Hindawi

Neural Plasticity

Volume 2017, Article ID 2480689, 14 pages
https://doi.org/10.1155/2017/2480689

Review Article

Neuronal-Glial Interactions Maintain Chronic Neuropathic

Pain after Spinal Cord Injury

Young S. Gwak,! Claire E. Hulsebosch,” and Joong Woo Leem’

"Department of Physiology, College of Korean Medicine, Daegu Haany University, Daegu, Republic of Korea
Department of Neurobiology and Anatomy, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
*Department of Physiology, Yonsei University College of Medicine, Seoul, Republic of Korea

Correspondence should be addressed to Claire E. Hulsebosch; Claire.Hulsebosch@uth.tmc.edu and

Joong Woo Leem; jwleem@yuhs.ac

Received 17 April 2017; Revised 26 June 2017; Accepted 5 July 2017; Published 29 August 2017

Academic Editor: Mauricio A. Retamal

Copyright © 2017 Young S. Gwak et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The hyperactive state of sensory neurons in the spinal cord enhances pain transmission. Spinal glial cells have also been implicated
in enhanced excitability of spinal dorsal horn neurons, resulting in pain amplification and distortions. Traumatic injuries of the
neural system such as spinal cord injury (SCI) induce neuronal hyperactivity and glial activation, causing maladaptive synaptic
plasticity in the spinal cord. Recent studies demonstrate that SCI causes persistent glial activation with concomitant neuronal
hyperactivity, thus providing the substrate for central neuropathic pain. Hyperactive sensory neurons and activated glial cells
increase intracellular and extracellular glutamate, neuropeptides, adenosine triphosphates, proinflammatory cytokines, and
reactive oxygen species concentrations, all of which enhance pain transmission. In addition, hyperactive sensory neurons and
glial cells overexpress receptors and ion channels that maintain this enhanced pain transmission. Therefore, post-SCI neuronal-
glial interactions create maladaptive synaptic circuits and activate intracellular signaling events that permanently contribute to
enhanced neuropathic pain. In this review, we describe how hyperactivity of sensory neurons contributes to the maintenance of

chronic neuropathic pain via neuronal-glial interactions following SCL

1. Introduction

Pain raises alertness and prevents potential or actual damage
to the human body. Neurotrauma to the central nervous sys-
tem (CNS), such as spinal cord injury (SCI), causes neuro-
pathic pain throughout the entire body; in contrast,
peripheral nerve injury (PNI), such as sciatic or spinal nerve
ligation, causes regional neuropathic pain [1]. In somatosen-
sory system, both SCI and PNI eventually alter the transmis-
sion of ascending somatosensory modality that originates
from skin tactile and thermal receptors, such that sensory
neurons conduct altered discrimination of sensory inputs
from the periphery to the higher brain regions, including
the brain stem, thalamus, and cortex [1, 2]. Consequently,
altered sensory neural pathways respond to nonpainful stim-
uli as painful stimuli (a phenomenon called allodynia) and
enhance the pain in painful stimulation (a phenomenon
called hyperalgesia) compared to the normal sensitivity [1].

These enhanced neuronal response properties to stimuli, or
neuronal hyperactivity, which manifest pain hypersensitivity,
suggest that once neurons lose their ability to accurately
encode the somatosensation, they are more sensitive and
easier to activate [3, 4]. Thus, neuronal hyperactivity is a key
factor in the development and maintenance of neuropathic
pain following neurotrauma.

Over the last few decades, rodent animal models that
mimic many aspects of human neuropathic pain symptoms
have been developed. However, SCI-induced neuropathic
pain has been more elusive to understand than PNI-
induced neuropathic pain. The majority of studies of PNI-
induced neuropathic pain have focused on ascending pain
pathways from injured sites to the cortex without a regional
mechanism, whereas studies of SCI-induced neuropathic
pain have focused on ascending pain pathways with a
regional mechanism, such as at-level, below-level, and
above-level neuropathic pain, as well as glial activation [5].
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There are several mechanisms that can account for neuronal
hyperactivity in the CNS, which contributes to altered pain
states. This outcome can be explained by a variety of nonex-
clusive mechanisms, including enhancement of spinal cord
nociceptive processing by a decrease of the descending inhi-
bition [6, 7], increases in concentrations of excitatory amino
acids (EAAs) [8, 9], deafferentation hyperexcitability of spi-
nal neurons and/or thalamic neurons [10, 11], increased
efficacy of previously ineffective synapses [12, 13], and ana-
tomical alterations in the spinal cord [14, 15]. Each of these
may contribute to the mechanisms underlying persistent
hyperactivity of spinal cord dorsal horn neurons [16, 17].
In the present review, we describe mainly neuronal-glial
interactions and also briefly the activation of intracellular
signaling pathway and reorganization of spinal synaptic cir-
cuits, which are important causes of dorsal horn neuronal
hyperactivity leading to pain hypersensitivity following SCI.

