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According to the information reflected by Anhui Center for Disease Control (Anhui CDC) in Hefei, Anhui province of China, some
patients infected with respiratory diseases did not seek medical treatment (nonclinic visits) due to their strong resistance, and the
influence of them on the spread of respiratory diseases has not been known. A SIS model with considering the nonclinic visits was
established; a qualitative theory of the model was analyzed to obtain the basic reproduction number R0, disease-free equilibrium,
endemic equilibrium, and stability of two equilibriums. Then, the model is combined with the daily number of respiratory
diseases for parameter estimation and numerical simulation. Numerical simulation results showed that respiratory diseases were
easy to break out in the autumn and winter and were relatively stable in the spring and summer. Through parameter estimation,
the unknown parameter value was achieved and the result was obtained that the initial number of nonclinic visits is 10-11 times
that of clinic visits. Finally, the result of sensitivity analysis displayed that the proportion of the number of nonclinic visits to the
total number of patients has a significant influence on the final number of patients. If persons improve their resistance so that
the number of nonclinic visits increases, the total number of patients will be reduced or even reduced to zero. Besides, reducing
contact infection rate of disease and increasing the cure rate can also reduce the final total number of patients.

1. Introduction

In recent years, the respiratory diseases in China have
become increasingly serious. This article takes Hefei city in
Anhui Province as an example to research. Figure 1 shows
annual cases of respiratory diseases in Baohe District and
Yaohai District of Hefei city, Anhui Province of China, from
2014 to 2017, with data from Anhui Provincial Center for
Disease Control and Prevention (Anhui CDC). As can be
observed in the figure, the number of cases of respiratory dis-
eases increased year by year from 2014 to 2017, and the
growth rate in 2017 was relatively large, so we need to pay
more attention to the development of respiratory diseases.

Respiratory diseases are mainly transmitted to healthy
people by droplets [1]. If respiratory patients seek medical
treatment in time when they get sick, they can be isolated
as soon as possible to reduce the force of transmission. How-
ever, patients with various types of respiratory diseases can be
cured by their own immunity, such as acute upper respira-

tory tract infection and bronchitis [2, 3]. These patients
may not choose to seek medical treatment, but they are con-
tagious and may infect healthy people into new patients [4].
Patients who do not seek medical treatment is defined as
nonclinic visits and those who seek medical treatment as
clinic visits. Nonclinic visits contain asymptomatic patients
and symptomatic patients and can be recovered by their
resistance. We can acquire specific data on the number of
respiratory disease patients in Hefei from Anhui CDC. How-
ever, it is unclear if there are a large number of nonclinic
visits. The increasing of nonclinic visits may cause a signifi-
cant influence in the transmission of respiratory diseases. It
is necessary to conduct further research on the impact of
nonclinic visits on respiratory diseases.

Nowadays, the outbreak of infectious respiratory diseases
attracts worldwide attention. A lot of studies have researched
on infectious respiratory diseases with respect to SARS,
tuberculosis, seasonal influenza, and other diseases. Accord-
ing to the spread of SARS in Beijing, Chen et al. [5] divided
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residents into four categories: susceptible, suspected infected,
infected, and recovered. Then, an SEIR transmission model
was established, the parameters and initial values of the
model were estimated, and a simulation experiment of SARS
in Beijing was carried out. Wang and Ruan [6] divided the
population into 6 groups: susceptible, exposed, isolated, sus-
pected infected, possibly infected, and transferred according
to the SARS transmission situation in Beijing, and established
the SARS transmission model. Through combining the
model with a SARS data in Beijing, the result showed that
important control measures should be increased before
reaching the threshold of the number of possible infected
cases. By considering the total number of individuals recov-
ered from nature or due to vaccination, a tuberculosis trans-
mission model with vaccination was proposed by Nainggolan
et al. [7]. Dynamics analysis of the model showed that vacci-
nation could reduce the number of people infected later. For
seasonal influenza, Kharis and Arifudin [2] added the partic-
ipants to the treatment group based on SIR, established the
SITR model, and divided the way for group I to the group
R into two types: therapeutic rehabilitation and self-healing
rehabilitation. Moreover, it was proposed that seasonal influ-
enza rarely cause death, and the minimum proportion of
patients to be treated was obtained through the basic regen-
eration number. Hsu and Hsieh [8] proposed a dynamics
model that includes asymptomatic infection and symptom-
atic infection. Symptomatic-infected people recovered by
treatment or their resistance. The results mainly clarified that
asymptomatic infections have a positive or negative impact
on the disease, but the specific impact of the nonclinic visits
on the disease was not investigated.

