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Abstract

Background

No reliable predictors of susceptibility to gemcitabine chemotherapy exist in pancreatic duc-

tal adenocarcinoma (PDAC). MicroRNAs (miR) are epigenetic gene regulators with tumor-

suppressive or oncogenic roles in various carcinomas. This study assesses chemoresistant

PDAC for its specific miR expression pattern.

Methods

Gemcitabine-resistant variants of two mutant p53 human PDAC cell lines were established.

Survival rates were analyzed by cytotoxicity and apoptosis assays. Expression of 1733

human miRs was investigated by microarray and validated by qRT-PCR. After in-silico anal-

ysis of specific target genes and proteins of dysregulated miRs, expression of MRP-1, Bcl-

2, mutant p53, and CDK1 was quantified by Western blot.

Results

Both established PDAC clones showed a significant resistance to gemcitabine (p<0.02)

with low apoptosis rate (p<0.001) vs. parental cells. MiR-screening revealed significantly

upregulated (miR-21, miR-99a, miR-100, miR-125b, miR-138, miR-210) and downregulated

miRs (miR-31*, miR-330, miR-378) in chemoresistant PDAC (p<0.05). Bioinformatic analy-

sis suggested involvement of these miRs in pathways controlling cell death and cycle.

MRP-1 (p<0.02) and Bcl-2 (p<0.003) were significantly overexpressed in both resistant cell

clones and mutant p53 (p = 0.023) in one clone.

Conclusion

Consistent miR expression profiles, in part regulated by mutant TP53 gene, were identified

in gemcitabine-resistant PDAC with significant MRP-1 and Bcl-2 overexpression. These
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results provide a basis for further elucidation of chemoresistance mechanisms and thera-

peutic approaches to overcome chemoresistance in PDAC.

Introduction
Pancreatic ductal adenocarcinoma (PDAC) is the most lethal entity among human visceral
cancers with increasing incidence and mortality in the United States and Europe. PDAC is cur-
rently the fourth leading cause of cancer-related death with a 5-year overall survival rate of less
than 4% and is predicted to rise to second place behind lung cancer until 2020. Despite
advances in clinical management and multimodal therapeutic regimens, 6-month progression-
free survival remains below 15% [1]. The advances in cancer research that have led to improved
prognosis in many hematological and solid cancers could not be translated into clinical benefits
for PDAC patients so far.

The poor prognosis of PDAC is mainly attributed to rapid disease progression, late diagno-
sis at advanced unresectable stages, and poor response to the current single first-line chemo-
therapeutic agent gemcitabine with objectified tumor remission in only 5–11% of patients [2].
In the absence of screening options and early clinical symptoms, early diagnosis of the disease
remains unattainable. Thus, chemotherapy remains a central asset in PDAC treatment and
deciphering the mechanisms underlying the disease’s high level of chemoresistance is critical.

For a decade, chemotherapy with the cytidine nucleoside analogue and ribonucleotide
reductase inhibitor gemcitabine has been the gold standard in the adjuvant treatment of locally
advanced PDAC. Gemcitabine is a prodrug which requires cellular uptake and intracellular
phosphorylation to its active diphosphate and triphosphate metabolites that inhibit DNA and
RNA replication. So far, no reliable molecular targets exist to predict or influence the success of
chemotherapy with gemcitabine in PDAC.

We have previously reviewed the role of (epi-)genetic markers for chemosensitivity and che-
moresistance in PDAC [3]. Specifically, we discussed the role of microRNAs (miRs), a new
class of small, noncoding single-stranded RNA molecules as potential key regulators in tumor
oncogenesis with oncogenic or tumor suppressive properties. In this regard, only selected miRs
have thus far been investigated for a role in PDAC-chemoresistance. We hypothesized that cur-
rently unidentified miRs take part in PDAC chemoresistance and present targets for novel
diagnostic and therapeutic options. In this experimental study we aimed to 1) generate stable
gemcitabine-resistant variants of primary, gemcitabine-susceptible human PDAC cell lines,
and 2) identify chemoresistance-specific miR expression patterns.

Materials and Methods

Cell lines and cell culture
The certified human caucasian PDAC cell lines MIA-PaCa-2, PANC-1, BxPC-3, SU.86.86, and
AsPC-1 were purchased from the American Type Culture Collection (ATCC; Rockville, MD).
The cell lines carry TP53 missense mutations, all sequenced and validated by ATCC.

