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Abstract: Autophagy is an intracellular lysosomal degradation process performed by the cells 

to maintain energy balance. The autophagy response plays an important role in the progression 

of liver disease due to hepatitis virus infection, alcoholic liver disease, nonalcoholic fatty liver 

disease, liver cirrhosis, and hepatocellular carcinoma (HCC). An increased autophagy response 

also contributes to the pathogenesis of liver disease through modulation of innate and adaptive 

immune responses; a defective cellular autophagy response leads to the development of HCC. 

Recent progress in the field indicates that autophagy modulation provides a novel targeted therapy 

for human liver cancer. The purpose of this review is to update our understanding of how the 

cellular autophagy response impacts the pathophysiology of liver disease and HCC treatment.

Keywords: hepatocellular carcinoma, macroautophagy, microautophagy, autophagy inhibitor, 
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Introduction
Autophagy is a lysosomal degradation mechanism important for cell survival under 

conditions of starvation, stress, or infection. The mechanism evolved as a means of 

regenerating energy from intracellular materials (cytoplasm, organelles, protein aggre-

gates, etc) to meet energy requirements in low-nutrient conditions.1 Autophagy, is one 

such mechanism and is induced by a variety of stimuli, including cytokine stimulation, 

stress, diverse pathogens, accumulation of misfolded proteins, and damaged organelles.2 

The importance of autophagy in liver homeostasis and energy conservation has been 

verified in animal models. For example, inhibition of autophagy in mouse models has 

been observed to impair lysosomal degradation in hepatocytes, resulting in a fourfold 

increase in liver weight.3 Likewise, nutrient starvation experiments in mice have shown 

that autophagy is responsible for degradation of 35% of total proteins in the liver within 

24 hours.4 These data illustrate the importance of autophagy in the maintenance of 

liver functions and liver weight. Autophagy also plays a major role in the modulation 

of innate and adaptive immune responses in the pathogenesis of chronic liver diseases, 

including diseases due to cancer, diabetes, neurodegeneration, and aging.

Initiation and termination of autophagy are linked to cellular nutrient-sensing 

mechanisms.5,6 For example, the molecule AMP-kinase (AMPK) senses cellular energy 

requirements through AMP to ATP ratios in the cell cytoplasm. High AMP levels reflect 

low energy states in the cell, and under these conditions, AMPK can initiate autophagy 

through inactivation of mTOR1 (a mechanistic target of rapamycin complex 1) or by 

phosphorylation of ULK1/2 protein. Another autophagy-inducing signal is related to 
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inhibition of mTOR1 by depletion of amino acid levels in the 

cytoplasm. It is now believed that inhibition of mTOR1 due 

to low energy states in the cell activates autophagy, whereas 

activation of mTOR1 due to high energy states inhibits cel-

lular autophagy.

Three different types of autophagy response have been 

described in the mammalian cells: macroautophagy, chaperon-

mediated autophagy (CMA), and microautophagy.7 The differ-

ences among these three types of autophagy are illustrated in 

Figure 1. In macroautophagy, a portion of cytosol is engulfed 

by a double-membrane structure called an autophagosome, 

which fuses with a lysosome to become an autophagolyso-

some; the contents of the autophagolysosome are degraded 

by lysosomal enzymes (proteases, lipases, nucleases, and 

glycases) in a process coordinated by 37 ATG proteins. Several 

cellular compartments, including the endoplasmic reticulum 

(ER), Golgi/trans-Golgi apparatus, and plasma membrane, 

participate in autophagosome formation. CMA is responsible 

for the degradation of cytosolic proteins under conditions of 

stress. All CMA substrates contain a consensus pentapeptide 

motif (KFERQ) that is recognized by a cytosolic chaperone, 

for example, HSC70;8 HSC70 binds to Lamp2a, which results 

in the direct translocation of unfolded protein substrate across 

lysosomal membranes and subsequent degradation of the 

cytosolic proteins. In microautophagy, cytosolic material is 

directly engulfed by the lysosome via membrane rearrange-

ment. Recently, microautophagy has been renamed on the 

basis of the cargo it degrades, as mitophagy, pexophagy, 

reticulophagy, and ribophagy.

This review focuses mainly on macroautophagy 

(autophagy) and its role in the pathogenesis of liver diseases, 

cirrhosis, and hepatocellular carcinoma (HCC).