2. Modeling Central Neuropathic Pain

Little attention has been given to mechanisms of chronic pain
in SCI in the clinics, and it has only been in the last several
years that animal models were developed to study the devel-
opment and maintenance of central neuropathic pain-like
behavior after SCI. The models include an intravascular pho-
tochemical reaction that occludes blood vessels, producing
spinal cord ischemia with subsequent trunk mechanical allo-
dynia [18, 19]; anterolateral lesions of the spinal cord in
monkeys and rats that produce overgrooming and mechani-
cal allodynia [20, 21]; a clip compression model in which the
thoracic spinal cord is compressed by 35g or 50 g clip dem-
onstrates mechanical hyperalgesia in the hindlimbs [22];
quisqualic acid (an AMPA/kainate and a group I glutamate
metabotropic receptor agonist) injection into the dorsal horn
produces overgrooming [23]; and a spinal hemisection [24,
25] and spinal contusion models [26-28] demonstrate
mechanical allodynia in both the hindlimbs and forelimbs.
The spinal contusion model best parallels the injury profile
described in patients with SCI [29].

It is noted that the adequate evaluation of animal pain
behaviors after SCI should be considered by sensorimotor
activity. Because SCI disrupts ascending sensory and
descending motor pathways, the activity of sensorimotor is
critical to the evaluation of animal pain behaviors. In motor
studies following SCI, we and others assess changes in loco-
motion using the BBB open-field test scale [30, 31] to demon-
strate that the hindpaws are plantar placed and weight
bearing and consequently that the animal can position and
withdraw its hindpaw in response to somatosensory stimuli;
and measure exploratory activity [8, 9] as well as the number
of ultrasonic vocalizations during rest as measures of sponta-
neous behaviors that are consistent with a noxious experi-
ence [32]. In sensory studies following SCI, the sensitivity
to mechanical, thermal, and chemical stimulation determines
the painful sensation. Because painful stimuli trigger avoid
and withdrawal behaviors, the evaluation of pain behavior
can be determined by the number of withdrawals or the
threshold values for the withdrawals [33]. The increased
number of withdrawal and decreased thresholds correlate
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well with dorsal horn neuronal hyperactivity. In fact, when
animals with SCI are submitted to tactile stimulation of the
hindpaw, decreased threshold for hindpaw withdrawals
occurs concomitant with increased discharge rate of dorsal
horn sensory neurons (Figure 1). In addition, the increase
of receptor/ion channel expression in the CNS following
SCI shows a clear correlation with neuropathic pain behav-
iors [8, 34, 35].

In studies of SCI patients with or without spontaneous
and stimulus-evoked pain, the predominant mechanism
underlying SCI-induced neuropathic pain involves neuronal
hyperactivity at the levels of the spinal cord and brain [36-
41]. For example, in SCI patients, the blockade of peripheral
inputs by lesioning of the dorsal root entry zone (DREZ) of
the spinal cord and by pharmacological inhibition of spinal
NMDA receptors or activation of peripheral opioid receptors
effectively attenuates the increased response of central neu-
rons to repeated C-fiber stimulation as well as pain hypersen-
sitivity [42-44]. In addition, SCI patients show the higher
concentrations of proinflammatory cytokines, such as inter-
leukin 1 (IL-1), IL-6, and tumor necrosis factor alpha
(TNFa), in the serum and the microglial activation in the
injured spinal cord [45, 46]. The elevated serum levels of
cytokines and the activation of spinal microglia are also
reported from studies in rodent SCI models [47-52]. More-
over, the clinical findings in SCI patients, especially regarding
neuronal hyperactivity, are also observed in rodent SCI
models (see below). Thus, animal models of SCI can serve
as an important source to understand the mechanisms of
neuropathic pain in SCI patients.

3. Hyperactivity of Spinal Sensory Neurons
after SCI

Neuronal hyperactivity is defined as enhanced spontaneous
excitability of neurons or abnormally increased neuronal
activity in response to mechanical, thermal, and chemical
stimulation. Neuronal hyperactivity has been well docu-
mented in electrophysiological studies in rodent SCI models
and is characterized by increased evoked and spontaneous
action potential frequencies, lowered thresholds for action
potential generation, and prolonged afterdischarge activity
[52-56]. Thus, hyperactivity of sensory neurons mediates
enhanced nociceptive processing in pathological pain states.
In addition, electrophysiological studies have demonstrated
that SCI causes altered neuronal response properties of the
at-level (near the injured site) and below-level (several seg-
ments caudally remote from the injured site) spinal dorsal
horn regions as well as the supraspinal regions, specifically
the gracile nucleus and the thalamic ventral posteriolateral
(VPL) and posterior thalamic (PO) nuclei [57-60]. Cumula-
tively, these data suggest that SCI produces neuronal hyper-
activity along somatosensory pathways in the CNS.