PANC-1 and MIA-PaCa-2 cells were cultured in phenol red free Dulbecco's Modified Eagle
Medium (DMEM; Lonza, Walkersville, USA) supplemented with 10% heat inactivated fetal
calf serum (FCS; Gibco, Carlsbad, USA), 2mM L-glutamine (Gibco), and 1mM sodium pyru-
vate (Sigma, St. Louis, USA) in a humidified incubator containing 95% air and 5% CO2 at
37°C. The medium for MIA-PaCa-2 cells was also supplemented by 2% heat inactivated horse
serum (Gibco). BxPC-3, SU.86.86, and AsPC-1 cells were cultured under the same conditions
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in phenol red free RPMI-1640 medium (Gibco) containing 10% heat inactivated FCS, 2mM L-
glutamine, 1mM sodium pyruvate, and 4.5g/l glucose (Sigma). All cell culture experiments
were carried out without antibiotics.

Drug sensitivity assay
Depending on the PDAC cell line, 3500–8000 cells/well were seeded into 96-well culture plates
in culture medium and allowed to attach at 37°C and 5% CO2 in humidified air for 24h. To
determine the intrinsic drug sensitivity, each of the 5 parental PDAC cell lines was incubated
with increasing concentrations (0.0001 to 100μM) of Gemcitabine (Eli Lilly, Bad Homburg,
Germany) for 72h. Subsequently, 100μl per well of methylthiazolyldiphenyl-tetrazolium bro-
mide (MTT) solution (5mg/ml; Sigma) was added to the cells followed by incubation for 3h.
Then, 100μl of dimethyl sulfoxide (DMSO; Sigma) was substituted for the supernatant, fol-
lowed by incubation for 30min. Absorbance at 570nm with background subtraction at 650nm
was detected using an ELISA microplate reader (Dynatech MR5000, Dynatech Laboratories
Inc., VA). The MTT assay is a sensitive method of screening for in vitro drug responsiveness
with a colorimetric signal proportional to the viable cell number as indicator of chemotherapy
response with high reproducibility [4–7]. All results were normalized to the corresponding
controls and the relative viability was calculated. Chemosensitivity assays were carried out in
quadruplicate and repeated at least three times in separate experiments.

Establishment of chemoresistant PDAC cell clones
Gemcitabine-resistant PANC-1 (PANC-1-GR) and MIA-PaCa-2 (MIA-PaCa-2-GR) cell
clones were produced by exposing the parental cells to repeated pulsatile gemcitabine treat-
ment over 3 days with constant sublethal concentrations followed by recovery-periods with
agent-free medium until the cells recovered exponentially. Parental PANC-1 cells were treated
with 0.4μM gemcitabine cycles for approximately 9 months. Parental MIA-PaCa-2 cells were
exposed to 0.06μM gemcitabine cycles for approximately 12 months.

Morphology, time to recovery, doubling time and degree of acquired chemoresistance,
using MTT cytotoxicity assay, were investigated for PANC-1 cell clones after 16–17 and 28–29
chemotherapy cycles, and after 28–29 chemotherapy cylces for MIA-PaCa-2 cell clones. Paren-
tal and chemoresistant cell clones with the same number of culture passage were compared
with each other. Light microscopy and imaging (Eclipse E1000M and NIS-Elements D3.1
imaging software, Nikon, Düsseldorf, Germany) were used to evaluate morphologic changes in
parental and chemoresistant PANC-1 and MIA-PaCa-2 cell clones.

Apoptosis assay
Parental and chemoresistant PANC-1 (1.5x105) and MIA-PaCa-2 (1.2x105) cells were seeded
onto covered chamberslides for 24h, followed by 72h exposure to half maximal inhibitory con-
centration (IC50) of gemcitabine. PDAC cell monolayers were stained with Annexin-V-FLUOS
Staining Kit (Roche, Mannheim, Germany) according to the manufacturer’s instructions. Cell
viability was assessed by apoptosis assays in three independent experiments and determined
under a fluorescence microscope (Eclipse E800, Nikon, Düsseldorf, Germany) by counting live,
apoptotic, and necrotic cells.

