la-
boratory data were used to estimate acute severity of
illness according to the Sequential Organ Failure Assess-
ment (SOFA) score as recommended by Sepsis-3 [12].

Receipt of antibiotics

The study enrolled patients who did and did not receive
antibiotics during the initial 72 h in the ICU. Use of anti-
biotics, and which antibiotics were used, was determined
by treating ICU teams based on clinical need, without
reference to the study. Receipt of antibiotics was classi-
fied categorically, without respect to the number of
doses or route of administration, based on whether anti-
biotics were received in the ICU between the initial ad-
mission rectal swab and the 72-h rectal swab. For this
study, antibiotics were considered broad-spectrum if
they fell within the following class categories: B-lactam/
B-lactamase inhibitor combination antibiotics, carbapen-
ems, cephalosporins, fluoroquinolones, and lincosa-
mides. This definition covers 5 of the 7 most commonly
prescribed classes of antibiotics in US hospitals [13].
The term P-lactams has been used to describe ampicil-
lin, B-lactam/B-lactamase combination antibiotics, carba-
penems, and cephalosporins.

Resistance phenotype

Resistance phenotype was determined using selective
and non-selective cultures. Rectal swabs were inoculated
into soy broth with 20% glycerol media at the bedside.
After gentle mixing, these swabs were plated on 3 media:
(1) selective chromogenic media for VRE including E.
faecalis or E. faecium, (2) selective chromogenic media
for MRSA, and (3) MacConkey II agar for Gram-
negative bacteria. All plates were incubated aerobically
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at 33-37°C and assessed after >24h. VRE and MRSA
were classified as present versus absent according to the
manufacturer’s instructions. Resistance phenotype for
Gram-negative isolates was determined using the VITEK
2 system and AST-N010/020 cards with confirmatory
testing as needed. Routine Clinical and Laboratory Stan-
dards Institute (CLSI) cut-offs were used for non-
susceptibility [14].

Resistance genotype

Resistance genotype was determined using a quantitative
PCR kit that assesses 87 common antibiotic resistance
genes (complete list of genes in Supplemental Table 1,
Qiagen Cat. No. 330261) [15]. To do this, DNA was ex-
tracted from the duplicate rectal swab and 250 ng of
template meta-genomic DNA was added to each reac-
tion on a 96-well RT-PCR plate and run according to
the manufacturer’s protocol. Controls were used to de-
tect the presence of bacterial DNA, PCR inhibitors, and
background. Adequate reactions were determined by
cycle thresholds (Ct) values of <29 for the pan-bacterial
reference genes 16S rRNA, gyrA, recA, and rpoB and
positive PCR control Cr values of <24 [16]. Genotype
was classified both as a continuous variable based on Cr
value and also, per assay recommendations, as a categor-
ical variable with Ct values of <34 considered positive
for the presence of a given gene.

Statistical approach

Summary data was compared using chi-squared tests or
Fisher’s test when cell counts were < 5. For continuous sum-
mary data, ¢ tests or rank-sum tests were used when the data
was not normal in distribution. Chi-squared or Fisher’s tests
were used to compare resistance-related outcomes that were
classified categorically; patients who already showed resist-
ance at ICU admission were excluded from such testing, be-
cause they did not have the possibility of developing new
colonization. The final sample size of 48 patients gave 80%
power to detect a difference in paired means representing
antimicrobial resistance genotype of 0.41 standard devia-
tions, with resistance genotype classified as a continuous
variable based on Cr value. All testing was done two-sided
at an alpha 0.05 level of significance using R.

Results

Population

A total of 48 critically ill patients were included in
the study and swabbed at the time of ICU admission
and 72h later (Table 1). This 72-h window was se-
lected because antibiotic discontinuation in the ICU
is often first considered after 72 h of antibiotic treat-
ment. Median sequential organ failure (SOFA) score
was 16 (IQR, 10-18) at ICU admission and 17 (IQR,
15-19) after 72h (Supplemental Table 2). Raw data
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Table 1 Baseline characteristics of the patients in the study,
treatments received in the ICU, and clinical outcomes within
30days

Baseline characteristic

N (%), N total =48

Age (median years, IQR) 64 (52-74)
Female 21 (44%)
Admitted to ICU from hospital floor 12 (25%)
Baseline immunosuppression 18 (38%)
Primary reason for ICU admission, organized by organ system
Cardiovascular/shock 14 (29%)
Respiratory failure 10 (21%)
Neurological 7 (15%)
Gastrointestinal 6 (13%)
Liver 5 (10%)
Malignancy 3 (6%)
Renal failure 3 (6%)