SCI causes direct (primary) and indirect (secondary)
damages to spinal dorsal horn sensory neurons. According
to their electrophysiological properties, spinal sensory
neurons are classified into three types. Low-threshold (LT)
neurons show good responses to weak stimuli, such as vibra-
tion, touch, and brushing at the peripheral receptive field. In
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FIGURE 1: Neuropathic pain behavior and neuronal hyperactivity following SCI. ((a), left) Compared to the sham group (closed circle), the
SCI group (open circle) shows complete loss of locomotion at early phase (days 1 to 4) following contusive spinal cord injury (SCI) at the
thoracic segment T10. However, three weeks after SCI, animals gradually recover locomotion, showing BBB scores over 7, and are enable
to position and withdrawal responses. The BBB scores are averaged by left and right sides of the hindlimbs. ((a), right) Pain behaviors
were measured by paw withdrawal thresholds (PTWs), which are determined by quantitative assessment of withdrawal behaviors ([33]).
On three weeks after SCI, pain behaviors develop (decrease of PWTs scores) and maintained. (b) On four to five weeks after SCI, lumbar
spinal wide dynamic range (WDR) dorsal horn neurons (neurons that respond to all three stimuli: brush, pressure, and pinch in their
peripheral receptive field) display significantly increased evoked activity in response to all three stimuli (10 seconds each) compared to the
sham group (modified from Gwak et al. [28]). Br: brush, Pr: pressure, and Pi: pinch stimulation. *p < 0.05 versus the sham group.

contrast, these neurons do not respond to strong stimuli
such as pinching. High-threshold (HT) neurons show good
responses to both moderate and strong stimuli. Wide
dynamic range (WDR) neurons respond well to both weak
and strong stimuli, so that WDR neuronal response
increases gradually as the stimulation intensity increases
[61-63]. In vivo extracellular recording is a useful tool for
examining neuronal response properties to mechanical stim-
ulation. Using this technique, we and others have reported
that three types of spinal sensory neurons have significantly
altered responses to various mechanical stimuli after SCI.
Specifically, all neuronal types show significantly increased
firing activity after SCI compared to normal in response to
stimulation applied at the peripheral receptive field [54,
55]. Moreover, the enhanced responses to peripheral stimuli
are sustained in rodent SCI models over many months and
may persist permanently [5]. More importantly, SCI induces
phenotypical changes in spinal sensory neurons. The pro-
portions of dorsal horn neurons with WDR characteristics
were increased, whereas the proportions of HT and LT neu-
rons were decreased. However, altered electrophysiological
properties of dorsal sensory neurons are not the only factor
causing neuronal hypersensitivity; anatomical changes
followed by alteration of synaptic circuits are also an

important factor for hyperactivity of spinal sensory neurons
(see below).

3.1. Reorganization of Synaptic Circuits after SCL. Over the
last few decades, morphological studies have suggested that
the maintenance of neuronal hyperactivity depends on mal-
adaptive synaptic circuits. For example, traumatic SCI essen-
tially destroys sensory-mediating afferent pathways, thereby
resulting in the reorganization of synaptic circuits induced
by neuronal cell death, degeneration, or primary afferent
axon expansion [64, 65]. Although the spinal nervous system
has compensatory and neuroprotective mechanisms for
recovery, it is well documented that neuronal-glial interac-
tions impedes these mechanisms. For example, endogenous
nerve growth factor (NGF) released by activated microglia,
a subset of astrocytes and other inflammatory cells, facilitates
maladaptive compensatory events, such as regeneration or
sprouting of primary afferent fibers, at regions near the
injured site and at remote regions [66-68]. Thus, at the
single-cell level, incoming primary afferent signals can be
amplified in the dorsal horn due to increases of projection
pattern and synaptic input [25, 68]. In addition, SCI has been
shown to cause dendritic spine dysgenesis in the spinal dorsal
horn, thus contributing to neuropathic pain via activation of



Racl, a small signaling G-protein [69]. Activated glia, how-
ever, have also been shown to release growth inhibition fac-
tors (e.g., NG-2, neurocan, and brevican) within a few days,
thereby preventing compensatory axonal regeneration and
regrowth [70-73]. Another study concludes that activated
glia contribute to the reorganization of synaptic circuits at
the spinal dorsal horn and supraspinal regions including
the VPL thalamic nucleus [74, 75]. In a recent study, Lee-
Kubli et al. report that SCI caused astrocytic and microglial
activation in the spinal cord and satellite glial cell activation
in DRGs, respectively, and suggest that SCI-induced
neuronal-glial interactions may occur throughout the entire
nervous system [76].

It is well known that maladaptive synaptic reorganization
induced by activated glial cells contributes to the glial-
neuronal interactions at the synapse at the so-called tripartite
synapse following traumatic CNS injury [77]. For example,
the extension of microglial and astrocytic processes into
and near synaptic clefts following CNS injury allows alter-
ations to thousands of synaptic clefts and vastly altered neu-
ral networks. These tripartite clefts (presynaptic and
postsynaptic neuronal structures with contributions from
activated microglia and/or activated astrocytes in the micro-
environment) facilitate transmission of pain-mediating sub-
stances produced by activate glial cells, such as TNFa,
BNDF, interleukins, and ROS [78, 79]. Therefore, posttrau-
matic neuronal and glial mechanisms contribute to the reor-
ganization of synaptic circuits throughout the entire nervous
system and can result in chronic central neuropathic pain
throughout the entire body [4, 75].