People infected by infectious respiratory diseases such as
bronchitis and influenza will have mild symptoms and can
recover without medical treatment [2], and the recovery rate
of clinic visits is not the same as that of nonclinic visits. How-
ever, the available monitoring data are all clinic visits in the
research process. Most people with mild symptoms do not
go to the hospital for medical treatment. Therefore, the data
recorded by the hospital are not the total number of people
infected with respiratory disease, and the number of noncli-
nic visits is unknown.

Motivated by Kharis and Hsu, we considered the infectiv-
ity of the nonclinic visits based on the number of respiratory

disease cases in Baohe District and Yaohai District of city.
The impact of nonclinic visits on the spread of respiratory
disease is our main study. In addition, the number of noncli-
nic visits at the initial stage of the disease outbreak and the
impact of nonclinic visits on the final total number of
patients through the available data were also estimated.

In the second section of this paper, the model is
established, and R0, equilibrium points are calculated.
The third section analyzes the local and global stability
of disease-free and endemic equilibrium. In the forth sec-
tion, we use the MCMC method for parameter estimation
and numerical simulation. The sensitivity of each param-
eter to the number of patients visited is obtained through
PRCC sensitivity analysis and then studies the influence
of the most sensitive parameter on the final total number
of patients. The fifth part discusses the results and puts
forward suggestions.

2. Model

2.1. Establishment of a Model. Population was divided into:
susceptible (S) and infected (Ia, Is) before the establish-
ment of a model. Ia presents nonclinic visits and Ia has
infectivity, so they will generate new patients by contact-
ing the susceptible [2, 3]. In addition, Ia can be recovered
by autoimmunity and become susceptible (S) again. Is
means clinic visits, who must be cured after treatment
and enter the susceptible (S) after recovery [4]. According
to [2], there is almost no death due to infectious respira-
tory diseases, so death due to disease is not considered.
The total population N satisfies N = S + Ia + Is. According
to the transmission mechanism of respiratory diseases,
the transmission framework diagram (Figure 2) and
transmission model are as follows:

dS
dt

=Λ + δIa + σIs −
β Ia + Isð ÞS
S + Ia + Is

− μS,

dIa
dt

= β Ia + Isð ÞSp
S + Ia + Is

− δ + μð ÞIa,

dIs
dt

= β Ia + Isð ÞS 1 − pð Þ
S + Ia + Is

− μ + σð ÞIs:

8>>>>>>>><
>>>>>>>>:

ð1Þ
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Figure 1: Annual cases of respiratory diseases (the data from Anhui CDC).
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It is easy to know that N ′ =Λ − μN . The invariant of
system (1) is

D = S, Ia, Isð Þ ∈ R3
+ ∣ 0 ≤ S + Ia + Is ≤

Λ

μ
, S ≥ 0, Ia ≥ 0, Is ≥ 0

� �
,

ð2Þ

where Λ means the constant population input rate, β is
the contact infection rate of disease, and the incidence
rate of disease is the standard incidence rate. p represents
the proportion of nonclinic visits to the total number of
patients. μ is the natural mortality rate. The rate of
self-healing is δ, and σ is the cure rate.

Now, the next regeneration matrix [9] was used to calcu-
late the reproduction number R0. We can get F and V from
the system (1):

F =
βp, βp

β 1 − pð Þ, β 1 − pð Þ

 !
,

V =
δ + μ, 0
0, μ + σ

 !
,

ð3Þ

where F is nonnegative and V is a nonsingular second-order
matrix.

Then,

FV−1 =

βp
δ + μ

, βp
μ + σ

β 1 − pð Þ
δ + μ

, β 1 − pð Þ
μ + σ

0
BBB@

1
CCCA: ð4Þ

Therefore, the basic reproduction number is R0 = ρðF
V−1Þ = ðβp/ðδ + μÞÞ + ððβð1 − pÞÞ/ðμ + σÞÞ = R0a + R0s. R0a
means the average number of new infection caused by one
Ia during the mean infectious period of Ia. R0s means the
average number of new infection caused by one Is during
the mean infectious period of Is. R0 is the sum average num-
ber of total new infections produced by a single Ia and a sin-
gle Is during the mean infectious period.