Treatments received in the ICU, from the time of admission
until 72 h later

Antibiotics
Any antibiotics 41 (85%)
Broad-spectrum antibiotics 39 (81%)
Non-antibiotic interventions
Enteral feeding 36 (75%)
Opioids 35 (73%)
Mechanical ventilation 26 (54%)
Proton pump inhibitors 22 (46%)
Hemodialysis 6 (13%)

Clinical outcomes within 30 days of ICU admission*

Culture-proven infections 19 (40%)
MDR infections 14 (29%)
Death 11 (23%)

Immunosuppression was defined as a history of solid organ transplant or as a
receipt of ablative chemotherapy, steroids at the equivalent of > 5 mg/day
prednisone, antimetabolites, anti-TNFa agents, calcineurin inhibitors, or
mycophenolate. Broad-spectrum antibiotics were B-lactam/f-lactamase
inhibitor combination antibiotics, cephalosporins, fluoroquinolones,
lincosamides (clindamycin), and monobactams (e.g., meropenem)

*See reference [17] for operationalization of culture-proven infections; MDR
infections were the subset of culture-proven infections caused by MRSA, VRE,
and Gram-negative bacteria with non-susceptibility to

3rd-generation cephalosporins

for the study is given in Data Supplement 1 (pheno-
type) and Data Supplement 2 (genotype).

Receipt of antibiotics

Patients were eligible for inclusion in the study if they did or
did not receive antibiotics. In sum, 41/48 (85%) of patients in
the study received antibiotics and 37/48 (77%) received
broad-spectrum antibiotics, most often a 3rd-generation
cephalosporin or an extended-spectrum penicillin with a f3-
lactamase inhibitor. Figure 1a shows the antibiotics received
by class, and Fig. 1b shows pairwise combinations of
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Fig. 1 Receipt of antibiotics during the study. a Distribution of the number of patients receiving each antibiotic during the 72 h of the study. b Heatmap
of pairwise antibiotic combinations. The numbers on the heatmap denote the number of patients receiving each drug pair during the 72 h of the study

antibiotics. Almost all antibiotics were intravenous. Of 91 an-
tibiotics dosed to the 48 patients, 93% were given intraven-
ously (1 patient received oral azithromycin, 1 received oral
vancomycin, and 4 received oral rifaximin).

Overall changes in antimicrobial resistance phenotype
and genotype
First, antimicrobial resistance phenotype was examined

testing. No differences were evident comparing sum-
mary data for resistance phenotype at ICU admission
versus 72 h later for MRSA (RR 1.4, 95% CI 0.6-3.4;
p=059), VRE (RR 1.4, 95% CI 0.6-3.1; p=0.61), or
Gram-negative bacteria showing [-lactam resistance
(RR 1.4, CI 0.8-24; p=0.27 (Fig. 2)). Summing all
antimicrobial resistance phenotype categories, there
were no differences in rates of antimicrobial resist-
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Fig. 2 Incidence of antimicrobial resistance phenotype at ICU admission and 72 h later, based on culture for 3-lactam resistance in Gram-negative
bacteria, MRSA, and VRE. There was no significant increase in resistance after 72 h although there were trends in that direction. Chi-squared or
Fisher's p values are shown
J
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admission (non-susceptibility for 88/960 antibiotics tested,
9.1%) versus 72 h later (non-susceptibility for 107/960 an-
tibiotics tested, 11.1%) (chi-squared p = 0.17).

Next, antimicrobial resistance genotype was examined
by performing qPCR across 87 common antibiotic resist-
ance genes from the rectal swabs. No differences were
evident comparing summary genotype data from ICU
admission versus 72 h later for genes conferring resist-
ance to P-lactams (chi-squared p=0.27), vancomycin
(p = 1.0), macrolides (p =0.93), or fluoroquinolones (p =
0.74) (Supplemental Fig. 1). Summing all resistance
genes, there were no differences in rates of antimicrobial
resistance comparing ICU admission (positive qPCR for
392 of 4176 genes, 9%) versus 72 h later (positive qPCR
for 421 of 4176 genes, 10%) (chi-squared p = 0.30).