MicroRNAmicroarray and data analysis
Total RNA was isolated from parental and chemoresistant PDAC cell lines using Trizol reagent
(Qiagen, Hilden, Germany) and miRNeasy Mini Kits (Qiagen) according to the manufacturer’s
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instructions. RNA concentration and purity were measured using a Nanodrop spectrophotom-
eter (Thermo Fisher Scientific Inc., Braunschweig, Germany). RNA integrity was determined
using the Agilent 2100 Bioanalyzer on a RNA 6000 Nano/Pico LabChip (Agilent Technologies,
Santa Clara, CA). Investigated samples had RIN values>8.0.

Affymetrix GeneChip miRNA microarrays (Affymetrix UK Ltd., High Wycombe, UK) were
performed using the manufacturers´ protocols. The samples were prepared from 1μg of total-
RNA in accordance with the Affymetrix FlashTag Biotin HSR RNA Labeling Kit. The targets
were hybridized overnight to Affymetrix GeneChip miRNA arrays. Following hybridization,
the arrays were washed and stained using the Affymetrix GeneChip Fluidics Station 450 and
scanned using the Affymetrix GeneChip Scanner 3000 7G.

Microarray data quality was checked as recommended by the manufacturer and by the qual-
ity metrics in the Partek Genomics Suite software (Partek Inc., St. Louis, MO). Statistical analy-
ses of microarray data were performed using the Partek Genomics Suite. CEL-files (containing
raw expression measurements) were imported to Partek GS. The robust multi-array average
algorithm was used for normalization. The array data were quantile-normalized and log-2
transformed. For each probe, a one-way analysis of variance was performed. Fisher's least sig-
nificant difference was tested to statistically compare the difference between the means of the
groups´ expression measurements. A p-value<0.05 was used as a threshold for significance.
Microarray raw data are available through Gene Expression Omnibus accession number
GSE74574 (www.ncbi.nlm.nih.gov/geo).

Quantitative real time PCR
Quantitative Real-Time (qRT) PCR was performed using the miScript PCR system (Qiagen).
Total RNA samples (1μg) of PDAC cell lines were reverse transcribed to cDNA using miScript
Reverse Transcription Kits (Qiagen). For each sample, 5μL of the generated cDNA was mixed
with 10μL 2x QuantiTect SYBR, 2μL 10x miScript Universal Primer, 2μL gene specific 10x miS-
cript Primer Assay and 1μL nuclease free water. All samples were analyzed in triplicate reac-
tions using Applied Biosystems 7900HT Real-Time PCR System (Applied Biosystems,
Darmstadt, Germany) with miScript SYBR Green PCR Kit (Qiagen). The cycling program
involved preliminary denaturation at 95°C for 10min, followed by 40 cycles of denaturation at
95°C for 15s, annealing at 60°C for 60 s and elongation at 60°C for 60s. Quantitative miR analy-
sis was performed using SDS-Software v2.3 (Applied Biosystems). Expression of each miR was
analyzed quantitatively relative to the housekeeping genes RNU6-2, SNORD68, and
SNORD96A by the 2–ΔΔCT method.

Target identification andWestern blot analyses
Potential gene targets or regulators of the detected miRs were identified by literature review
and in silico, using Ingenuity Pathway Analysis (IPA) and DIANA-mirPath. Based on this pre-
selection we focused on protein targets that are commonly known to be relevant for cellular
resistance to chemotherapy. Due to its role as `classic`drug resistance marker, MRP-1 expres-
sion was investigated after generation of chemoresistant PDAC cell clones. Monoclonal anti-
bodies against human MRP-1 (QCRL1; abcam, 1:100; 1.5μg/ml), p53 (1C12; Cell Signaling
Technology, 1:1000), CDK1 (A17; abcam, 1:500; 2μg/ml), Bcl-2 (AW604; Millipore, 1:1000;
1μg/ml), and actin (Sigma, 1:2000; 0.35μg/ml) were used as primary antibodies.

The employed p53 antibody detects wild-type p53 as well as mutant-p53. The p53 status of
both human PDAC cell lines was sequenced and validated by ATCC. Accordingly, MIA-PaCa-
2 and Panc-1 are homozygous mutant p53 cell lines that carry hotspot mutations in the codons
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248 and 273, respectively. Therefore, the p53 analysis allows the detection of p53 R273H
expression in PANC-1 and p53 R248W in MIA-PaCa-2 cell lines [8].

