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Circulating tumor cells (CTCs) play a fundamental role in cancer
progression. However, in mice, limited blood volume and the
rarity of CTCs in the bloodstream preclude longitudinal, in-depth
studies of these cells using existing liquid biopsy techniques. Here,
we present an optofluidic system that continuously collects
fluorescently labeled CTCs from a genetically engineered mouse
model (GEMM) for several hours per day over multiple days or
weeks. The system is based on a microfluidic cell sorting chip
connected serially to an unanesthetized mouse via an implanted
arteriovenous shunt. Pneumatically controlled microfluidic valves
capture CTCs as they flow through the device, and CTC-depleted
blood is returned back to the mouse via the shunt. To demonstrate
the utility of our system, we profile CTCs isolated longitudinally
from animals over 4 days of treatment with the BET inhibitor JQ1
using single-cell RNA sequencing (scRNA-Seq) and show that our
approach eliminates potential biases driven by intermouse het-
erogeneity that can occur when CTCs are collected across different
mice. The CTC isolation and sorting technology presented here
provides a research tool to help reveal details of how CTCs evolve
over time, allowing studies to credential changes in CTCs as bio-
markers of drug response and facilitating future studies to under-
stand the role of CTCs in metastasis.
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Circulating tumor cells (CTCs) are an intermediate in the
hematogenous spread of tumors during metastasis (1). Given

their accessibility and potential prognostic and diagnostic
value, CTCs have been the focus of significant clinical research
efforts monitoring response to therapy and predicting risk of
relapse (2–4). Over the past decade, novel microfluidic liquid
biopsy-based techniques, as well as in vivo, vein catheter-based
methods, have been developed to detect and collect CTCs di-
rectly from the blood of human patients (2–10). Combined
with recently developed single-cell profiling methods, such as
single-cell RNA sequencing (scRNA-Seq) (11–14), in-depth
examination of CTCs is now possible. Such studies can pro-
vide new insights into the genomic properties of CTCs, as well
as their relationship to matched primary and metastatic tumors
(3, 4, 15–18).
Genetically engineered mouse models (GEMMs) of can-

cer, which mimic the natural multistage evolution of their
human counterparts, facilitate characterization of both acute

perturbations (e.g., drug treatment) and long-term phenotypic
changes (e.g., tumor evolution) not possible in human subjects.
However, despite the usefulness of GEMMs in cancer research,
the combination of the small total murine blood volume (∼1.5 mL)
and the rarity of CTCs in circulating blood (fewer than 100 cells
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per milliliter) (3, 19) precludes the use of existing liquid biopsy
techniques for longitudinal CTC studies in mice. When repeated
blood samples are required at short intervals, a maximum of 1.0%
of an animal’s total blood volume can be removed every 24 h
(∼16.5 μL for a 25-g mouse) (20), a miniscule volume that does
not yield a sufficient sample of CTCs for analysis.
GEMMs have been developed that combine genetic pertur-

bations (manipulation of oncogenes and tumor suppressor genes)
with genetically encoded fluorescent markers, enabling the un-
biased detection and isolation of CTCs from the bloodstream. In
vivo flow cytometry techniques have been used to enumerate
CTCs in ear capillaries or tail veins longitudinally without eutha-
nizing animals (21–23), but these techniques do not permit isola-
tion and downstream molecular characterization of CTCs. On the
other hand, in vivo, vein catheter-based techniques allow for the
direct capture and isolation of CTCs from much larger blood
volumes in real time (7, 8). However, these techniques are cur-
rently limited to detecting epithelial cell adhesion molecule
(EpCAM)-expressing CTCs, which may result in only a sub-
population of CTCs being detected and isolated (24).

Results
Optofluidic Platform Design and Characterization. To enable longi-
tudinal, in-depth studies of CTC biology in GEMMs and other
murine cancer models, we have developed an optofluidic system
capable of detecting and capturing fluorescent CTCs in living
mice over several hours, days, or weeks. Key components of the
system include a polydimethylsiloxane-based microfluidic CTC
sorter chip, a fluorescence detector, and computer-controlled
pneumatic valves (Fig. 1 A and B). A cannulated mouse with two
permanent catheters easily accessible on its back allows for
continuous blood withdrawal from the left carotid artery and
return through the right jugular vein. Blood flows at a rate of
30 μL·min−1 into the CTC sorter chip. Two closely spaced laser
beam lines illuminate the main flow channel of the chip. As such,
each fluorescent cell that passes through the device emits two
pulses of light, which are detected by a photomultiplier tube (Fig.
1C and SI Appendix, Fig. S1). The second laser line allows the
controller to compute the velocity of the cells, which is essential
to ensure reliable CTC capture. Similar to the ensemble-decision
aliquot ranking technique for sorting CTC-containing aliquots
of blood (9, 10), upon fluorescent cell detection, the controller