Effect of antibiotics on antimicrobial resistance
phenotype

For patients that did not carry individual resistant bac-
teria at admission, the carriage rate after 72 h for those
that received relevant antibiotics was compared to the
carriage rate for those that did not receive relevant anti-
biotics (e.g., comparing [B-lactam non-susceptibility in
culture based on receipt of f-lactam antibiotics). Antibi-
otics had no significant association with resistance
phenotype (Fig. 3). Emergence of Gram-negative bacteria
showing resistance to at least one [B-lactam antibiotic
after 72h was seen in 8/24 (33%) of patients who re-
ceived P-lactam antibiotics and in 2/10 (20%) of patients
who did not (RR 1.7, 95% CI 0.43-6.51; Fisher’s p =
0.68). VRE was present in 1/13 (8%) patients who
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received vancomycin and in 2/27 (7%) of patients who
did not (RR 1.0, 95% CI 0.10-10.4; p = 1.0). MRSA was
present in 5/31 (16%) patients who received [-lactams
and in 0/10 (0%) of patients who did not (RR unable;
p =0.31). No other clinical interventions (enteral feeding,
opioids, mechanical ventilation, and proton pump inhib-
itors) associated with detectable differences in resistance

phenotype.

Effect of antibiotics on antimicrobial resistance genotype

Change in antimicrobial resistance gene abundance was
tested after stratifying by receipt of antibiotic class
(Fig. 4). This was first done with a change in genotype
classified as a continuous variable based on within-
individual change in Ct values (ICU admission Crt
minus 72-h Cr). There was no association between the
changes within relevant resistance genes after 72 h and
receipt of any of the 3 most common antibiotic categor-
ies (B-lactams, vancomycin, or macrolides). There was
also no overall difference in the within-individual change
in Ct values comparing combined antibiotic gene cat-
egories (¢ test p=0.49 for B-lactams, p = 0.28 for vanco-
mycin, and p = 0.19 for macrolides) (Fig. 4). This analysis
was then repeated classifying within-individual change in
genotype categorically (i.e., present versus absent).
Again, there was no association between receipt of anti-
biotics and changes within relevant antibiotic resistance
genotypes. Last, other ICU interventions were examined.
Opioids were associated with modestly reduced within-
individual risk of an increase in combined genotype (RR
0.79, 95% CI 0.69-0.91; p<0.01). No other clinical

Gram negative VRE

B-lactam resistance

~

p =0.68

N
o
Observations

Observations

—
o
L

NO YES
Received B-lactam

NO YES
Received vancomycin

MRSA
C
p=0.31
301
@ Resistance
XS] after 72 hours
@ 20
> B o
2 | RE
o
104
0 —_—

NO YES
Received B-lactam

Fig. 3 Change in antimicrobial resistance phenotype stratified by receipt of antibiotics. The vertical axis for each panel shows the number of

patients who did (red) or did not (blue) test positive for resistance within an antibiotic class category. This data is then stratified on the horizontal
axis by whether antibiotics within that same category were received (e.g., 3-lactam resistance and receipt of B-lactam antibiotics). The panels are
for a Gram-negative bacteria with B-lactam resistance, b vancomycin-resistant Enterococcus (VRE), and ¢ methicillin-resistant Staphylococcus aureus
(MRSA). In all panels, data is shown based on testing done after 72 h in the ICU for individuals that tested negative at admission. p values are for
Fisher's test, comparing resistance after 72 h based on receipt of antibiotics within the relevant category
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interventions associated with detectable differences in
resistance genotype.

ICU admission antimicrobial resistance pattern as a
predictor of resistance phenotype and genotype after 72
h

Last, the ICU admission antimicrobial resistance pattern
was examined as a predictor of resistance after 72 h for
both phenotype and genotype. For 7 of the 9 antimicro-
bial resistance categories tested, presence of the resistant
phenotype (i.e., non-susceptibility in culture) at the time
of ICU admission was significantly associated with non-
susceptibility 72 h later (Fig. 5a). For 14 of the 26 genes
tested, presence of the resistance genotype (i.e., positive
qPCR) at the time of ICU admission was significantly as-
sociated with positive qPCR 72 h later (Fig. 5b).

Discussion

In this study of 48 critically ill patients, there was no as-
sociation between receipt of short-course antibiotics and
change in antimicrobial resistance phenotype or

genotype during the 72 h following ICU admission. Ini-
tial patient-level ICU antimicrobial resistance pattern
was the best predictor of antimicrobial resistance after
72 h, and significant interim changes were rare. Opioids,
which have traditionally been associated with poor ICU
outcomes, were associated with modestly reduced overall
resistance in antimicrobial genotype.