3.2. Intracellular Signaling Cascades after SCI. In spinal dor-
sal horn sensory neurons, the predominant events immedi-
ately after SCI are production of intense discharge activity
from injured and adjacent axons, dramatic increased extra-
cellular concentrations of glutamate and proinflammatory
cytokines, and increased reactive oxygen species (ROS) pro-
duction, followed by activation of various protein kinases
and other enzymes [80, 81]. Thus, immediate electrical and
neurochemical events post-SCI activate pain-mediating
substance transmission in synaptic clefts between neurons
and glial cells (see Figure 2). Consequently, the activation
of membrane-bound receptors and ion channels triggers a
massive influx of cations into intracellular compartments
that is followed by activation of intracellular biochemical
events, thereby triggering activation of transduction and
translation cascades.

It is well documented that activation of intracellular
downstream pathways triggers consistent hyperactivity of
dorsal horn sensory neurons following SCI [82, 83]. The
increase of intracellular calcium ions induced by activation
of NMDA receptors and voltage-dependent calcium chan-
nels triggers intracellular downstream pathways. For exam-
ple, calcium ions facilitate activation of the protein kinase A
(PKA), protein kinase C (PKC), and calcium-calmodulin-
dependent kinase II (CaMKII) pathways. Simultaneously,
activation of MAPK and extracellular signal-regulated kinase
(ERK) initiates activation of transcription factors such as
NF«xB, ELK, and CREB, which results in altered gene
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expression. Transduction and translation cascades can also
contribute to persistent sensory neuronal hypersensitivity.
Additionally, activation of glutamate metabotropic recep-
tors and neurotrophin receptors, such as Trk, also induces
activation of PKC-=>MEK->MAPK pathways [83, 84].
Recently, more direct evidence indicates that MAPK
family-CREB pathways are actively involved in the dorsal
horn sensory neuronal hyperactivity and central neuro-
pathic pain following SCI. Specifically, SCI results in acti-
vation of the p-38 MAPK-phosphorylated CREB (pCREB)
pathway, which modulates sensory neuronal hyperactivity
and central neuropathic pain after SCI. The reduction in the
phosphorylated form of MAPK, p-38 MAPK, is also shown
to attenuate the neuropathic pain behavior and sensory neu-
ronal hyperactivity following SCI [55]. SCI-induced upregu-
lation of pCREB expression persists over a month in dorsal
horn sensory neurons after SCI and is attenuated by MAPK
inhibition. Thus, protein kinase transcriptional factor path-
ways alter target gene expression, thereby driving phosphor-
ylation of multiple receptors and ion channels. These effects
contribute to the persistent hyperexcitability state of dorsal
sensory neurons [85]. Therefore, downstream and upstream
intracellular cyclical cascades contribute significantly to per-
sistent neuronal hyperactivity that leads to chronic central
neuropathic pain following SCI.

Other intracellular pathways also play a role. For instance,
high concentrations of intracellular calcium ions trigger acti-
vation of phospholipase A, (PLA,). PLA, hydrolyzes the cell
membrane and produces free fatty acids, thereby producing
lipid metabolites. Specifically, calcium-dependent cytosolic
PLA, (cPLA,) and secretory PLA, (PLA,) break down phos-
pholipids and produce arachidonic acid and other lipid
metabolites such as prostaglandins and leukotrienes. Interest-
ingly, these lipid metabolites are strong candidates for pain
development and maintenance [86-88]. In addition, active
calcium-independent PLA, (iPLA,) is a powerful mediator
of the production of free radicals and pain inducers, such as
reactive oxygen species (ROS), reactive nitrogen species
(RNS), and MAPK family downstream pathways [89, 90].
Therefore, PLA,-mediated lipid membrane hydrolysis causes
activation of intracellular events that result in membrane-
bound receptor and ion channel dysfunction [91]. In particu-
lar, ROS trigger the release of glutamate via the TRPV1 and
TRPAI channels [92, 93] and production of proinflammatory
cytokines via microglial NADPH oxidase 2 (NOX2) pathways
[94], making sensory neurons easier to activate. Recently,
Kiyoyuki et al. report that the lipid metabolite leukotriene
facilitates NMDA-inward current via intracellular G-
proteins and neuronal hyperactivity in the spinal dorsal horn
[95]. These reports suggest that ROS-mediated lipid metabo-
lites activate membrane-bound channels or receptors that
contribute to sensory neuronal hyperactivity and chronic
neuropathic pain following SCI. In addition, we previously
proposed that activation of iPLA, contributes to neuropathic
pain following SCI. For example, SCI resulted in the upreg-
ulation of iPLA, in spinal dorsal horn sensory neurons and
using in vivo extracellular recordings, we showed that the
administration of an iPLA, inhibitor attenuated neuronal
hyperactivity [96]. Another study demonstrated that lipid
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FIGURE 2: Intercellular and intracellular mechanisms driving persistent neuronal hyperactivity following SCI. After SCI, activated primary
afferent fibers release pain-mediating substances on both postsynaptic neurons and activated glial cells. Elevation of calcium ion
concentrations in neurons and activated glial cells triggers similar intracellular downstream events in both neurons and glial cells, that is,
activation (phosphorylation) of p38-MAPK and ERK, followed by activation of posttranscriptional and posttranslational processes that
result in altered protein and ion channel expression. In neurons, elevated calcium ion concentrations also trigger activation of calcium-
dependent (direct) pathways and calcium-independent (indirect) PLA, pathways, followed by increased AA, ROS, and PG synthesis.
These effects contribute to the development of persistent neuronal hyperactivity. Activated glial cells release gliotransmitters to the
extracellular space, thereby activating receptors and/or ion channels in the neuronal membrane. Subsequently, gliotransmission activates
neural membrane receptors and/or ion channels, thereby triggering a massive influx of cations (Na* and Ca®*) into the intracellular
compartments of neurons. This positive feedforward cycle maintains persistent neuronal hyperactivity, which plays a key role in the
development of neuropathic pain after SCI. p38-MAPK: p38 mitogen-activated protein kinases; ERK: extracellular signal-regulated
kinases; 5-HTRs: 5-serotonin receptor; AA: arachidonic acid; APs: action potentials; EAAs: excitatory amino acids; ILRs: interleukin
receptors; NKR: neurokinin receptor; PGs: prostaglandins; PLA,: phospholipase A,; ROS/RNS: reactive oxygen/nitrogen species; TLRs:
toll-like receptors; TRPs: transient receptor potential channels.