Total cell lysates were obtained by incubation in lysis buffer for 1h at 4°C. After centrifuga-
tion at 14000 g, supernatant proteins were electrophoretically separated on 7.5% SDS-PAGE,
loaded with equal amounts of protein. Following electrophoresis, the proteins were transferred
to a nitrocellulose membrane (Amersham Life Sciences). The primary antibodies were added
in the appropriate dilution and incubated overnight at 4°C. The nitrocellulose membranes
were washed in PBS (pH 7.4) containing 0.05% Tween20 and incubated with the secondary
antibody anti-mouse IgG-HRP (Sigma, 1:13000; 0.08μg/ml) for 1h at room temperature, fol-
lowed by a repeated Tris-buffered saline (without Tween20) wash. Antibody binding signal
was detected using enhanced chemiluminescence (Millipore, Schwalbach, Germany), and pro-
tein quantification and band intensities were analyzed using ImageJ densitometry software
(version 1.46r, NIH, USA). Band intensity was determined by area under the curve and calibra-
tion with standards on the same blot.

Statistical analysis
Statistical analysis was performed with the Statistical Package for the Social Sciences software
program, version 17.0 (SPSS inc., Munich, Germany) for Windows1. Data were expressed as
means of normalized expression. Statistical significance was determined by using the two-tailed
Student’s t-test to compare two data sets. P<0.05 was considered to be statistically significant.

Results

Intrinsic chemoresistance in human parental PDAC cell lines
The therapeutic index was determined by MTT cytotoxicity assay using the dose-response
curves of five human PDAC cell lines with IC50 and sublethal doses after 72h of gemcitabine
chemotherapy (Fig 1). IC50 was recorded within a range of 0.01 to 0.8μM. Although the gemci-
tabine treatment caused a concentration dependent inhibition of growth in all 5 PDAC cell
lines, MIA-PaCa-2 tended to be the cell line with the highest intrinsic chemosensitivity,
whereas PANC-1 and AsPC-1 were the cell lines with the most distinct intrinsic chemoresis-
tance. For further generation of acquired drug resistant cell clones, we selected MIA-PaCa-2
and PANC-1, two well-known primary PDAC cell lines of different intrinsic chemoresistance
with an IC50 of 0.01μM vs. 0.1μM.

Generation of extrinsic chemoresistance in human PDAC cell lines
Generation of PDAC cell clones with acquired chemoresistance was achieved after 17 chemo-
therapy cycles in PANC-1 and after 29 cycles in MIA-PaCa-2 cells. Stably resistant PDAC cell
clones were established following repeated pulsatile treatment over 3 days with constant suble-
thal concentrations of gemcitabine over a 9 to 12 month period (Fig 2A and 2D). MTT cytotox-
icity assay revealed a significantly improved cell viability of gemcitabine treated PANC-1-GR
(p = 0.019) and MIA-PaCa-2-GR cells (p = 0.008). Compared with their parental cells, the IC50

of the generated chemoresistant cell clones was about 150 to 200 times higher (Fig 2B and 2E).
Concordantly, cell death analysis by Annexin-V / Propidium iodide fluorescence staining
showed decreased apoptosis and necrosis of IC50 gemcitabine treated PANC-1-GR and MIA--
PaCa-2-GR cell clones compared to their parental cells of 26.5 ±3.4% vs. 52.7 ±2.9% (p<0.001),
respectively 35.7 ±3.5% vs. 60.8 ±7.4% (p = 0.01) (Fig 2C and 2F). Prolonged treatment of
PANC-1 and MIA-PaCa-2 cells with gemcitabine resulted in morphologic changes with more
plump, rounded cell morphology in MIA-PaCa-2-GR and PANC-1-GR cell clones compared
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with untreated PDAC cells with spindle-shaped character and enhanced formation of pseudo-
podia (Fig 3).