This study addressed the question of short-term resist-
ance dynamics within the gut microbiome of ICU pa-
tients. Clinically, the imperative for early broad-
spectrum antibiotics in the ICU is balanced against the
desire for antibiotic stewardship. Decisions regarding use
of antibiotics for sepsis are usually made before diagnos-
tic microbiology results are available [18, 19]. Can inten-
sivists reasonably give and continue empiric broad-
spectrum antibiotics for 72 h without excessive concern
that they are promoting antimicrobial resistance? Our
results are reassuring but must be interpreted with cau-
tion. Prior studies clearly establish that antimicrobial re-
sistance arises within colonizing gut bacteria during
long-term antibiotic treatment in the ICU. The question
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is not if resistance develops but when. The 72-h treat-
ment window in this study parallels the 3-day interval
after which antibiotic discontinuation is sometimes con-
sidered in the ICU [4, 20]. The results suggest that 72 h
is not long enough for the development of new gastro-
intestinal antimicrobial resistance within a given individ-
ual. Longer antibiotic treatment window periods would
almost certainly have led to different study results.

These findings regarding the dynamics of resistance
contrast sharply with in vitro studies. When bacterial
isolates are exposed to selective pressure in culture, mu-
tations that confer antimicrobial resistance are rapidly
selected [21, 22]. Compared to in vitro systems, the gut
microbiome of ICU patients has many competing selec-
tion pressures. This dense network of interactions may
delay selection for antimicrobial resistance genes [23]. In
ICU patients, collapse of the pre-existing gut micro-
biome and emergence of a pathobiome enriched in re-
sistance may require 11-14 days of antibiotic treatment
[24, 25]. Other studies suggest that resistance does
emerge, but does so slowly. In allogeneic stem cell trans-
plant patients, emergence of new resistance within mul-
tiple VRE clones was seen after 7days of selective
antibiotics, with most new resistance observed after 3
weeks or more [26]. In an infant treated with multiple
antibiotics, 2 months were required before antimicrobial
resistance emerged within specific bacterial lineages [27,
28]. In a similar study, novel plasmid-mediated ampicil-
lin resistance was acquired after 16—32 days in the ab-
sence of antibiotic treatment [29]. The implication is
that resistance within complex human systems such as
the gut arises over weeks instead of days [7].

Multiple factors probably contributed to the relatively
modest changes observed in antimicrobial resistance.
The antibiotics received were 93% intravenous. Intraven-
ous antibiotics do penetrate into the gut [30], but lu-
minal concentrations and pharmacodynamics may
matter [31]. Another possibility is that patients were
already too enriched in antimicrobial resistance at the
time of ICU admission because of past antibiotic expo-
sures to detect a meaningful change in resistance over
72 h. Prior studies support such a conclusion. Willmann
et al. found surprisingly little gains in fluoroquinolone
resistance during prophylaxis of neutropenic patients,
perhaps because of past exposures [32].

This study has limitations. It did not seek to correlate
antimicrobial resistance with specific bacterial lineages
and cannot state whether “new” antimicrobial resistance
was acquired from the environment, from horizontal
gene transfer, or vertically within bacterial lineages. Such
correlations are technically challenging [33]. Rather, a
standard clinical culture-based approach was used to
identify resistance within the primarily Gram-negative
bacteria that cause most serious ICU infections [34].
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Then quantitative PCR was added to determine resist-
ance genotype. Alternative methodologies could have
been used for genotyping [35], but qPCR was selected
for ease of performance and high sensitivity [36]. The
ICUs involved were high-acuity regional referral centers,
and results may not generalize perfectly to other ICUs.
Last, the study was relatively small. While there were
within-individual increases in antibiotic resistance based
on culture (see Fig. 2), the study was not powered to de-
tect weak relationships between antibiotics and antimicro-
bial resistance, especially for certain antibiotic class
categories where few patients were unexposed. Given the
large historical benefits attributed to antibiotics, a modest
effect on antimicrobial resistance is unlikely to signifi-
cantly alter the clinical risk-benefit calculation.

Conclusions

In sum, no clear relationship could be detected between
receipt of antibiotics and antimicrobial resistance within
colonizing gut bacteria during the initial 72h in the
ICU. This was the case for resistance phenotype based
on culture and resistance genotype based on qPCR.
Antimicrobial resistance was relatively stable between
ICU admission and the 72 h mark. This result may pro-
vide some reassurance that short-course antibiotics
given at ICU admission do not necessarily have an ad-
verse effect on individuals’ antimicrobial resistance.
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