Molecular interactions in autophagy
In general, autophagy is coordinated by five different steps, 

known as initiation, nucleation, elongation, maturation, and 

degradation (Figure 2). Decreasing mTOR1 levels caused by 

low nutrient levels, such as low levels of amino acid, lipids, 

A Macroautophagy

B Microautophagy

C Chaperon-mediated autophagy

Lysosome

Lysosome Engulfment of cytoplasmic organelles

Phagophore

HSC70 Lamp2a

Lysosome Protein-HSC70-Lamp2a translocation DegradationProtein with KFERQ motif

Autophagosome Lysosomal degradation

Degradation

Autophagolysosome

Figure 1 Three different types of autophagy response allow degradation of cytosolic content and organelles in the lysosome.
Notes: (A) The macroautophagy targets the cytoplasmic material including proteins and organelles for degradation. Macroautophagy starts with the formation of a phagophore 
at the endoplasmic reticulum membrane. Through a series of reactions, the phagophore matures into a double-membrane structure called autophagosome, which then fuses 
with the lysosome to form the autolysosome. The contents are degraded in the autophagosome by the lysosomal enzymes. (B) Microautophagy is another form of autophagy 
where the cytosolic constituents are directly engulfed into the lysosomal vesicles and subsequently undergo degradation. (C) Chaperon-mediated autophagy (CMA) is another 
form of autophagy in which a specific set of cellular proteins carrying KFERQ motifs are degraded by a direct translocation across the lysosomal membrane. The cytosolic 
chaperone HSC70, a major component of the CMA pathway, recognizes a KFERQ sequence motif and translocates to the lysosome membrane through binding to Lamp2a.
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and sugars, activate autophagy signaling. During basal-level 

autophagy, Unc-51-like kinase (ULK1/2), ATG13, FIP200, 

and ATG101, exist in an inactive complex with mTOR1. 

During initiation, a decrease in mTOR activity leads to 

phosphorylation and translocation of the ULK complex 

(ULK1–ATG13–FIP200–ATG101) from the cytoplasm to 

the ER.6,9,10 The interaction of the ULK complex with ER-

resident proteins leads to initiation of autophagy.6 The second 

step, nucleation, occurs as the ULK complex enlarges, due 

to interactions with class III phosphatidylinositol 3-kinase 

(PI3K) consisting of either Beclin 1–ATG14L–PI3KCIII–

p150–Ambra1 or Beclin 1–UVRAG–PI3KCIII–p150–Bif1.11 

Additional ER-resident proteins (DFCPI and WIPI) facilitate 

the nucleation and creation of a curved double-membrane 

structure. It has been shown that the autophagy process can 

be inhibited if Beclin 1 forms a complex with Rubicon or 

antiapoptotic protein (called Bcl-2).12 The third step, called 

elongation, is primarily mediated by ubiquitin-like protein 

conjugation systems. The ATG12–ATG5 complex associates 

with ATG16 to form ATG12–ATG5–ATG16 (ATG16L), 

which localizes at the autophagosomal membrane. The 

ATG16L complex then promotes LC3 lipidation by PE and 

membrane insertion. The LC3–PE is localized at the inner 

and outer membranes of the autophagosome. During elonga-

tion, the LC3 protein on the autophagosome can interact with 

misfolded and polyubiquitinated proteins through autophagy 

receptor proteins (p62, NBR1, or NIX).13,14 Proteins degraded 

through autophagy are recognized by autophagy receptors 

such as p62 and NBR1 that interact with ubiquitin-like 

protein LC3, which modifies the target proteins for delivery 

to the lysosome. The fourth step, maturation, is related to 

autophagosome completion. The autophagosome undergoes 

two maturation steps. First, the autophagosome fuses with 

multivesicular endosomes to form an amphisome, where pro-

ton pumps are acquired for acidification. Second, the amphi-

somes fuse with a lysosome to become an autolysosome. 

ATG12-ATG5-ATG16L

PI3P DFCPI WIPI

Class lll-PI3K
complex

ULK
complex

Starvation/low in energy
Amino acids,
fatty acids,
sugars, etc

mTOR AMPK

Autophagosome

LC3-PE

p62

p62

Lysosome

Maturation

Degradation
Initiation

HCC

Nucleation Elongation

Lysosomal
enzymes

Autolysosome

Cystatin B
CQ
HCQ
Baf A

Figure 2 Molecular signaling pathway involved in autophagy.
Notes: Autophagy responses are sensed by AMP-activated kinase (AMPK) and mTOR1. The phosphorylation of ULK complex can be initiated by AMPK activation due to low 
ATP:AMP ratio or mTOR inhibition due to nutrient starvation. Activation of ULK complex initiates series of reactions that lead to the engulfment of the cellular constituents 
in a double-membrane structure called autophagosome. The autophagosome then fuses with lysosome to form autophagolysosome in which the contents are digested by 
lysosomal enzymes into basic nutrients (sugars, lipids, amino acids, and nucleosides), which are released into the cytoplasm for subsequent use.
Abbreviation: HCC, hepatocellular carcinoma.
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Finally, the cellular materials present inside the autolysosome 

are degraded by the action of different lysosomal enzymes 

into amino acids, lipids, and sugars. The degradation prod-

ucts, such as amino acids, lipids, and sugars, are released 

from the autolysosome via lysosome efflux transporters for 

reuse, for example, in the production of new proteins. The 

release of nutrients from the autophagolysosome reactivates 

mTOR, which triggers autophagy termination and the forma-

tion of nascent lysosomes. This process is called autophagic 

lysosome reformation. Under conditions of low nutrition, the 

cycle is repeated.