metabolites such as arachidonic acid-containing phosphati-
dylcholine (AA-PC) contribute to neuropathic pain and
increase the levels of reactive microglia/astrocytes in the
spinal dorsal horn, suggesting that regulation of phospho-
lipids is an important factor for neuropathic pain [97].
Therefore, these data suggest that lipid metabolites contrib-
ute to the maintenance of sensory neuronal hyperactivity
following SCIL.

Taken together, these studies indicate that SCI produces
long-lasting or persistent hyperactivity of spinal dorsal horn
sensory neurons via altered intracellular signaling pathways.
In particular, activation of PLA,-ROS pathways perpetuate
receptor/ion channel activation and membrane property
changes via transcriptional/translational events that modu-
late the expression of specific genes and proteins, making

glutamate receptor-bearing neuronal membranes hyperex-
citable after SCI.

4. The Role of Glial Cells in SCI-Induced
Neuropathic Pain

In the CNS, glial cells are composed of astrocytes, microglia,
and oligodendrocytes; in the peripheral nervous system, oli-
godendrocytes are replaced by Schwann cells. Glial cells are
intimately associated with neurons and their processes form
complex wrapping patterns around nerve processes during
development. Glial cells actively contribute to the mainte-
nance of ionic balance and other regulatory processes that
enable homeostasis under physiological conditions in the
nervous system [98, 99]. Glial cells are easily activated by



injury, stress, and inflammation. Activated glial cells are key
cellular contributors in the development of abnormal physi-
ological roles that result in maladaptive synaptic circuits.
Subsequent alterations in neuronal-glial circuits have been
shown to contribute to the enhancement of pain transmis-
sion [100].