2.2. Existence of Equilibriums. Let us consider the right hand
of system (1) be 0 and Λ − μN = 0 to obtain the following
equations:

Λ + δIa + σIs −
β Ia + Isð ÞS

N
− μS = 0,

β Ia + Isð ÞSp
N

− δ + μð ÞIa = 0,

β Ia + Isð ÞS 1 − pð Þ
N

− μ + σð ÞIs = 0,

Λ − μN = 0:

8>>>>>>>>><
>>>>>>>>>:

ð5Þ

The following relations can be obtained from the second
and third equations in the above equations:

S = δ + μð ÞIa
β Ia + Isð ÞpN ,

Ia =
p μ + σð Þ

1 − pð Þ δ + μð Þ Is,

N = Λ

μ
:

ð6Þ

Then, the relations are brought into the first equation and
become

Is Λβp
p μ + σð Þ

1 − pð Þ δ + μð Þ + 1
� �

−
Λp μ + σð Þ

1 − pð Þ
� �

+ I2s
p μ + σð Þ

1 − pð Þ δ + μð Þ + 1
� �

δβp
p μ + σð Þ

1 − pð Þ δ + μð Þ
��

+ σβp − β
p μ + σð Þ
1 − p

��
= 0:

ð7Þ

Obviously, Is = 0 is a root of (7). Hence, disease-free equi-
librium is

E0 = S0, Ia0, Is0ð Þ = Λ

μ
, 0, 0

� �
: ð8Þ

When Is ≠ 0, let A + IsBC = 0, where

A =Λβp
p μ + σð Þ

1 − pð Þ δ + μð Þ + 1
� �

−
Λp μ + σð Þ

1 − p
,

B = p μ + σð Þ
1 − pð Þ δ + μð Þ + 1,

C = δβp
p μ + σð Þ

1 − pð Þ δ + μð Þ + σβp − β
p μ + σð Þ
1 − p

= βp
1 − pð Þ δ + μð Þ δp μ + σð Þ + σ 1 − pð Þ δ + μð Þ½

− μ + σð Þ δ + μð Þ�:

ð9Þ
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Figure 2: The transmission framework diagram of the SIS model.
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Since B > 0, let us consider the sign of C, we have

δp μ + σð Þ + σ 1 − pð Þ δ + μð Þ − δ + μð Þ μ + σð Þ
= σ 1 − pð Þ δ + μð Þ − δ 1 − pð Þ μ + σð Þ − μ μ + σð Þ
= 1 − pð Þ σ δ + μð Þ − δ μ + σð Þ½ � − μ μ + σð Þ
= 1 − pð Þ σμ − δμð Þ − μ μ + σð Þ
< σμ − δμ − μ μ + σð Þ = −δμ − μ2 < 0:

ð10Þ

Thus, C < 0. Therefore, BC < 0. Since the endemic equi-
librium exists if and only if Is > 0, we consider A > 0, then

A
p
=Λβ

p μ + σð Þ
1 − pð Þ δ + μð Þ + 1

� �
−
Λ μ + σð Þ
1 − p

> 0: ð11Þ

We obtain

βp μ + σð Þ
1 − pð Þ δ + μð Þ + 1 > Λ μ + σð Þ

1 − p
: ð12Þ

Therefore, endemic equilibrium E∗ = ðS∗, I∗a , I∗s Þ exists if
ðβp/ðδ + μÞÞ + ððβð1 − pÞÞ/ðμ + σÞÞ > 1, i.e., R0 > 1. Where

S∗ = Λ

μ

1
R0

,

I∗a =
R0a
R0s

I∗s ,

I∗s =
Λ 1 − R0ð Þ

R0/R0sð Þ δR0a − σR0s − βð Þ :

ð13Þ

Remark 1. From the above formula, note that I∗a and I∗s affect
each other. Obviously, I∗a > I∗s for R0a > R0s, i.e., p > ððδ + μÞ
/ððα + μ + σÞ + ðδ + μÞÞÞ. It shows that p will affect the final
total number of patients.

3. Stability Analysis of Equilibriums

3.1. Local Stability Analysis of Equilibriums

Theorem 1. The disease-free equilibrium E0 of the system (1)
is locally asymptotically stable if R0 < 1; E0 is unstable if R0 > 1
.