The fusion of an amphisome with a lysosome requires 

Lamp2a and a small amount of GTPase Rab7.15,16 The 

retrieval of ATG proteins from the mature autophagosome is 

mediated by ATG2, ATG9, and ATG18.17 The ER is the most 

common site for the initiation of the autophagy membrane 

source, but autophagy initiation can involve Golgi apparati, 

endosomes, plasma membrane, and mitochondria. Different 

forms of autophagy can be induced by nutrient starvation, 

stress related to virus infection, and chemotherapy. Increased 

autophagic degradation can lead to cell death, which may 

be important in tissue homeostasis. A decreased autophagy 

response has also been linked to the development of cancer 

and neurological diseases. We here describe the important 

role of autophagy in chronic liver disease in humans.

Autophagy in chronic liver diseases
Mechanisms of acute and chronic liver injury in humans 

have been linked mainly to infection by hepatitis viruses, 

alcohol abuse, and fat deposition. These agents target mostly 

hepatocytes, as hepatocytes are the predominant cell type 

in the liver subject to acute and chronic injury. One of the 

host-related factors responsible for the evolution of chronic 

liver disease to liver cirrhosis and HCC is the degree of hepa-

tocellular injury. An increase in serum aminotransferase has 

been used as a surrogate marker for assessing the extent of 

hepatic injury in patients with chronic liver diseases of both 

viral and nonviral etiology.

Liver injury is caused by three distinct types of cell 

death: apoptosis, necrosis, and autophagy. Apoptosis is a 

form of cell death mediated by an intracellular proteolytic 

cascade, in which cells die neatly. Apoptotic cells are 

usually phagocytosed either by neighboring cells or by a 

macrophage. Necrosis is a form of cell death mediated by 

acute injury in which the cell swells, bursts, and spills its 

contents into surrounding areas, causing an inflammatory 

response. Apoptosis and autophagy are interrelated biologi-

cal processes important for maintaining tissue homeostasis 

and carcinogenesis. Hepatocellular apoptosis acts as a tumor 

suppressor or (prodeath) in the liver. It has been shown 

that the genes controlling apoptosis (Bcl-2) are involved in 

carcinogenesis. Oncogenic mutations in the Bcl-2 gene that 

inhibit apoptosis can lead to tumor initiation, progression, 

or metastasis. Alternatively, oncogenes that promote cellular 

apoptosis can initiate selective pressure to override apoptosis 

during multistage carcinogenesis. A number of excellent 

reviews have described the role of hepatocyte apoptosis in 

prodeath (tumor suppression) during chronic liver injury 

and carcinogenesis.18,19 Similarly, hepatocellular autophagy 

can also cause tumor suppression in chronic liver disease, 

and an impaired autophagy response can lead to malignant 

transformation and HCC. It is well known that HCC devel-

ops in the background of liver cirrhosis after many years 

of chronic liver disease due to hepatitis virus infection and 

alcoholic and nonalcoholic liver diseases. Available evidence 

suggests that the autophagy response is deregulated in chronic 

liver disease and liver cirrhosis, which can lead to HCC. To 

date, a consistent autophagic tumor suppressor mechanism 

causing the development of chronic liver disease, cirrhosis, 

and HCC has not been identified.

Infection with hepatitis B virus (HBV) and hepatitis C 

virus (HCV) has been shown to induce an autophagy response 

both in vitro and in vivo in chronically infected liver.20 It has 

been observed that the autophagy response promotes HBV 

and HCV replication, whereas autophagy suppression inhibits 

replication. These results suggest that viral infection induces 

the autophagy response to degrade organelles and long-

lived proteins needed to generate energy and sustain virus 

replication in hepatocytes, and, if uncontrolled, the induced 

autophagy response could lead to autophagic cell death and 

the elimination of infected hepatocytes in the liver. Actually, 

both viruses lead to chronic infection.

The prosurvival function of HBV and HCV infection 

has not been well established, with the exception of several 

studies that have used hepatoma cell lines to show that HBV 

or HCV infection inhibits autophagic degradation.21–23 The 

autophagy response is decreased in chronic liver disease on 

account of both alcoholic and nonalcoholic liver diseases. 