Throughout the CNS, it is well established that SCI
results in astrocytic and microglial activation. Using a strict
anatomical or morphological definition, astrocytic and
microglial activation is “somatic hypertrophy and thickened
branches.” It is well documented that SCI produces astro-
cytic and microglial somatic hypertrophy and thickened
branches compared to the resting state [101, 102]. Previ-
ously, we have proposed that temporal and spatial astrocytic
and microglial activation occurs after SCI. In addition, acti-
vated astrocytes and microglia in both superficial and deep
dorsal horn laminae contribute to persistent activation of
dorsal horn neurons for several months following SCI [5].
However, the mechanisms contributing to the development
of hypertrophy and altered function in activated astrocytic
and microglial cells are not yet precisely understood,
although a variety of possible mechanisms have been
proposed. First, astrocytic and microglial cell membranes
are more resistant to somatic volume changes than neuronal
cell membranes. This property results in astrocytic and
microglial cell hypertrophy rather than death after neural
trauma [103]. Secondly, potassium homeostasis regulates
glial cell volume [104]. Specifically, SCI produces a massive
influx and accumulation of glutamate (through high affinity
glutamate transporters) into glial cells, followed by uptake
of K* (by Na'/K'-ATPase) ions. High intracellular con-
centrations of K" in glial cells trigger energy-independent
influxes of CI~, K, and HCO; from extracellular to intracel-
lular compartments. Subsequently, activation of anion chan-
nels triggers H,O accumulation, which produces somatic
hypertrophy [105]. Thirdly, activation of the Na*/K*/Cl”
cotransporter (NKCC) results in glial cell hypertrophy. For
example, SCI-induced overproduction of ROS increases
NKCC activity and induces an influx of Na* ions that results
in hypertrophy of activated glial cells [106]. However, the
morphological changes of astrocytic and microglial cells
do not fully account for the role of activated glial cells
in pain transmission following SCI. A recent report sug-
gests the roles of oligodendrocytes in the neuropathic pain.
For example, IL-33, a member of the IL-1 family of cyto-
kines, expressed in oligodendrocytes within the spinal cord
after peripheral nerve injury in mice involves the generation
of neuropathic pain behavior, and this pain behavior is
attenuated by inhibition of IL-33/ST2 (IL-33 receptor)
signaling [107]. We have previously reported that an active
form of one intracellular signaling kinase, pCaMKII, is
upregulated in oligodendrocytes in the dorsal column of
the spinal cord in animals showing neuropathic pain behav-
ior after SCI, and SCI-induced pain behavior is reduced by
preventing CaMKII activation [108]. It is also demonstrated
that genetic ablation of oligodendrocytes in mice, which
causes axonal pathology in the spinal dorsal horn and spi-
nothalamic tracts, leads to the development of neuropathic
pain behavior [109].
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Another reasonable hypothesis to explain glial activation
involves the functional contribution of these cells to neurode-
generation. Activated glial cells induced by SCI increase the
release of neurotransmitters, proinflammatory cytokines,
ROS/RNS, ATP, and nitric oxide (NO) [110-113]. These sub-
stances are actively involved in pathophysiological conditions
such as apoptosis, Parkinson’s disease, Alzheimer’s disease,
and neurodegeneration [114-116]. For example, inhibition
of iNOS (inducible nitric oxide synthase) and glial activation
reduce neuronal apoptosis and promote the neuronal func-
tions [117]. They are also powerful mediators of enhanced
pain transmission following SCI. These pain-mediating sub-
stances facilitate activation of neuronal membrane-bound
receptors and ion channels. Activation of cationic channels
initiates calcium influx and activates intracellular cascades,
followed by the activation of transcription factors in both
presynaptic and postsynaptic neurons. We hypothesize that
the abnormal altered biochemical pathways as a result of glial
activation causally contribute to the maintenance of hyperac-
tivity of spinal sensory neurons after SCI [118, 119].

In the past decade, several studies have reported that
peripheral nerve injury-induced glial activation robustly con-
tributes to peripheral neuropathic pain [120, 121]. In addi-
tion, some studies have presented data to support the idea
that persistent spinal astrocytic and microglial activation
contributes to mechanical allodynia and neuronal hyperac-
tivity following SCI [122, 123]. There are several ways in
which glial cells participate in SCI-induced neuropathic pain.
First, proinflammatory cytokines released from activated
glial cells after SCI cause hyperactivity of dorsal horn sensory
neurons to result in neuropathic pain. Detloff et al. demon-
strate that TNFa and IL-1f contribute to the development
of mechanical allodynia after SCI, whereas IL-6 contributes
to the maintenance of mechanical allodynia [124]. In addi-
tion, SCI causes activation of trkB.T1- (a truncated isoform
of the BDNF receptor) mediating signaling in astrocytes,
resulting in the increase of astrocyte proliferation and
mechanical allodynia. However, the trkB.T1 KO mice show
decreased astrocyte proliferation and reduced mechanical
allodynia [125]. Second, activated glial cells by SCI modulate
inhibitory tone within the spinal cord, causing increased
excitability of dorsal horn sensory neurons to lead to neuro-
pathic pain. It has been shown that SCI decreases inhibitory
GABAergic function and increases spinal WDR neuronal
activity in the spinal dorsal horn laminae II-V [126]. In addi-
tion, inhibition of glial activation prevents downregulation of
glutamic acid decarboxylase (GAD),, the GABA synthase
enzyme, in spinal sensory neurons [4]. Third, decreased
expression of glutamate transporter (GLT1) in glial cells after
SCI causes hyperactivity of dorsal horn sensory neurons to
lead to subsequent neuropathic pain. Indeed, local downreg-
ulation of GLT1 at the neuronal-astrocytic synaptic cleft is
shown to facilitate glutamate-mediated transcriptional cas-
cades, thereby resulting in increased responses of dorsal horn
sensory neurons to tactile and thermal stimulation of the
peripheral receptive field [34]. Fourth, activated glial cells
by SCI modulate intracellular signaling pathways to induce
dorsal horn neuronal hyperactivity and pain hypersensitivity.
In fact, it has been revealed that SCI-induced modulation of
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downstream elements including p-38 MAPK and ERK
occurs in both neurons and glial cells [56, 85]. Multiple stud-
ies have demonstrated that pharmacological blockade of glial
activation prevents neuronal and glial activation of p-38
MAPK and reduces hyperactivity of dorsal horn sensory neu-
rons to tactile and thermal stimuli, as well as attenuating
mechanical allodynic behavior at both “at-level” [56] and
“below-level” [127] regions following SCL