Fig. 1. Microfluidic sorter for longitudinal CTC studies in GEMMs. (A) Peristaltic pump withdraws blood from a surgically implanted cannula in the carotid
artery of a mouse at a flow rate of 30 μL·min−1. The blood is directed into the main flow channel of the CTC sorter chip. For tdTomato-positive cells, a green
(532-nm) laser illuminates two points along the main flow channel of the CTC chip separated by a known distance. Thus, fluorescent CTCs emit two red-shifted
pulses of light, which are detected by a photomultiplier tube (PMT). Based on the timing of the pulses, a LabVIEW program computes the velocity of the cells
and operates computer-controlled pneumatic valves to redirect fluorescent CTCs toward a collection tube. After exiting the chip, CTC-depleted blood returns
to the jugular vein of the mouse via a second surgically implanted cannula. (B) Top-view image of the CTC sorter microfluidic chip showing the inlet, outlets,
and valve actuation lines (V1 and V2). (C) Illustration of the CTC detection mechanism using the two excitation laser lines. A low-pass filter is applied to the
raw data for determining true peaks. (D) Outlet by which blood is returned to the mouse is briefly sealed while the opposite outlet is opened to allow for CTC
isolation in real time. (E) After collection, CTCs are further enriched by a secondary CTC sorting chip designed with a parallel channel to flush CTCs into wells
containing cell lysis buffer for downstream scRNA-Seq.
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instantly operates pneumatic valves (25) to redirect a small blood
volume that includes the CTC toward a collection tube (mean ±
SD = 127 ± 47 nL per sort event; Fig. 1D and SI Appendix,
Supplementary Information Text and Fig. S2). Blood from the
collection tube can then be further enriched for CTCs and run
through a secondary single-CTC sorting chip for downstream
characterization using techniques such as scRNA-Seq (Fig. 1E).

Validation of the Platform’s Detection Limits with Fluorescent
Microbeads and Cells. To ascertain the detection limit of our
CTC sorter, we passed a sample of healthy mouse blood spiked
with flow cytometry calibration beads through the system. The
reference beads comprised five fluorescence intensity groups,
including one with zero fluorescence. The system consistently
detected the two brightest fluorescence levels (peaks 4 and 5)
and approximately the brightest 30% of level 3 (peak 3) (SI
Appendix, Fig. S3 A–C). This sensitivity was sufficient to detect
nearly the entire population of tdTomato-expressing murine
small cell lung cancer (SCLC) cells spiked in healthy mouse
blood. We also tested blood isolated from autochthonous SCLC
tumor-bearing mice that exhibit metastasis to distant organs in a
pattern similar to metastatic spread in human patients (26).
Tumors in these mice were initiated by Cre-mediated deletion of
tumor suppressor genes Trp53, Rb1, and Pten in the murine lung
epithelium (26). This GEMM also includes a Cre-activated
tdTomato allele (27) that engenders fluorescence in all tumor
cells after tumor initiation, including CTCs. The majority of CTCs
from the blood of SCLC tumor-bearing mice were above the de-
tection threshold (SI Appendix, Supplementary Information Text
and Fig. S3D).

Validation of Platform’s Sorting Functionality. After establishing
that the sensitivity of the optical detector was sufficient, we char-
acterized and optimized the sorting efficacy using blood samples
from healthy mice spiked with low concentrations of tdTomato-
expressing murine SCLC cells. In samples containing 100 cells
per milliliter or more, over 80% of detected tdTomato-positive
cells were successfully captured. For samples with only 10 cells
spiked into 500 μL of healthy mouse blood, the sorted sample
contained 6.0 ± 0.7 cells (mean ± SD, n = 3 repeats). Applying a
slight delay in actuating the pneumatic valves until the cell has
moved closer to the sorting region decreased the collected blood
volume per CTC to 76 ± 28 nL (mean ± SD) without com-
promising the capture efficiency. At this volume, on the order
of 700 neighboring white blood cells (WBCs) and over 70,000
red blood cells (RBCs) and platelets in the bloodstream are
collected in addition to the target CTC on each valve actuation.
These experiments demonstrate that the CTC sorter is capable of
isolating fluorescent CTCs from blood even at very low concen-
trations (SI Appendix, Fig. S4).