This conclusion is supported by the fact that suppression 

of autophagy by pharmacological agents or siRNA against 

ATG7 signif icantly exacerbates liver injury, whereas 

autophagy induction improves chronic liver disease caused 

by alcoholic and nonalcoholic fatty liver disease.24 The 

decreased autophagy response in alcoholic and nonalcoholic 

liver disease can lead to the accumulation of misfolded 

protein aggregates, which can increase oxidative stress, 
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DNA damage, and genomic instability, all of which favor 

carcinogenesis. These results are consistent with human 

data showing that chronic liver disease and HCC develop 

in the presence of these factors. Since autophagy induction 

also improves alcoholic and nonalcoholic liver diseases, it 

is expected that autophagy induction should also improve 

liver cirrhosis related to alcoholic and nonalcoholic fatty 

liver disease. It appears that autophagy modulation (induc-

tion or inhibition) may be a potential therapeutic strategy 

for treatment of liver cirrhosis, but so far this strategy has 

produced mixed results, with the exception that autophagy 

induction using rapamycin has been shown to be beneficial 

for the treatment of hepatic fibrosis due to alpha-1 antitrypsin 

deficiency.25 Additional investigations to understand the 

role of autophagy in liver cirrhosis should guide whether 

autophagy inhibition or induction strategies will be benefi-

cial for the treatment of liver fibrosis.

Taken together, the evidence indicates that the autophagy 

response increases in chronic liver disease, and persists 

in the stage of liver cirrhosis (Figure 3). An understand-

ing of whether autophagy acts as a cell death pathway or 

a prosurvival pathway should allow the development of 

novel therapeutic strategies for treatment of liver cirrhosis 

and HCC.

Autophagy as a tumor suppressor 
mechanism in HCC
HCC accounts for more than 500,000 to 600,000 deaths per 

year worldwide.26 During the last 2 decades, significant prog-

ress has been made in understanding the role of autophagy in 

cancer development, including the development of HCC.27–29 

Available evidence suggests that autophagy may serve as a 

tumor suppressor in cases of chronic liver disease and liver 

cirrhosis, and that autophagy deficiency may lead to HCC.

The following studies support the idea that HCC devel-

ops in the absence of autophagy. Abnormal expression of 

the autophagy gene Beclin 1 has been found associated 

with the development of a variety of cancers, including 

ovarian, breast, prostate, melanoma, colon, and brain.30–37 

Heterozygous deletion of Beclin 1 increases susceptibility 

to spontaneous malignancies and accelerates HBV-related 

HCC.38 Mice lacking one copy of the gene encoding for the 

Beclin 1 regulator protein (called AMBRA1) also develop 

tumors.39 The role of other autophagy genes (UVRAG, Bif1, 

ATG4C, ATG5, and ATG7) in tumor suppression has been 

confirmed in mouse models.40–44

Studies by Takamura et al43 show that deletion of either 

the ATG5 or ATG7 gene in mice results in the development of 

hepatomegaly and hepatocellular adenoma at age 6–9 months. 

Autophagy

Hepatocellular carcinoma

Liver cirrhosis

Chronic liver disease

Alcohol/fatty acidsHepatitis virus infection

Autophagy

Autophagy

Figure 3 Summary of autophagy response in chronic liver disease, liver cirrhosis, and hepatocellular carcinomas.
Notes: Autophagy response is activated in chronic liver disease due to hepatitis virus infection and alcoholic and nonalcoholic liver diseases. increased autophagy response is 
also seen in patients with liver cirrhosis. Autophagy induction as well as autophagy insufficiency seen in hepatocellular carcinoma.
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Takamura et al also found that accumulations of ubiquit-

inated proteins/aggregates are present in the hepatocytes of 

tumor-bearing mice but not in the hepatocytes of nontumor 

mice. They concluded that the tumor cells originated from 

autophagy-deficient hepatocytes, in association with mito-

chondrial swelling, p62 accumulation, oxidative stress, and 

an increased DNA damage response. Specific deletion of 

p62 expression in the hepatocytes of ATG7-deficient mice 

decreased tumor size, thus supporting the observation that 

hepatic p62 expression contributes to tumorigenesis.

Another study addressing p62 expression showed that 

p62 accumulation leads to hepatocellular adenoma through 

activation of Nrf2 target genes. The authors showed that p62 

competed with the binding between Nrf2 and Keap1, result-

ing in enhanced transcriptional activation of Nrf2-specific 

genes in the autophagy-deficient hepatocytes.44 Liver-specific 

autophagy-deficient mice contained adenomas linked to the 

formation of p62- and Keap1-positive cellular aggregates, 

and activation of Nrf2 target genes.