Proof. The Jacobian matrix of the system (1) at the disease-
free equilibrium E0 is

JE0
=

−μ, δ − β, σ − β

0, βp − δ + μð Þ, βp

0, β 1 − pð Þ, β 1 − pð Þ − μ + σð Þ

0
BB@

1
CCA:

ð14Þ

The secular equation corresponding to JE0 is

λE − JE0
�� �� =

λ + μ, −δ + β, −σ + β

0, λ − βp + δ + μð Þ, −βp

0, −β 1 − pð Þ, λ − β 1 − pð Þ + μ + σð Þ

��������

��������
= 0,

ð15Þ

i.e.,

λ + μð Þ
λ − βp + δ + μð Þ, −βp

−β 1 − pð Þ, λ − β 1 − pð Þ + μ + σð Þ

�����
����� = 0:

ð16Þ

Let us consider

λ − βp + δ + μð Þ, −βp

−β 1 − pð Þ, λ − β 1 − pð Þ + μ + σð Þ

�����
����� = 0, ð17Þ

then

λ2 + μ + σð Þ − β 1 − pð Þ + δ + μð Þ − βp½ �λ + δ + μð Þ μ + σð Þ
− β 1 − pð Þ δ + μð Þ − βp μ + σð Þ = 0:

ð18Þ

Available from Vieta theorem, the roots of above equa-
tion satisfy

λ1 + λ2 = β 1 − pð Þ − μ + σð Þ + βp − δ + μð Þ,
λ1λ2 = δ + μð Þ μ + σð Þ − β 1 − pð Þ δ + μð Þ − βp μ + σð Þ:

ð19Þ

Note that R0 < 1 contains R0a < 1 and R0s < 1, then λ1 +
λ2 < 0 and λ1λ2 > 0 if R0 < 1. Equation (15) has another
eigenvalue λ3 = μ < 0, hence λi < 0, i = 1, 2, 3. Therefore, E0
is locally asymptotically stable.

Since λ1λ2 < 0 when R0 > 1, the secular equation must
have one positive eigenvalue, then the disease-free equilib-
rium is unstable. □

Theorem 2. The endemic equilibrium E∗ of system (1) is
locally asymptotically stable.

Proof. The Jacobian matrix of the system (1) at the endemic
equilibrium E∗ is

JE∗ =

−
β I∗a + I∗sð Þ2

Λ/μð Þ2 − μ, δ −
βS∗2

Λ/μð Þ2 , σ −
βS∗2

Λ/μð Þ2

β I∗a + I∗sð Þ2
Λ/μð Þ2 p, βS∗2

Λ/μð Þ2 p − δ + μð Þ, βS∗2

Λ/μð Þ2 p

β I∗a + I∗sð Þ2
Λ/μð Þ2 1 − pð Þ, βS∗2

Λ/μð Þ2 1 − pð Þ, βS∗2

Λ/μð Þ2 1 − pð Þ − μ + σð Þ

0
BBBBBBBBBB@

1
CCCCCCCCCCA
:

ð20Þ
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In order to prove that the eigenvalues of JE∗ are all
negative, it is necessary to prove that JE∗ is a negative def-
inite matrix. That is, for JE∗ , the principal order of odd
order is negative and the principal order of even order is
positive [10].

Let

A1 = −
β I∗a + I∗sð Þ2

Λ/μð Þ2 − μ < 0,

A2 =
−
β I∗a + I∗sð Þ2

Λ/μð Þ2 − μ, δ −
βS∗2

Λ/μð Þ2

β I∗a + I∗sð Þ2
Λ/μð Þ2 p, βS∗2

Λ/μð Þ2 p − δ + μð Þ

����������

����������
,

A3 = JE∗j j:

ð21Þ

Let us consider

A2 =
−μ, δ −

δ + μ

p

β I∗a + I∗sð Þ2
Λ/μð Þ2 p, βS∗2

Λ/μð Þ2 p − δ + μð Þ

����������

����������
= −μ

βS∗2

Λ/μð Þ2 p + μ δ + μð Þ − δ −
δ + μ

p

� �
β I∗a + I∗sð Þ2

Λ/μð Þ2 p:

ð22Þ

Since

δ −
δ + μ

p
= −

1 − pð Þδ + μ

p
< 0, ð23Þ

we have −ðδ − ððδ + μÞ/pÞÞððβpðI∗a + I∗s Þ2Þ/ðΛ/μÞ2Þ > 0.
Note that ð1/R0aÞ > ð1/R2