Interestingly, the spatial distributions and localizations of
activated glial cells and activated MAPK family members
show different patterns in different SCI animal models. In a
hemisection lesion (dorsal to ventral) in the spinal cord, acti-
vation of p-38 MAPK is observed at neurons and microglia in
the dorsal horn in remote caudal regions [127]. However, the
hemisection SCI shows no p-38 MAPK activation in astro-
cytes, even though astrocytes are observed in the activated
state, as demonstrated by morphological changes and
increased levels of GFAP. In contrast, moderate/severe con-
tusion SCI using the Infinite Horizon Impactor results in
activation of p-38 MAPK and ERK in neurons, astrocytes,
and microglia, as well as astrocytic and microglial activation
in the at-level region [56]. However, contusion SCI using the
NYU Impactor causes p-38 MAPK activation in microglia in
caudal regions [122]. In addition, the induction of moderate
contusion SCI using an OSU electromagnetic device results
in activation of p-38 MAPK in neurons and microglial acti-
vation at caudal “below-level” regions rather than astrocytic
activation [124]. Taken together, these data suggest that dif-
ferential mechanical injuries of the spinal cord influence cel-
lular and spatial distribution of p-38 MAPK activation in
neurons and specific glial cell populations. However, intra-
cellular downstream events share common pathways that
result in the development and maintenance of neuropathic
pain after SCIL

5. Neuronal-Glial Interactions in SCI-Induced
Neuropathic Pain

Astrocytes and microglia express receptors and ion channels
that are also expressed in neurons [128-130]. Consequently,
neurotransmitters and neuropeptides released by primary
afferent terminals initiate activation of membrane-bound
receptors and ion channels at synaptic clefts between neu-
rons and glial cells. Apart from neuronal activation (see
above), SCI produces a long-lasting surge of extracellular
glutamate [131] that is followed by significant increases in
proinflammatory cytokine secretion, overexpression of
membrane-bound receptors and ion channels, and altered
expression of transporters in both neurons and activated glial
cells [132-134]. Neuroanatomical and functional changes
initiate glial cell activation, followed by increased release of
gliotransmitters (transmitters released by glial cells in a pro-
cess called “gliotransmission”), proinflammatory cytokines,
ROS/RNS, and chemokines. These substances initiate activa-
tion of a positive feedforward cycle between neurons and glial
cells that enables persistent neuronal hyperactivity.

In in vivo electrophysiological studies, activated glia con-
tribute significantly to sensory neuronal hyperactivity, as evi-
denced by wind-up, the frequency-dependent facilitation of

C-fiber activation in spinal dorsal horn neurons [135]. For
example, IL-1f treatment caused wind-up in spinal dorsal
horn sensory neurons; moreover, this effect was attenuated
by propentofylline (PPF), a glial modulator that inhibits
astrocytic and microglial activation [136]. PPF is a therapeu-
tic agent that acts by blocking the uptake of adenosine and
inhibiting the production of phosphodiesterase (PDE). PPF
inhibits GFAP (glial fibrillary acidic protein) production in
astrocytes and OX-42 (CDI11b) production in microglia/
macrophages. Gwak and Hulsebosch have demonstrated that
inhibition of glial activation induced by intrathecal PPF
treatment attenuates sensitized WDR neurons in lumbar
dorsal horn following low thoracic SCI ([123], Figure 3). In
addition, peripheral neuropathic pain behavior is attenuated
by PPF treatment [137, 138]. The pharmacological properties
of PPF are thought to regulate the synthesis and release of
proinflammatory cytokines [136], which are common sub-
strates for pain transmission.

Proinflammatory cytokines enhance the expression of
substance P, inducible nitric oxide synthase (iNOS), and
cyclooxygenase (COX); changes that are followed by activa-
tion of p-38 MAPK and ERK [139], which initiate activation
of transcription factors such as pCREB. Glial cells also partic-
ipate in synaptic development in neurons. For example,
upregulation of astocytic ephrin-B1 correlates with decreased
vGlutl-positive glutamatergic input to CA1 neurons follow-
ing traumatic brain injury. However, the ablation of astro-
cytic ephrin-Bl promotes the recovery of vGlutl-positive
glutamatergic input to CA1 neurons [140]. Therefore, astro-
cytes make important contributions to synapse remodeling.
In addition, more direct evidence that glial cells modulate
neuronal excitability exists. For example, glial cells alter the
expression of KCC2 and NKCCI, thereby decreasing
GABAergic inhibitory tone and increasing glutamate release
[141]. Other studies suggest that lipid metabolism-mediated
glial activation contributes to neuropathic pain following
SCIL For example, intrathecal treatment with lipid mediator
lipoxin 44 (LXA4) prevents SCI-induced neuropathic pain
and microglial activation [142]. These intracellular down-
stream and translational factor cascades modulate receptor
expression and inflammatory cytokine production, thereby
producing persistent hyperactivity of dorsal horn sensory
neurons that contribute to the initiation and maintenance
of central neuropathic pain following SCI [127].