To verify whether this mechanism operates in humans, 

we showed that high accumulations of autophagy flux 

protein (p62) are present in paraffin-embedded HCC tis-

sues (Figure 4). Thus, p62 expression was found in the 

HCC samples but not in the surrounding nontumorous 

hepatocytes.45 The deposition of p62/ubiquitin/keratin-like 

protein aggregates observed in ATG7 knockout mouse is 

consistent with Mallory body detection in the hepatocytes 

of patients with alcoholic and nonalcoholic liver diseases.46 

Decreased p62 expression, as determined by Western blot 

analysis, has been used as a reliable marker of autophagy flux. 

The p62 protein has been found to contribute to carcinogenesis 

through multiple signaling pathways, including NF-kB, Nrf2, 

Wnt/β-catenin, and mTOR.47–53 All of these reports provide 

evidence that autophagy plays a role in tumor suppression, and 

that autophagy deficiency could lead to HCC. Mechanistically, 

autophagy deficiency leads to the accumulation of misfolded 

proteins, dysfunctional mitochondria, the generation of reac-

tive oxygen species, oxidative stress leading to increased DNA 

damage, the accumulation of double-stranded DNA breaks, 

increased DNA content, chromosomal instability leading to 

the cell transformation stage, and carcinogenesis (Figure 3). 

If this hypothesis is correct, then the mechanism by which 

autophagy deficiency is created in cirrhotic livers should be 

an interesting area of investigation.

Autophagy as a prosurvival (oncogenic) 
mechanism in HCC
Cancer cells need autophagy to generate the energy required 

to sustain growth and survival under various metabolic as 

well as therapeutic stress conditions.54 Autophagy plays 

a prosurvival role during HCC development. Increased 

autophagy flux has been reported in advanced HCC,55,56 and 

an increased autophagy response has been found to correlate 

with malignant progression and poor prognosis of HCC.57 

Autophagy was demonstrated to promote HCC invasion 

through activation of the epithelial–mesenchymal transi-

tion.58 In pancreatic cancer, autophagy promotes cell growth, 

survival, invasion, and metastasis.59–63 It has also been shown 

that in cells expressing oncogenic RAS, autophagy is required 

for promotion of cancer, as it maintains oxidative metabo-

lism and facilitates glycolysis.59 Autophagy promotes tumor 

growth in a mouse model of RAS-driven pancreatic cancer 

by suppressing p53 activation.64 A similar observation has 

been made in HCC, indicating that the autophagy response 

Figure 4 immunohistochemical staining of hepatocytes in HCC and cirrhotic liver.
Notes: immunohistochemical staining shows increased expression of autophagy flux protein (p62) in hepatocellular carcinomas (HCCs) and the expression is negative in 
normal hepatocytes present in the cirrhotic liver. In HCC, increased accumulation of p62 occurs due to insufficient lysosomal degradation. 40X magnification.
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is also needed to inactivate tumor suppressors to promote 

tumor development. Administration of dethylnitrosamine 

to wild-type mice inactivated p53-developed HCC, whereas 

liver-specific ATG5-knockout mice developed only benign 

hepatic adenoma due to induction of multiple tumor suppres-

sors, including p53.65 Autophagy induction promotes growth 

of cancerous stem cell–derived mammary tumors.66 Available 

evidence suggests that 50%–60% of tumors grown under 

hypoxic conditions show an increased autophagy response.67 

Tumor microenvironments, which are clearly different from 

those of normal tissue, have limited blood supply and are 

hypoxic, low in energy due to high mitotic activity, acidic, 

and inflammatory. These conditions induce autophagy by 

activating various pathways.68,69 All these lines of evidence 

support the hypothesis that autophagy induction is required 

for tumor progression, which could also explain why HCC 

develops more frequently in cirrhotic than in normal liver.

Altered autophagy signaling in HCC
The role of autophagy as a tumor suppressor or oncogenic 

inducer is unclear, as an increase or decrease in the autophagy 

response in cancer is often regulated by overactivation or 

inactivation of oncogenic signaling. This topic is highly 

complex, and this review therefore considers only selected 

pathways that are relevant to autophagic regulation in HCC. 

The interactions between antiapoptotic protein family Bcl-2 

and autophagy protein Beclin 1 are of particular importance 

in the regulation of autophagy.70,71 The interaction of Bcl-2 

with wild-type Beclin 1 inhibits the autophagy response, 

whereas mutant Beclin 1, which is defective in the Bcl-2 bind-

ing domain, can induce autophagy. Apoptosis and autophagic 

cell death are the two mechanisms of cell death that are 

controlled at the level of interactions between antiapoptotic 

protein Bcl-2 and autophagic protein Beclin 1. A minimal 

interaction between these two proteins (Bcl-2 and Beclin 1) 

favors an increased autophagy response, whereas a maximal 

interaction leads to autophagy inhibition. The dissociation of 

Bcl-2 from Beclin 1 is important for activation of autophagy, 

whereas their association inhibits autophagy. Therefore, the 

presence of mutant Beclin 1 protein or mutant multidomain 

protein members of the Bcl-2 family (Bcl-X
L
) could inhibit 

this interaction and induce the autophagy response. The 

interaction between Bcl-2 and Beclin 1 can also be affected 

by EGFR/mTOR signaling.