0Þ if R0 > 1 and S∗ = ðΛ/μÞð1/R0Þ,
hence

−μ
βS∗2

Λ/μð Þ2 p + μ δ + μð Þ = μ δ + μð Þ − βS∗2

Λ/μð Þ2 p
" #

= μ δ + μð Þ − βp

R2
0

� �
= μ

βp
R0a

−
βp

R2
0

� �

= μβp
1
R0a

−
1
R2
0

� �
> 0:

ð24Þ

Therefore, A2 > 0. Through determinant transforma-
tion, we have

A3 =

−μ, δ −
δ + μ

p
, σ

β I∗a + I∗sð Þ2
Λ/μð Þ2 p, βS∗2

Λ/μð Þ2 p − δ + μð Þ, βS∗2

Λ/μð Þ2 p

0, 1 − p
p

δ + μð Þ, − μ + σð Þ

���������������

���������������

=

−μ, δ −
δ + μ

p
, σ

β I∗a + I∗sð Þ2p
Λ/μð Þ2 , βp

R2
0
− δ + μð Þ, βp

R2
0

0, 1 − p
p

δ + μð Þ, − μ + σð Þ

���������������

���������������
= μ μ + σð Þ βp

R2
0
− δ + μð Þ

� �
− σ δ + μð Þ β I∗a + I∗sð Þ2 1 − pð Þ

Λ/μð Þ2

+ μ + σð Þ δ −
δ + μ

p

� �
β I∗a + I∗sð Þ2p

Λ/μð Þ2 + μ
β 1 − pð Þ

R2
0

δ + μð Þ:

ð25Þ

It is easy to know

−σ δ + μð Þβ 1 − pð Þ I∗a + I∗sð Þ2
Λ/μð Þ2

+ μ + σð Þ δ −
δ + μ

p

� �
βp I∗a + I∗sð Þ2

Λ/μð Þ2 < 0:
ð26Þ

Note that R0a = βp/ðδ + μÞ, R0s = ðβð1 − pÞÞ/ðμ + σÞ,
and R0 = R0a + R0s, hence

μ μ + σð Þ βp

R2
0
− δ + μð Þ

� �
+ μ

β 1 − pð Þ
R2
0

δ + μð Þ

= μβ2p 1 − pð Þ 1
R0R0aR0s

1 − R0ð Þ < 0:
ð27Þ

Therefore, A3 < 0.
In conclusion, JE∗ is negative definite matrix. The proof is

completed.

3.2. Global Analysis of Equilibriums. Before proving, the fol-
lowing lemma is introduced:

Lemma 1 (see [11]). Suppose that f : ½0,+∞Þ⟶ R is
bounded, quadratic differentiable and its second derivative
are bounded. If sn ⟶∞ and f ′ðsnÞ⟶ 0 when n⟶∞,
then f ðsnÞ⟶ f∞, n⟶∞.

Theorem 3. The disease-free equilibrium E0 of system (1) is
globally asymptotically stable if R0 < 1.

Proof. The disease-free equilibrium of system (1) is locally
stable. The following proves that the disease-free equilibrium

5Computational and Mathematical Methods in Medicine



is globally attractive. Integrate and simplify the second and
third equations of the system (1):

Ia tð Þ ≤ e− δ+μð ÞtIa 0ð Þ +
ðt
0
e− δ+μð Þτβp Ia t − τð Þ + Is t − τð Þ½ �dτ,

Is tð Þ ≤ e− μ+σð ÞtIs 0ð Þ +
ðt
0
e− μ+σð Þτβ 1 − pð Þ Ia t − τð Þ + Is t − τð Þ½ �dτ:

8>>><
>>>:

ð28Þ

We take that upper limit on both sides of the inequality,
respectively,

I∞a ≤
ðt
0
e− δ+μð Þτβp lim

t→∞
sup Ia t − τð Þ

h
+ lim

t→∞
sup Is t − τð Þ�dτ = 1

δ + μ
βp I∞a + I∞sð Þ,

I∞s ≤
ðt
o
e− μ+σð Þτβ 1 − pð Þ lim

t→∞
sup Ia t − τð Þ

h
+ lim

t→∞
sup Is t − τð Þ�dτ = 1

μ + σ
β 1 − pð Þ I∞a + I∞sð Þ:

ð29Þ

Adding the above two formulas, we obtain I∞a + I∞s ≤ R0
ðI∞a + I∞s Þ. If R0 < 1,

lim
t→∞

Ia + Isð Þ = 0 Ia ≥ 0, Is ≥ 0ð Þ, ð30Þ

hence limt→∞Ia = 0, limt→∞Is = 0. We select that un ⟶∞,
vn ⟶∞ so that SðunÞ⟶ S∞, SðvnÞ⟶ S∞, and S′ðunÞ
⟶ 0, S′ðvnÞ⟶ 0. Then, it is obtained by the first formula
of (30) and system (1)

0 =Λ − μlim sup
t→∞

S,

0 =Λ − μlim inf
t→∞

S:

8<
: ð31Þ

We acquire

lim
t→∞

S tð Þ = Λ

μ
: ð32Þ

Therefore, the disease-free equilibrium is globally attrac-
tive if R0 < 1. Thus, E0 is globally asymptotically stable. □

In order to prove the global stability of the endemic equi-
librium of the system (1), the following generalized
Bendixson-Dulac theorem is introduced to exclude periodic
solutions.

Lemma 2. Generalized Bendixson-Dulac Lemma [12].

Let f : R3 ⟶ R3 be a Lipschitz continuous vector field
and ΓðtÞ be a boundary curve of a directed smooth surface
S ⊂ R3, which is closed and piecewise smooth. If g⟶ : R3

⟶ R3 is smooth in some field of S and for all t, g! satisfies

g! Γ tð Þð Þ · f
!

Γ tð Þð Þ ≤ 0 ≥0ð Þ,
Curlg!
	 


· n! ≤ 0 ≥0ð Þ,
ð33Þ

in S, and some points on S satisfy

Curlg!
	 


· n! > 0 <0ð Þ, ð34Þ

where n! is the unit normal vector on the surface S; then, ΓðtÞ
cannot be composed of the trajectory of system x′ðtÞ = f ðxÞ.
The direction of ΓðtÞ and n! forms a right-hand system.

Lemma 3 (see [12]). Let S be a directed smooth surface. ΓðtÞ
⊂ S is an arbitrary smooth closed curve, and ΓðtÞ is the
boundary of surface S′ ⊂ S. If f : ΓðtÞ⟶ R3 is Lipschitz, f
and g satisfy

g! Γ tð Þð Þ · f
!

Γ tð Þð Þ = 0,

Curlg!
	 


· n! > 0 <0ð Þ,
ð35Þ

in S, where n! is the unit normal vector on the surface S; then,
ΓðtÞ cannot be the heteroclinic ring of x′ = f ðxÞ.

Theorem 4. There is no periodic solution for system (1).

Proof. Region D = fðS, Ia, IsÞ ∣ S ≥ 0, Ia ≥ 0, Is ≥ 0, S + Ia + Is
≤ ðΛ/μÞg is the invariant set of system (1), and it is easy to
obtain that the boundary of region D cannot be the periodic
solution of system (1). Therefore, the following proof is dis-
cussed within region D.

Suppose that the system (1) has a periodic solution
ΦðtÞ = fSðtÞ, IaðtÞ, IsðtÞg in D and the plane region Π
enclosed by the trajectory Ψ of ΦðtÞ is located inside D.

Let f1, f2, f3 be the expressions at the right end of equa-

tion (5), respectively. Consider f
!
= ð f1, f2, f3ÞT , g!ðS, Ia, IsÞ

= ð1/SIaIsÞq! × f
!ðq! = ðS, Ia, IsÞTÞ, obviously g! · f

!
= 0. Let

g! = ðg1, g2, g3Þ and Curlg! = ðð∂g3/∂IaÞ − ð∂g2/∂IsÞ, ð∂g1/∂
IsÞ − ð∂g3/∂SÞ, ð∂g2/∂SÞ − ð∂g1/∂IaÞÞ. After calculating, we
have

Curlg!
	 