Longitudinal CTC Collection from SCLC Tumor-Bearing Mice.Next, we
conducted a longitudinal study of CTCs collected from autoch-
thonous SCLC tumor-bearing mice treated with the BET bro-
modomain inhibitor JQ1, which has been demonstrated to have
antiproliferative effects in SCLC (28–30). CTCs were isolated
from mice over a 2-h period before treatment (0 h) and at 24-h
intervals following treatment initiation, continuing over 96 h (SI
Appendix, Supplementary Information Text and Figs. S5 and S6A).
CTCs were enriched from the samples by RBC lysis, followed by
WBC depletion, using magnetic-activated cell sorting (SI Ap-
pendix, Fig. S6B) and, finally, by passing through a secondary,
single-cell CTC sorting chip. Enriched CTCs were then pro-
cessed using Smart-Seq2 (31) (Fig. 1E and SI Appendix, Sup-
plementary Information Text and Fig. S6C). Cells with insufficient
gene complexity for downstream analysis after scRNA-Seq were
eliminated computationally, in addition to cells with high ex-
pression of immune and platelet signature genes (3, 4, 16) (SI

Appendix, Supplementary Information Text). The overall yields of
the process (from blood to a successful scRNA-Seq library) were
11.5% and 5.3% for samples from treated and untreated mice,
respectively (median values with a range of 7.4–31% for treated
samples and a range of 3.3–6.7% for untreated samples; SI Ap-
pendix, Fig. S7).

Analysis of Single-CTC Transcriptomes Across Different Mice and
Within Each Mouse. We then examined our data to determine
how the information collected longitudinally from the same
mouse with our system compared with the common approach of
capturing CTCs across different mice using asynchronous ter-
minal bleeds (16, 19). To analyze our longitudinal CTC data, we
pooled our collected CTC transcriptomes across all mice, per-
formed a principal component analysis (PCA) visualized by t-
distributed stochastic neighbor embedding (tSNE) (12, 32, 33),
and identified clusters (using k-nearest neighbors clustering)
over the significant principal components (PCs) (14, 34) (Fig. 2
A–C and SI Appendix, Supplementary Information Text). This un-
supervised analysis revealed that mouse of origin contributed
significantly to the variation observed in our dataset, with cluster
representation driven primarily by individual mice (3, 4, 6) (Fig.
2C). We next performed PCA on CTCs collected from each
mouse individually. Here, we found that PC1 significantly corre-
lated (Spearman correlation) with time since treatment (P < 0.05,
Student’s t test following a Lilliefors test for normality) when in-
dependently calculated for each of the treated mice but not for
either control (Fig. 2 D and E and SI Appendix, Fig. S8). This
suggests that by isolating CTCs from the same animal longitudi-
nally, we are able to eliminate potentially confounding differ-
ences between animals that could otherwise mask biologically
relevant gene expression changes that occur over time.
In comparison, the conventional approach for performing a

longitudinal CTC analysis would be to begin the experiment with
a cohort of mice and obtain terminal bleeds from a subset at each
time point. We simulated this approach from our measurements
by selecting a different treated mouse to represent each of the 0-h,
48-h, and 96-h time points (SI Appendix, Fig. S9); here, regardless
of which mouse was chosen to represent which time point, we
found that the mean PC1 coordinate of treated mouse 1 existed
outside the interquartile range of the other mice, suggesting a
consistent mouse-specific effect that dominates the first PC (Fig.
2F and SI Appendix, Fig. S10). As such, conclusions drawn from
analysis of CTCs from terminal bleeds at different time points
across mice would be confounded by organism-specific features
from the different mice.

Supervised Analysis of Single-CTC Transcriptomes. To more formally
examine treatment-induced shifts in gene expression, we calcu-
lated differential expression across all pairs of time points within
each longitudinally profiled mouse (14, 35) and, once again,
simulated terminal bleed data (SI Appendix, Supplementary In-
formation Text and Fig. S9). Our analyses showed that the ma-
jority of the differentially expressed genes within each mouse
(per mouse) were unique (SI Appendix, Fig. S11). Furthermore,
each per-mouse differentially expressed gene set shared little
overlap (P < 0.05, hypergeometric test) with those calculated
from mock terminal bleed datasets (SI Appendix, Fig. S12), re-
gardless of the chosen mouse for the different time points. At
each time point, differentially expressed genes in the mock ter-
minal bleed data were enriched for several functional processes,
such as mitochondrial function, cellular organization, and me-
tabolism (36, 37); however, upon further inspection of the dif-
ferent mock terminal bleed permutations, we found that these
enrichments were linked primarily to mouse rather than time
point (Fig. 2F and SI Appendix, Figs. S10 and S12; e.g., house-
keeping genes or ribosome), suggesting confounding mouse-to-
mouse heterogeneity. This is evocative of the marked inter- and
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intrapatient heterogeneity observed in CTCs longitudinally col-
lected from human patients (5–7), and suggests the importance
of examining the same mouse over time.