A significant number of cancers show high activations of 

receptor tyrosine kinases, such as epidermal growth factor 

(EGF). Epidermal growth factor receptor (EGFR) signaling is 

of key importance in liver injury, inflammation, fibrogenesis, 

and neoplastic transformation. The EGFR, a receptor tyrosine 

kinase in the ErbB family, consists of four members: EGFR 

(ErbB1, HER1), ErbB2 (HER2), ErbB3 (HER3), and ErbB4 

(HER4). The EGFR pathway becomes deregulated in HCC 

by a number of mechanisms, including overproduction 

of ligands, overproduction of receptors, and activation of 

receptors.72,73 During liver injury and regeneration, hepato-

cytes express high levels of ErbB1, and the expression of 

most ligands (eg, EGF and TGF alpha) is increased.74 The 

EGFR signaling is triggered when the ligand binds to the 

extracellular ligand-binding domain of the EGFR, which 

initiates receptor homo-/hetero-dimerization and autophos-

phorylation in specific tyrosine residues in the intracellular 

kinase domain of the receptor. Multiple phosphorylation at 

the kinase domain generates docking sites for a variety of 

signaling proteins, such as Shc, GRb2, Grb7, Crk, PLC, the 

kinase Src, PI3K, protein phosphatases SHP1 and SHP2, as 

well as the ubiquitin ligase Cbl E3.75 The EGFR signaling 

engages other signaling pathways generated from growth 

factors, cytokines, and inflammatory mediators to support 

growth and survival functions.

Studies supporting the role of EGFR-modulated 

autophagy have shown that overexpression of the EGFR 

represses autophagy, whereas silencing the EGFR in cancer 

cells leads to induction of autophagy.76 The EGFR signaling 

that is relevant to autophagy regulation includes the P13K–

AKT–mTOR pathway and the EGFR–Beclin 1 axis. It has 

been well established that mTOR is the master regulator 

of autophagy, that mTOR is directly controlled by EGFR 

signaling,77 and that activation of EGFR inhibits autophagy 

by reducing Beclin 1 levels.78–80 Reports indicate that EGFR 

signaling also induces the autophagy response in some 

cancers, with the response being due to ligand-independent 

EGFR signaling via the truncated receptor. The EGFR mutant 

vIII, a naturally occurring EGFR mutant lacking 801 base 

pairs ligand-binding domain (exons 2–7), can stimulate 

ligand-independent activity in glycolytic tumors in the 

brain.81 Tumor-expressing EGFR vIII shows higher activa-

tion of the autophagy response due to upregulation of genes 

involved in cell metabolism, such as glucose transporters 

(GLUT1 and GLUT3), hexokinase 2 (HK2), and pyruvate 

dehydrogenase kinase (PDK1).78 The autophagy response 

is also induced in various models of RAS-induced lung and 

pancreatic tumors.72

Another explanation for the induced autophagy response 

in HCC is related to ERK signaling. Among the four classes 

of MAPK signaling in cancer cells, ERK signaling is acti-

vated in response to proliferation signals, while p38 and JNK 
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are activated in response to various stresses.82 The EGFR 

signaling activates membrane-bound RAS, which interacts 

with RAF. The RAF phosphorylates two serine residues on 

the kinase mitogen protein kinase-1 and -2 (MEK1/2); MEK 

then activates ERK1/2 by phosphorylation of threonine and 

tyrosine residues, which are separated by one amino acid 

(threonine-183 and tyrosine-185 of ERK1/2). The activated 

ERKs phosphorylate numerous cytoplasmic and nuclear 

proteins to induce cell proliferation; ERK1/2 promotes cell 

proliferation, being overexpressed in human HCC. It has 

been reported that direct activation of ERK by MEK can 

promote autophagy without other signals.83 All of these 

lines of evidence indicate that altered EGF signaling could 

activate or inhibit the autophagy response in diverse cancers, 

including in HCC.

The p53 tumor suppressor, which is inactivated in more 

than 50% of human cancers, coordinates a wide varieties of 

responses, including DNA damage, transactivation of cell 

cycle arresting proteins, metabolism, proapoptotic func-

tion, and autophagy.84 Accumulating evidence indicates that 

p53 can modulate the autophagy response in cancer cells 

in a dual fashion, depending on its subcellular localization. 