· 1, 1, 1ð ÞT = −
βp

S + Ia + Is

S

I2a
+ 1
Ia

+ Is
I2a

� �

−
β 1 − pð Þ
S + Ia + Is

S

I2s
+ 1
Is

+ Ia
I2s

� �
−

1
S2

σ + δð Þ

−
1
SIa

σ + Λ

S
+ σIs

S

� �
−

1
SIs

δ + 1
S
+ δIa

S

� �
< 0:

ð36Þ

Let the direction ofΠ be upward, and the direction of tra-
jectory Ψ and the direction of Π form a right-hand rule.
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Since ð1, 1, 1Þ is the normal vector of plane region Π, Theo-
rem 4 is established by Lemma 2 and Lemma 3. □

From the local asymptotic stability of E∗ and Theorem 4,
the following theorem is obtained.

Theorem 5. The endemic equilibrium E∗ of system (1) is
global asymptotically stable if and only if R0 > 1.

4. Numerical Simulation and
Sensitivity Analysis

4.1. Numerical Simulation. The model parameters areΛ, δ, σ,
μ, p, and β. The values of Λ, δ, σ, and μ can be acquired (see
Table 1). Existed parameter values and daily cases of respira-
tory diseases in hospitals in Baohe District and Yaohai Dis-
trict of Hefei city from October 26, 2016, to October 25,
2017, were used for parameter estimation. The date selected
here takes December 26, 2016, as the initial time, because
the peak value and seasonal characteristics of the disease
can be clearly observed from the data one year after this time.
MCMC (Markov Chain Monte Carlo) was used to estimate
unknown parameters β, p of system (1). The daily number
of respiratory diseases was the value of Is. An accurate set

of data of Ia was not available, since Ia had a strong resis-
tance, and could be recovered itself through immunity so that
it did not seek medical treatment. In the process of parameter
estimation, through continuous simulation, the results
showed that the initial value of Ia is 10-11 times of the initial
value of Is. The fitting effect is well as p = 0:907.

Observing the actual data, it is easy to see that the first
100 data have obvious peaks; then, we took them out sepa-
rately for parameter estimation. In the process of parameter
estimation, the 100-day data can be further divided into
two sections, 1-50 days and 51-100 days, respectively, with
a lower peak in 1-50 days and a larger peak in 51-100 days.
Therefore, parameter estimation was carried out on two sec-
tions, respectively, to obtain parameter β = 0:127729 for 1-50
days and parameter β = 0:1060537 for 51-100 days. The data
of 101-297 days showed relatively flat, and there is no obvi-
ous peak trough characteristics, so the periodic function is
used for fitting. The data of the last 289-365 days show a sig-
nificant peak again; then, parameter estimation was used to
obtain the parameter β = 0:1166635.

After the above discussion, the corresponding parameter
value was obtained, and the model was fitted to the actual
data (as shown in Figure 3). As can be seen from Figure 3,
the fitting effect is better. Accordingly, the model can be

Table 1: Parameter value.

Parameter Definition Value Reference

Λ The constant population input rate 69.485 (day-1) Data

δ The rate of self-healing 0.142 (day-1) [2, 13]

σ The cure rate 0.07 (day-1) [2, 14, 15]

μ The natural mortality rate 3.7e-05 (day-1) Data

p The proportion of nonclinic visits to the total number of patients 0.89-0.91 (day-1) Estimated

β The contact infection rate of disease 0.105-0.128 (day-1) Estimated
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Figure 3: Fitting chart of Is from October 26, 2016, to October 25, 2017.
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applied to respiratory disease data in the next year, which has
a better practical significance. In addition, it can be seen from
the figure that in winter (November to January), the daily
number of respiratory diseases is at its peak, and the spread
of the disease is relatively serious at this time. Then, during
spring and summer (end of January to mid-August), the
spread of respiratory diseases is relatively stable. Finally, a
small outbreak of the disease occurs from early September
to mid-September in autumn. Respiratory diseases have such
seasonal characteristic, which may be related to the gathering
of population in different seasons. There will be a large pop-
ulation gathering during the peak tourist season and holi-
days, which will easily lead to an increase in the number of
respiratory diseases [14].

4.2. Sensitivity Analysis. PRCC (Partial Rank Correlation
Coefficient Sensitivity Analysis) was used to study the sensi-
tivity of each parameter in system (1) to the number of clinic
visits (Is). In Figure 4, the absolute value indicates the degree
of influence of each coefficient on the output element, and the
sign indicates the positive and negative correlation of each
parameter with respect to the output element. A dummy var-
iable reflects the influence of different attributes of different
parameters on Is.