Taken together, these morphological and functional
alterations of activated glial cells contribute to multifactorial
extracellular and intracellular signaling changes. These
changes are followed by alterations in transmitter/receptor/
transporter expression and activation states. Therefore,
dysregulation of glial functions of activated glial cells can be
termed a “gliopathy” [143] characterized by increased release
of gliotransmitters, increased secretion of proinflammatory
cytokines, upregulation of membrane-bound receptors/ion
channels, and upregulation of transporters. In recent, Wu
et al. report that SCI causes increase of cell cycle activation
(CCA) at the injured spinal and thalamic levels. In addition,
increased CCA significantly contributes to the neuronal
hyperactivity and gliopathy. However, a systemic injection
of flavopiridol (a pan-cyclin-dependent kinase inhibitor)
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FIGURE 3: Attenuation of neuronal hyperactivity by spinal treatment with PPF following SCI in rats. (a) Typical spike activity during 10 sec
(scale bar) of stimulation in the peripheral field during single neuron recordings from sham (top), SCI + vehicle (middle), and SCI+ 10 mM
PPF- (bottom) treated rats. (b) After SCI, lumbar spinal wide dynamic range (WDR) dorsal horn neurons displayed significantly increased
evoked activity in response to peripheral stimuli (10 seconds each) in the SCI-vehicle group compared to the sham group. Two hours after
spinal treatment with 10 mM PPF, this activity was significantly attenuated. In contrast, 1 mM PPF had no effect compared to the vehicle
treatment (modified from Gwak et al. [4]). *p < 0.05 versus the SCI + vehicle group.

reduces CCA, glial changes in the spinal dorsal horn, and
neuropathic pain [144, 145]. Since normal glial-neuronal
networks maintain homeostatic function of the nervous sys-
tem, gliopathy may play a critical role in inducing the synap-
tic reorganization, synaptic changes in efficacy, alterations in
neuronal excitability, and other maladaptive mechanisms
that results in central neuropathic pain following SCI.

6. Clinical Applications and Limitations of Glial
Activation

A number of animal studies have demonstrated that modula-
tion of glial activation can have beneficial effects by attenuat-
ing neuropathic pain. However, the efficacy that can be
achieved by this approach is still under debate. For example,
intrathecal administration of the glial modulator PPF given
intraperitoneally resulted in attenuation of SCI-induced
astrocytic/microglial activation and neuropathic pain in ani-
mal models [4]. However, intrathecal PPF shows no signifi-
cant effects on neuropathic pain induced by spinal nerve
crush injury in animal models [146] and no decreased pain
in postherpetic neuralgia patients [147], most likely due to
differential responses of rodent and human glial cells. In
addition, inhibition of microglial activation by an intraperi-
toneal injection of minocycline immediately after injury in
the early phase attenuates both tactile and thermal hypersen-
sitivity (neuropathic pain), but administration of minocy-
cline 7 days after injury has no effects on neuropathic pain
following peripheral nerve injury in animal models [148].

One recent study reports that neuropathic pain attenuation
is not directly related to morphological changes of glial cells.
They reported that oral administration of a p38 MAPK
inhibitor attenuated neuropathic pain following SCI, without
causing any morphological changes in astrocytes or microg-
lia [149]. Currently, three glial-modulating agents are widely
used in animal studies of neuropathic pain attenuation. Two
of these agents, ibudilast (AV-411 and MN-166) and PPF, are
inhibitors of phosphodiesterase (PDE); in contrast, minocy-
cline is a synthetic tetracycline derivative. Since their ability
to inhibit glial cell activation is reasonably correlated with
their ability to attenuate neuropathic pain following SCI,
these substances are strong candidates for attenuating neuro-
pathic pain by inhibiting glial cell activation. However, after a
number of clinical trials, the value of glial-modulating agents
is still under debate. For example, minocycline treatment
results in pain attenuation in the clinic [150], but PPF shows
no pain attenuation in human trials [147]. Administration of
ibudilast has been shown to attenuate peripheral nerve
injury-induced and paclitaxel-induced pain in an animal
study [151]; however, this effect is not observed in a clinical
trial [152]. Although most animal studies have demon-
strated that glial modulation is efficacious in treating neuro-
pathic pain [153], future studies in humans must (1)
characterize the effects of glial modulation on glial activa-
tion and pain severity and (2) optimize the administration
route and application time in order to identify the most
promising translational applications of glial modulation in
human neuropathic pain [154].
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7. Conclusion

Neuronal hyperactivity is a major factor in the development
of chronic central neuropathic pain following SCI. While
the development and maintenance of neuronal hyperactivity
depends on neuronal events, glial activation also plays a key
role through receptor activation and/or ion channel-
mediated pathways. Therefore, neuronal-glial interactions
initiate and maintain activation of membrane-bound pro-
teins and subsequent intracellular downstream events. These
events, in turn, result in persistent neuronal hyperactivity via
positive feedforward cycles. In particular, persistent activa-
tion of astrocytes and microglia after SCI leads to morpho-
logically and functionally altered glial cells in a “gliopathy.”
Recent clinical studies have found that people with SCI show
synaptic reorganization in the cortex, thalamus, and spinal
cord following SCI; they also experience below-level neuro-
pathic pain [155]. However, no studies of SCI in humans
have reported the relationship between glial modulation
and synaptic reorganization. Therefore, a better understand-
ing of the gliotransmission that leads to persistent neuronal
hyperactivity after SCI will potentially aid the development
of therapeutic treatment for chronic neuropathic pain.
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