MicroRNA-expression profiling of chemoresistant human PDAC cell
lines
GeneChip miR microarray was finally performed in parental and chemoresistant PANC-1 cells
after 17 and after 29 chemotherapy cycles. Comparing the profiles of significantly dysregulated
miRs in early and late cell passage of PANC-1 cells with acquired chemoresistance, a miR
panel of high congruence with 19 concordantly expressed miRs (fold change ±2) was identified
(Fig 4). In hierarchical clustering using Manhattan distance and average linkage, PANC-1-GR
cell clones with early and late acquired chemoresistance clustered together on the dendrogram
with an accordance of significantly dysregulated and concordantly expressed miRs of more
than 95%. No significant change of miR profile in early and late chemoresistance of PANC-
1-GR cell clones was detected (Fig 5A). RT-PCR validation of mostly dysregulated miRs con-
firmed that miR-138, miR-147b, miR-148a, miR-99a, miR-455-3p and miR-125b were signifi-
cantly upregulated and miR-31-star, miR-422a, miR-330-3p, mir-330-5p and miR-378d were
downregulated in PANC-1-GR cell clones vs. their parental cell line (Fig 6A).

Similarly, miR expression profiling in MIA-PaCa-2-GR cell clones was performed but lim-
ited to late passage cells due to the nearly identical results between early and late cycle cells in
PANC-1-GR (Fig 5B). In MIA-PaCa-2-GR cell clones miR-125b, miR-210, miR-21, miR-100,
miR-148a, miR-99a and miR-455-3p were significantly upregulated, whereas miR-330-3p,
miR-330-5p, miR-486-5p, miR-422a and miR-31-star were significantly downregulated

Fig 1. Intrinsic drug sensitivity of parental PDAC cell lines.Relative cell viability of five human PDAC cell lines following 72 h exposure to ascending
concentrations of gemcitabine by MTT cytotoxicity assay.

doi:10.1371/journal.pone.0143755.g001
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(Fig 6B). Further significantly dysregulated, but not yet functionally characterized miRs in
both PANC-1-GR as well as MIA-PaCa-2-GR cell clones were not validated by qRT-PCR
(miR-935, miR-3178, miR-3195, miR-4497, miR-4634, miR-4734, and miR-4745-5p). Overall,

Fig 2. Establishment of chemoresistant PDAC cell clones.Generation of chemoresistant PDAC cell clones by repeated pulsatile treatment over 3 days
with constant sublethal concentrations of 0.4μM (A) or 0.06μM (D) gemcitabine followed by recovery-periods and quantification of cell viability by MTT assay
as well as apoptosis assay in parental vs. chemoresistant PANC-1 (A, B, C) and MIA-PaCa-2 (D, E, F) cell clones.

doi:10.1371/journal.pone.0143755.g002
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a panel of 18 significantly and concordantly dysregulated miRs (fold change ±2; p<0.05) in
both chemoresistant PDAC cell clones was identified.

Target analysis and protein expression of MRP-1, p53, CDK1, and Bcl-2
In-silico target analysis of significantly dysregulated miRs in PANC-1-GR and MIA-PaCa-
2-GR and of mt-p53 identified regulators of cell cycle, proliferation, and apoptosis (Fig 7).
MiR-21-5p, miR-100-5p, miR-125b-5p, miR-210-3p, miR-330-3p, miR-378a-3p, and miR-
486-5p are predicted by IPA to be regulated by TP53 gene. Multidrug resistance proteins like
MRP-1 (ABCC1) are highly predicted to be regulated by mt-p53, but also by miR-330-5p. Apo-
ptosis and cell cycle regulators like Bcl-2 and CDK-1 are predicted to be regulated by most of
the dysregulated miRs in chemoresistant cell clones and by mt-p53.

The expression of three target proteins that were selected from the in-silico analysis (p53,
CDK1, Bcl-2) and the `classic`drug resistance marker MRP-1 were evaluated in parental and
chemoresistant cell clones by Western blot (Figs 8 and 9). MRP-1 was significantly overex-
pressed in both PANC-1-GR and MIA-PaCa-2-GR cell clones (p = 0.017; p = 0.006),

Fig 3. Morphologic changes in parental and chemoresistant PANC-1 andMIA-PaCa-2. Representative attached epithelial cells with spindle-shaped
cells in untreated MIA-PaCa-2 (A) and PANC-1 cells (B) compared to more plump rounded morphology and enhanced formation of pseudopodia in their
chemoresistant cell clones (C, D).

doi:10.1371/journal.pone.0143755.g003
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supporting its property as a marker for drug resistance. The miR-target and apoptosis suppres-
sor Bcl-2 was significantly overexpressed in both PANC-1-GR and MIA-PaCa-2-GR cells
(p = 0.002; p< 0.0001). High expression of mt-p53 was shown in both chemoresistant cell
clones, but significance was only achieved in MIA-PaCa-2-GR (p = 0.023). Expression of the
miR- and mt-p53- target and cell cycle regulator CDK1 was increased in MIA-PaCa-2-GR cells
but did not reach statistical significance (p = 0.063).