Nuclear p53 induces the autophagy response by inducing 

transcription of two modulators: sestrin 1/2 and damage-reg-

ulated autophagy modulator (DRAM). Sestrin 1/2 activates 

autophagy by inhibiting mTOR signaling.85 Cytoplasmic p53 

represses autophagy through inactivation of AMPK, which 

activates mTOR signaling.86 Cytoplasmic p53 can operate 

at the mitochondrial level to promote cell death and repress 

the autophagy response.

Autophagy induction in HCC therapy
Significant interest has emerged in the use of autophagy-

inducing agents for the treatment and prevention of chronic 

liver diseases and HCC. As discussed earlier, autophagy plays 

a dual role in the pathophysiology of chronic liver disease, 

liver cirrhosis, and HCC, and it is therefore important to 

define the liver diseases appropriate for autophagy induction 

or inhibition therapy. The liver diseases that are expected to 

benefit from autophagy induction include alcoholic fatty 

liver disease and alpha-1 antitrypsin deficiency.87 Based on a 

“proof–principle approach”, autophagy induction using car-

bamazepine has been proven to benefit patients with alpha-1 

antitrypsin deficiency.25 However, autophagy induction 

therapy may be problematic in the treatment of chronic viral 

hepatitis, as autophagy induction enhances the replication 

of HBV and HCV. Autophagy induction might also impair 

the host’s innate immunity and capacity to clear infection.88 

Moreover, the autophagy induction therapy approach may not 

be applicable to those patients with alcoholic or fatty liver 

disease who are chronically infected with HBV or HCV.

Autophagy induction can be accomplished by the use of 

both pharmacological and nonpharmacological agents. The 

best nonpharmacological approach for autophagy induc-

tion may be calorie restriction and regular exercise. This 

approach provides protection against high fat diet–induced 

diabetes in mice.89 In addition to calorie restriction, other 

nutritional factors such as coffee and vitamin D intake may 

be used to improve health through autophagy induction.90–97 

Consumption of caffeine induces autophagy, which reduces 

hepatic steatosis in mice with nonalcoholic fatty liver 

disease.93 Based on these reports, it is expected that calorie 

restriction, exercise, coffee consumption, and vitamin D can 

be adopted in the treatment of chronic liver disease due to 

alcoholic and nonalcoholic fatty liver disease in humans.

An alternative approach to inducing autophagy in a 

tissue-specific manner is by gene delivery of vectors that 

express autophagy genes. A study demonstrated that TFEB 

gene delivery improves the outcome of a variety of dis-

eases, including obesity/diabetes and alpha-1 antitrypsin 

deficiency.98 The small-sized molecules currently approved 

by the US FDA to induce autophagy include carbamazepine, 

clonidine, lithium, metformin, rapamycin, rilmenidine, 

sodium valproate, verapamil, trifluoperazine, statin, and 

tyrosine kinase inhibitors.99,100 These agents can be used for 

the treatment of liver disease in the context of whether or not 

autophagy induction would be beneficial. Available evidence 

suggests that autophagy acts as a tumor suppressor, but is 

insufficient in HCCs. Therefore, induction of autophagy 

should help to reverse the malignant phenotype and improve 

chemotherapeutic treatment of HCC. Based on this reason-

ing, autophagy-inducing agents can be used along with the 

FDA-approved drug sorafenib for the treatment of liver 

cancer. Sorafenib is a multitargeted receptor tyrosine kinase 

inhibitor that has been approved as a standard therapy for 

advanced HCC.101 Sorafenib alone has only modest effects 

in prolonging the survival of HCC patients.102 Studies have 

shown that sorafenib itself induces the autophagy response 

and accumulates autophagosomes in HCC cells through 

inhibition of the mTOR pathway.103 Sorafenib also induces 

the expression of ER stress response genes (such as IRE-1 

and CHOP), eIF2alpha phosphorylation, and the autophagy 

response in HCC cells.104 Whether chemotherapy drugs that 

induce autophagic cell death can be used in combination 

with sorafenib to improve the therapeutic response in HCC 

patients is currently under investigation, as the concept 
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has been supported by several studies showing that small-

molecule drugs inhibit HCC growth through autophagy 

induction.105–108 A number of chemotherapy drugs known to 

induce autophagic cell death (such as tamoxifen, etoposide, 

temozolomide, varinostat, arsenic trioxide, sodium selenite, 

and metformin) could be used in combination with sorafenib 

to inhibit HCC cells, especially in cases of defects in the 

apoptosis pathway. The success of combination therapies 

using sorafenib and other autophagy inducers needs further 

validation.