It can be seen from Figure 4 that the parameter that has
the greatest effect on Is is μ, followed by p, then Λ, β, σ, δ.
Since the natural mortality rate μ and the constant popula-
tion input rateΛ are uncontrolled factors, only the other four
parameters are considered. Figure 4 shows us the following
facts: Is decreases with the increase of p, the decrease of β,
and the increase of σ and δ.

We focus on the analysis of the influence of p on the total
number of patients (Ia + Is). For this reason, we took 3
groups of different values of p; Figure 5 shows the develop-
ment trend of the total number of patients.

We can see from Figure 5 that the limit is p = 0:8925 (it
should be noted that the bound of this stationary state
depends on the parameters and initial values). When the

value of p is smaller, the final total number of patients
(Ia + Is) is larger.

In order to observe the degree of increase (decrease) of
the total number of patients with the decrease (increase) of
pmore clearly, we took 4 groups of data in the same step size
at p > 0:8925 and p < 0:8925, respectively.

As can be seen from Figure 6, when t = 70, for every 1%
decrease in p, Ia + Is will increase by about 6 times (relative
growth rate=(relative growth total number of patients)/(ori-
ginal total number of patients)×100%). When t = 90, for
every 1% decrease in p, Ia + Is increase by about 8 times. It
is easy to see that when t increases, the degree of relative
increase also increase. From Figure 6, when t = 50, for every
1% increase in p, the total number of patients decreases by
about 4 times. When t = 90, for every 1% increase in p, the
total number of patients decreases by about 8 times. When
t increases, the relative decrease also increases. If t is fixed,
p increases or decreases by 1%, and the total number of
patients decreases or increases by a factor that is basically
the same. However, with the increase of time t, the degree
of relative increase or decrease will increase. Furthermore, if
p is small enough, the total number of patients will drop sig-
nificantly. The longer t, the faster the drop, which will be
conducive to the control of disease transmission.

5. Conclusion and Discussion

Firstly, this article establishes the SIS model according to the
transmission characteristics of respiratory diseases and the
general situation of respiratory disease in Hefei. The equilib-
riums E0 and E∗ and the basic reproduction number R0 were
obtained. It can be seen from the stability analysis results that
when R0 < 1, E0 is globally asymptotically stable and E∗ is
unstable, when R0 > 1, E∗ is globally asymptotically stable
and E0 is unstable.

Secondly, the system was simulated with the daily num-
ber of respiratory diseases in Hefei. According to the general
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Figure 5: Trend chart of total patients corresponding to different
p values.
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situation of the daily number of cases in Hefei from 2016 to
2017, the more representative time period data of
2016.10.26 to 2017.10.25 is selected, and the data is divided
into 4 segments for numerical simulation according to the

peak, trough, and seasonal characteristics of the data. Among
them,MCMC parameter estimation is used for 1-50 days, 50-
100 days, and 298-365 days to obtain the corresponding
parameter values of each group.
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In the results of parameter estimation and data simula-
tion, the initial number of Ia was 10-11 times that of Is was
obtained. This conclusion is also valid in theory, because
the solution of the system can be found, while the actual data
represents the value of the solution of each point, and the
value of the initial point can be obtained according to the
symmetry of the solution about the initial value. In the final
numerical simulation diagram of Is, it can be seen that the
actual value is appropriate to the value simulated by the sys-
tem, and the initial value of Ia obtained is reasonable and in
line with reality. Accordingly, the fact that the number of
nonclinic visits in the initial stage of epidemic transmission
is huge cannot be ignored. Improving one’s own resistance
can help people be less susceptible to infections during an
outbreak or recover as soon as possible after infection. In
addition, according to the results of sensitivity analysis, it is
also necessary to wear masks or isolate people with obvious
symptoms. Reducing contact with the sick reduces the prev-
alence rate.

To sum up, the model of respiratory diseases in Hefei can
be used to study the subsequent respiratory diseases in Hefei,
as well as the outbreak time and degree of diseases in corre-
sponding seasons. The number of nonclinic visits at the
beginning of the outbreak can be estimated, which is unde-
tectable in practice. Therefore, this article can help Anhui
CDC to know more about the current situation of local respi-
ratory disease transmission, pay attention to the early out-
break of respiratory disease in Hefei, and take preventive
measures. People are called on to pay attention to improving
their resistance so as to reduce the peak of the outbreak
period and shorten the outbreak time.
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