Discussion
Chemoresistance to PDAC treatment represents both a clinical and scientific challenge. After
initial response, gemcitabine treated PDAC patients finally exhibit disease progression owing
to acquired chemoresistance. Therefore, several combinations of gemcitabine and gemcitabine
free regimens have been evaluated but very few showed additional benefits with a slight
increase in overall survival [9–14]. Understanding primary and secondary chemoresistance is
therefore crucial for further clinical developments.

Human PDAC cell lines possess high intrinsic chemoresistance. The method of establishing
novel chemotherapy-resistant PDAC cell clones by pulsatile treatment with short periods of

Fig 4. MicroRNA profiling. Procedure and results of miR expression profiling by GeneChip microarray and qRT-PCR validation in parental and gemcitabine
resistant PANC-1 and MIA-PaCa-2 cell clones.

doi:10.1371/journal.pone.0143755.g004
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Fig 5. MicroRNA heat mapping. Hierarchical cluster heat maps of significantly dysregulated miRs in PANC-1-GR late and early cell passage (A) as well as
in PANC-1-GR and MIA-PaCa-2-GR late cell passage (B). Each row shows the relative expression level for a single miR and each column shows the
expression level for a single sample; fold change greater than ±2 (p<0.05). The red or green color indicates low or high expression, respectively.

doi:10.1371/journal.pone.0143755.g005
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exposure and high sublethal concentrations of gemcitabine seems to be an experimental setting
which is comparable to the clinical relevant treatment regimens. It applied selective pressure
for PANC-1 and MIA-PaCa-2 cell clones with intrinsic mutations, already conferring a degree
of chemoresistance. We used the MTT cytotoxicity assay as an established in vitro method to
test malignant cell resistance to clinically applied cytostatics [4–7]. It remains unclear whether
these in vitro mechanisms of chemoresistance can be directly translated to the clinical setting.
In the future, microdissected tumor cells of the same PDAC patients before and after gemcita-
bine treatment may be recovered and analyzed to identify clinically relevant chemotherapy
response markers.

While the crucial role of miRs as key regulators of carcinogenesis has been recognized, little
is known about their significance and clinical relevance in regard to chemoresistance.

In the present study, we have for the first time investigated the entire currently known
human mature miR spectrum in two of the most studied human PDAC cell lines and their cor-
responding chemoresistant clones generated by pulsatile gemcitabine treatment with constant
treatment dose. Concordant miR profiles were aberrantly expressed in both chemoresistant
PDAC cell lines, discriminating them from their parental cell lines. Some of these miRs, such
as miR-21, miR-99a, miR-100, and miR-210 are already known as potential oncogenes (onco-
miRs) in PDAC. Specifically, miR-21 has been shown to be associated with poorer survival and
to induce chemoresistance to gemcitabine in PDAC patients [15]. In smaller clinical studies,
miR-210 has been reported to be overexpressed in PDAC patients, correlating with a worse
outcome [16]. MiR-99a and miR-100, two members of the miR-99 family, were found by
Bloomston et al. to be overexpressed in PDAC tissue compared with normal pancreatic tissue
and chronic pancreatitis [17]. Recently, in vitromiR analysis was performed by Bera et al. in
BxPC-3 PDAC cells with acquired chemoresistance by gemcitabine treatment with increasing
concentrations over a six-week period [18]. In accordance with our results, miR-21, miR-100,
and miR-125b were upregulated, whereas miR-455-3p and miR-378 were downregulated in
chemoresistant BxPC-3. In addition, miR-330-5p could be detected by Tréhoux et al. as a
tumor suppressor in PDAC in vitro and in vivo, sensitizing pancreatic cancer cells to gemcita-
bine [19]. Other dysregulated miRs identified in the present study have not been described in
PDAC but in other carcinoma entities, so far (Fig 7) [20–40].