Discussion
The platform outlined here represents an important advance-
ment in the detection and continuous capture of single CTCs
from the same mouse over time. Our method enables CTCs to be
isolated in low blood volumes and prepares them for down-
stream characterization. Here, we used scRNA-Seq to show that
continuous CTC capture from the same mouse eliminates biases

driven by intermouse heterogeneity that can occur when CTCs
are collected across different mice. Although future work will be
needed to elucidate the underlying drivers of this variability,
given the baseline genetic homogeneity of the animals used to
generate our GEMM, one potential explanation could be un-
derlying differences in the cellular composition of the primary
tumors across different animals. scRNA-Seq results from the
primary tumor samples harvested from each animal after ter-
minal CTC collection (96 h) are consistent with this hypothesis
(Fig. 3 A and B and SI Appendix, Supplementary Information
Text). These data suggest that primary tumors from each mouse

Fig. 2. scRNA-Seq of captured CTCs demonstrates the utility of intramouse CTC profiling. The tSNE of all CTCs collected across three JQ1-treated mice is colored
by time point posttreatment (A), mouse (B), and cluster of assignment based on k-nearest neighbors clustering (C). (Top Right) Pie charts show the fractional
representation of each cluster in each treated mouse. Boxplots of the first PC of CTC transcriptomes from PCAs were obtained from longitudinally following the
same treated mouse [D, correlation (Corr) = 0.56] or untreated mouse (E, Corr = −0.05). Each point represents a CTC. (F) Boxplots of the first PC from three
different “mock terminal bleed” permutations across three treated mice (SI Appendix, Supplementary Information Text and Fig. S9).

Fig. 3. scRNA-Seq of end-point primary tumors demonstrates heterogeneity in phenotype. (A) The tSNE of primary tumor cells across treated and untreated
mice, colored by mouse called from k-nearest neighbors clustering. (B) tSNE of primary tumor cells across treated and untreated mice, colored by clusters. (C)
Computational cluster assignments (SI Appendix, Supplementary Information Text) for 96-h CTCs next to their matched primary for a representative treated
mouse and untreated mouse plotted as bar plots (n = 18 and n = 82 cells for treated mouse 1 96-h CTCs and tumor cells, respectively; n = 52 and n = 84 cells for
untreated mouse 1 96-h CTCs and tumor cells, respectively). UA, unassigned. Neither pairing is significantly different (P = 0.99 and P = 0.66 for treated mouse
1 and untreated mouse 1, respectively, by Fisher’s exact test).
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may contain multiple malignant gene expression states (32, 33),
which appear to be shared across mice. Although some of these
differences could be attributed to the presence of multiple in-
dependently evolving primary tumors within each mouse, the fact
that each gene expression state is composed of cells from multiple
mice suggests that these states may be a shared feature of our
SCLC GEMM, although future experiments will be needed to
robustly validate this finding. Intriguingly, we were able to compu-
tationally match ∼67% (62 cells) of the terminally collected CTCs
(96 h, n = 92 cells from five mice) to one of these shared states (SI
Appendix, Supplementary Information Text and Fig. S13). Further-
more, we observed comparable state frequencies between a
mouse’s CTCs and its corresponding primary tumor sample at
the terminal time point (P > 0.5, Fisher’s exact test; Fig. 3C). We
note that mice with fewer than 10 CTCs, the statistical power in
our comparison was limited in some cases (SI Appendix, Fig. S14).
While further experimentation will be needed to corroborate this
preliminary finding, our data demonstrate the potential value of
having matched primary tumor samples as a reference in mouse
models of cancer, and that analysis of CTCs in our murine model
of SCLC may reveal similar biology to primary tumors from the
same mouse, suggesting their utility as a surrogate for matched
tumors under specific circumstances.
Future work of this kind has the potential to shed new light on

the relationship between CTCs, primary tumors, and metastases,
allowing for the exploration of their utility as biomarkers and fa-
cilitating examination of how individual CTCs contribute to me-
tastasis. Moreover, they may help elucidate the features that inform
shifts observed upon perturbation, such as drug treatment. Ulti-
mately, these data show that our platform opens the door for novel
CTC experimentation, such as examining longitudinal drug re-
sponses and comparing CTCs with primary tumors (shown here),
characterizing their relationship to metastases, and measuring the
rate of CTC production in an acute window. With additional

development, our device could enable longitudinal studies in mice
to find associations between individual CTCs and clusters of CTCs,
profile rare immune cells (e.g., using genetic reporters or based on
tetramer staining), monitor mesenchymal cells in a variety of
contexts (including wound healing and tumor formation), and
measure induction rates of drugs or nanoparticles in circulating
mononuclear cells.

Materials and Methods
All RNA-sequencing data generated in this study (raw data and processed data
matrices) have been deposited into the Gene Expression Omnibus database
hosted at the National Center for Biotechnology Information under the ac-
cession code GSE122233. Information on mouse models, cell culture, shunt
surgery, optofluidic platform design and fabrication, real-time data processing
and analysis, CTC and tumor cell processing and enrichment, single-cell RNA-
sequencing sample preparation, and data analysis is available in SI Appendix.
All animal-based procedures were approved by the Massachusetts Institute of
Technology Committee on Animal Care, Division of Comparative Medicine.
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