Autophagy inhibition in HCC therapy
Autophagy is required for tumor cell survival, and there-

fore autophagy inhibition could be explored as a poten-

tial therapeutic strategy for cancer treatment. A wide 

variety of pharmaceutical inhibitors that block different 

steps of the autophagy process are commercially avail-

able. Pharmaceutical inhibitors of HCC growth include 

3MA, wortmannin, spautin-1, thapsigargin, vorinostat, 

chloroquine (CQ), hydroxychloroquine (HCQ), monensin, 

lucanthone, matrine, xanthohumol, azithromycin, bafilomy-

cin A1, and concanamycin A.99 Among these, CQ and HCQ, 

which are used to treat malaria, are FDA-approved drugs com-

monly used as autophagy inhibitors in various experimental 

tumor models.109–111 Both CQ and HCQ are lysosomal lumen 

alkalizers that inhibit the activity of lysosomal hydrolases by 

neutralizing acidic pH in the lumen of lysosomal vesicles. 

Alkalization of lysosomal vesicles leads to the accumulation 

of autophagosomes by blocking lysosomal degradation.112 

Based on this mechanism, CQ and HCQ have been used as 

anticancer drug candidates in humans.113

Another lysosomal inhibitor that has been developed, 

Lys05 (a dimeric CQ), accumulates in the lysosome and 

shows antitumor activity more potent than that of HCQ.114 A 

number of new potent autophagy inhibitors have been devel-

oped that inhibit autophagy by preventing fusion of autopha-

gosomes with lysosomes, thus causing acidification of the 

lysosome and lysosomal degradation.115–117 At present, several 

ongoing cancer clinical trials include autophagy inhibitors 

along with other chemotherapy agents (http://www.clinical-

trials.gov). Autophagy inhibitors can enhance the effective-

ness of oxaliplatin, cisplatin, 5-fluorouracil, and sorafenib 

in HCC models.103,118,119 Coadministration of sorafenib and 

CQ decreases tumor growth more significantly than admin-

istration of either agent alone. It has been demonstrated in 

experimental animal model that autophagy as inhibitors 

interact synergistically with either proteasome inhibitor or 

angiogenesis inhibitor to inhibit HCC growth.119,120

Cancer-initiating cells (ie, cancer stem cells) have 

been identified in a variety of cancers, but in only a small 

subpopulation of tumors.121 However, such cells in tumors 

can differentiate into multiple heterogeneous lineages of 

cancer cells. Available evidence indicates that current cancer 

treatments are ineffective in the elimination of the cancer 

stem cell population, thus resulting in tumor relapse and 

chemoresistance. Inhibition of autophagy by CQ was found to 

decrease the viability of liver cancer stem cells under condi-

tions of hypoxia and nutritional starvation.122 It is anticipated 

that future research will clarify whether autophagy inhibition 

or induction will have a clinical benefit in the management 

of HCC chemotherapy.

Currently, there are more than 30 ongoing cancer treat-

ment clinical trials using autophagy inhibitors (HCQ or 

CQ) in spite of the fact that many tumors, including HCC, 

show insufficiency in autophagy response (Figure 3).123 The 

mechanisms by which the autophagy inhibitors show strong 

antitumor response in the clinic are not well established. It 

has been reported that the anticancer mechanisms exhib-

ited by HCQ or CQ are complex and involve more than 

one mechanism. Some studies reported that CQ sensitizes 

cancer cells to chemotherapy by inhibiting autophagy,124 

inhibiting anticancer drug extrusion by blocking transporter 

P-glycoprotein,125 promoting apoptosis through lysosomal 

membrane permeabilization,126 and impairing DNA repair.127 

The anticancer mechanism of CQ has been reported to be 

independent of autophagy inhibition.128 All these results indi-

cate that further understanding of the anticancer mechanisms 

should establish the therapeutic potential of CQ in cancer.

Conclusion
Autophagy has been recognized as a tumor suppressor 

mechanism in the liver, and increased autophagy levels 

have been observed in cases of chronic liver disease, liver 

cirrhosis, and HCC. The hepatic autophagy response impairs 

the innate and adaptive immune response. Recent studies 

have shown that HCC may be associated with an insufficient 

autophagy response, and available evidence suggests that 

an insufficient response in HCC could be related to either 

impaired expression of autophagy genes or altered autophagy 

signaling. Future research will address whether an increased 

or decreased autophagy response is associated with the 

development of HCC related to liver cirrhosis. Autophagy 

inhibitors as chemotherapeutic agents have shown promising 

results in the treatment of HCC, by reducing cancer stem cell 

evolution and improving the immune response against HCC. 

In summary, autophagy modulation provides new prospects 
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for anti-HCC therapies. We propose that more basic research 

is needed to further understand the detailed mechanisms of 

autophagy modulation, and to explore future applications of 

autophagy modulation to the treatment of liver disease.
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