It appears that the selection of human PDAC cell lines and the manner of drug exposure to
generate PDAC cell clones with acquired chemoresistance greatly influence molecular mecha-
nisms of chemoresistance development with impact on the miR profile. In contrast to match-
ing results with Bera et al., miR screening in PDAC cell lines with induced gemcitabine
chemoresistance by further study groups revealed different miR profiles that did not corre-
spond to our results. For example, Shen et al. established a chemoresistant cell clone of a wild-
type p53 PDAC cell line derived from a spleen metastasis generated after 7 months of continu-
ous gemcitabine induction with increasing concentrations. Iwagami et al. generated chemore-
sistant cell clones of two mutant p53 primary PDAC cell lines by exposure to gradually
increasing concentrations of gemcitabine for 2 months.[18, 41, 42] Based on the analysis of dif-
ferent in vitro models of chemoresistance by Watson et al. the used method of pulsatile gemci-
tabine treatment represents a much better approximation to the clinical therapy practice with
cyclic therapy protocol than the commonly used experimental continuous drug exposure with
increasing drug concentrations [43].

Fig 6. MicroRNAmicroarray validation.MiRmicroarray validation with qRT-PCR for significantly dysregulated miRs in PANC-1-GR (A) and MIA-PaCa-
2-GR cell clones (B). Fold change frommiR microarray is demostrated by log2 values (left y-axis, dark grey bars). Fold change from qRT-PCRwas
determined using the 2-ΔΔCt method (right y-axis, light grey bars). Error bars represent the standard deviation of mean.

doi:10.1371/journal.pone.0143755.g006
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Fig 7. In-silico target analysis.Overview of selected and highly predicted gene targets of dysregulated miRs in chemoresistant PDAC cell clones. (N.A., not
available)

doi:10.1371/journal.pone.0143755.g007
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Fig 8. Protein target expression. Protein expression of MRP-1, mutant p53 (mt p53 R273H and mt p53 R248W), CDK1, Bcl-2, and actin (loading control) in
parental (PANC-1, MIA-PaCa-2) and gemcitabine resistant PDAC cell clones (PANC-1-GR, MIA-PaCa-2-GR) byWestern blot.

doi:10.1371/journal.pone.0143755.g008
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Approximately 75% of PDAC patients have TP53 alterations [44]. Therefore, we used two
human PDAC cell lines with two of the most frequent hotspot TP53 mutations in the codons
248 (MIA-PaCa-2) and 273 (PANC-1), that do not only lose the wild-type p53 tumor suppres-
sive function, but also gain new oncogenic properties. Through this gain of function (GOF),
mutant p53 is believed to actively contribute to cancer development, progression and metasta-
sis in PDAC [44, 45]. Many GOF effects of mutant p53 rely on its ability to bind and inactivate
the p53 family members p63 and p73, leading to reduced apoptosis in tumor cells and
increased chemoresistance [46]. Overexpression of mutant p53 was demonstrated together
with induction of various cell cycle and proliferation associated genes in response to DNA
damage [47–49]. Recently, Fiorini et al. showed that gemcitabine treatment stabilized mutant
p53 protein in the nuclei of PANC-1 cells and induced chemoresistance, concurrent with the
mutant p53-dependent expression of CDK1 and cyclin B1, resulting in hyperproliferation [50].
In accordance with these results, we were able to show an overexpression of mutant p53 and its
target protein CDK1 in chemoresistant MIA-PaCa-2 as well as an overexpression of anti-apo-
ptotic Bcl-2 in both chemoresistant cell clones. Inversely, adenoviral vector transfection of the
wild-type p53 tumor suppressor gene by Bouvet et al. in mutant p53 MIA-PaCa-2 and PANC-
1 induced apoptosis and inhibited tumor cell growth [51]. Moreover, knockdown of endoge-
nous mutant p53 rendered cancer cells more sensitive to DNA-damaging chemotherapeutic
agents and reduced tumor malignancy [52]. In 1998 Wada et al. could induce apoptosis with

Fig 9. Protein densitometry. Adjusted relative density of MRP-1, mutant p53 (mt p53 R273H and mt p53 R248W), CDK1, Bcl-2, and their loading controls
measured by ImageJ densitometry software. Asterisks indicates to a significant difference of p<0.05, respectively.

doi:10.1371/journal.pone.0143755.g009
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Bcl-2 downregulation in mutant p53 PDAC cell lines by using a CDK- inhibitor.[53] Consis-
tent with our results, loss of proapoptotic wild-type p53 activity and overexpression of onco-
genic mutant p53 lead to transcriptional activation of multidrug resistance proteins, like the
ATP-binding cassette transporter and drug eliminator MRP-1 [49, 54]. So far, multidrug resis-
tance proteins were not described as targets of the identified chemoresistance-related miRs of
this study. The role of microRNA-330-5p, significantly downregulated in both chemoresistant
cell clones and highly predicted to target MRP-1 (ABCC1) needs to be confirmed by functional
analysis.

Moreover, recent studies reported that mutant p53 proteins can modulate miR expression
[46, 55]. Interestingly, most of our chemoresistance-specific miRs (miR-21-5p, miR-100-5p,
miR-125b-5p, miR-210-3p, miR-330-3p, miR-378a-3p, miR-486-5p) are predicted by IPA to
be regulated by TP53 gene (Fig 10). Moreover, the predicted targets of these dysregulated miRs
are regulators of cell cycle and proliferation or apoptosis (Fig 7). The cell division cycle 25
homolog A (CDC25A), required for progression from G1 to S phase of the cell cycle by

Fig 10. Interaction of mutant TP53 andmicroRNA signaling pathways in chemoresistant pancreatic cancer. Target analysis was performed by
Ingenuity Pathway Analysis and DIANA-mirPath.

doi:10.1371/journal.pone.0143755.g010

MicroRNAs in Chemoresistant Pancreatic Cancer

PLOS ONE | DOI:10.1371/journal.pone.0143755 November 25, 2015 16 / 21



activating cyclin-dependent kinases (CDK), is highly predicted to be targeted by miR-21, miR-
99a, miR-100, and miR-125b [56]. In addition CDC25A is a target of the E2F family of tran-
scription factors, targeted by most of the detected miRs in chemoresistant PDAC cell clones
[57]. E2F1, E2F2 and E2F3a are activators of the cell cycle targeting cyclins, CDKs, DNA repair
and replication proteins. Furthermore, cyclins, CDK4, CDK6, ETS1, and the G1 cell cycle
phase specific transcription factor SP1 are activated by the mitogen-activated protein kinase
(MAPK) signaling pathway, targeted by several dysregulated miRs [58]. The tumor suppressor
genes programmed cell death 4 (PDCD4) and phosphatase and tensin homolog (PTEN), also
involved in the regulation of cell cycle, are known to be targeted and repressed by miR-21 [15,
59]. Insulin-like growth factor (IGF) and its receptors are further highly predicted targets, over-
expressed in most cancer tissues and function as anti-apoptotic regulators. In PDAC IGF1
mediates PTEN suppression and, together with IGF1R, enhances cell invasion and prolifera-
tion as well as chemoresistance via activation of the phosphatidylinositol 3-kinase (PI3K)/Akt
signaling pathway [60–62]. Akt promotes growth factor-mediated cell survival by inhibiting
pro‑apoptotic proteins such as caspase 9 and BAD. Most of identified chemoresistant-specific
miRs target transcription of proapoptotic (BAX, BAK, BAD) and anti-apoptotic (Bcl-2) mem-
bers of the Bcl-2 family. Dong et al. could demonstrate that direct induction of Bcl-2 by miR-
21 was associated with proliferation and chemoresistance of MIA-PaCa-2 cells [63]. Our
results confirm the role of Bcl-2 as apoptosis-suppressor and oncoprotein, significantly overex-
pressed in chemoresistant MIA-PaCa-2 and PANC-1 cell clones.

We suggest that under acquired chemoresistance, accumulation of mutant p53 induces
expression of miR-21-5p, miR-31�, miR-125b-5p, miR-210-3p, miR-330-3p, miR-378a-3p,
miR-422a and miR-486-5p which in turn enhances proliferation by upregulating Bcl-2 expres-
sion in PDAC cells.

Taken together, we have identified a panel of miRs associated with induced chemoresistance
in PDAC. Target analysis of the dysregulated miRs showed that mutant p53 and the putative
miR-targets Bcl-2 and MRP-1 are likely to play a central role in PDAC chemoresistance. How-
ever, additional functional validation of deregulated miRs and their protein targets in context
of gemcitabine resistance is required to confirm our findings. Furthermore, clinical studies are
essential to evaluate whether the identified miR signature of acquired gemcitabine resistance
can be used to develop strategies for targeted therapies in chemorefractive PDAC patients.
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