
Transcriptional Dysregulation of MYC Reveals Common 
Enhancer-Docking Mechanism

Jurian Schuijers1,3, John Colonnese Manteiga1,2,3, Abraham Selby Weintraub1,2, Daniel 
Sindt Day1, Alicia Viridiana Zamudio1,2, Denes Hnisz1, Tong Ihn Lee1, and Richard Allen 
Young1,2,4,*

1Whitehead Institute for Biomedical Research, 455 Main Street, Cambridge, MA 02142, USA

2Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

SUMMARY

Transcriptional dysregulation of the MYC oncogene is among the most frequent events in 

aggressive tumor cells, and this is generally accomplished by acquisition of a super-enhancer 

somewhere within the 2.8 Mb TAD where MYC resides. We find that these diverse cancer-specific 

super-enhancers, differing in size and location, interact with the MYC gene through a common 

and conserved CTCF binding site located 2 kb upstream of the MYC promoter. Genetic 

perturbation of this enhancer-docking site in tumor cells reduces CTCF binding, super-enhancer 

interaction, MYC gene expression, and cell proliferation. CTCF binding is highly sensitive to 

DNA methylation, and this enhancer-docking site, which is hypomethylated in diverse cancers, 

can be inactivated through epigenetic editing with dCas9-DNMT. Similar enhancer-docking sites 

occur at other genes, including genes with prominent roles in multiple cancers, suggesting a 

mechanism by which tumor cell oncogenes can generally hijack enhancers. These results provide 

insights into mechanisms that allow a single target gene to be regulated by diverse enhancer 

elements in different cell types.
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Schuijers et al. show that a conserved CTCF site at the promoter of the MYC oncogene plays an 

important role in enhancer-promoter looping with tumor-specific super-enhancers. Perturbation of 

this site provides a potential therapeutic vulnerability.

INTRODUCTION

Elevated expression of the c-MYC transcription factor occurs in a broad spectrum of human 

cancers and is associated with tumor aggression and poor clinical outcome (Berns et al., 

1992; Dang, 2012; Gabay et al., 2014; Grotzer et al., 2001). Activation of the MYC gene, 

which encodes c-MYC, is a hallmark of cancer initiation and maintenance. Dysregulation of 

MYC is often achieved through the formation of large tumor-specific super-enhancers in the 

region surrounding the MYC gene (Chapuy et al., 2013; Fulco et al., 2016; Herranz et al., 

2014; Hnisz et al., 2013; Lin et al., 2016; Liu et al., 2015; Lovén et al., 2013; Shi et al., 

2013; Whyte et al., 2013; Zhang et al., 2016). These large enhancer clusters differ in size, 

composition, and distance from the MYC promoter, yet all accomplish the same task of 

stimulating MYC overexpression across a broad spectrum of tumors.

Selective gene activation is essential to the gene expression programs that define both 

normal and cancer cells. During gene activation, transcription factors (TFs) bind enhancer 

elements and regulate transcription from the promoters of nearby or distant genes through 

physical contacts that involve looping of DNA between enhancers and promoters (Bonev 

and Cavalli, 2016; Buecker and Wysocka, 2012; Bulger and Groudine, 2011; Fraser et al., 

2015; Müeller-Storm et al., 1989; Spitz, 2016; de Wit et al., 2013). The mechanisms that 

ensure that specific enhancers interact with specific promoters are not fully understood. 

Some enhancer-promoter interactions are likely determined by the nature of TFs bound at 

the two sites (Muerdter and Stark, 2016; Weintraub et al., 2017).

Recent studies have revealed that specific chromosome structures play important roles in 

gene control. Enhancer-promoter interactions generally occur within larger chromosomal 
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loop structures formed by the interaction of CTCF proteins bound to each of the loop 

anchors (Dekker and Mirny, 2016; Fraser et al., 2015; Gibcus and Dekker, 2013; Gorkin et 

al., 2014a; Hnisz et al., 2016a, 2018; Ji et al., 2016). These loop structures, variously called 

topologically associated domains (TADs), sub-TADs, loop domains, CTCF contact domains, 

and insulated neighborhoods, tend to insulate enhancers and genes within the CTCF-CTCF 

loops from elements outside those loops (Dixon et al., 2012; Dowen et al., 2014; Franke et 

al., 2016; Hnisz et al., 2016a, 2016b; Ji et al., 2016; Narendra et al., 2015; Nora et al., 2012; 

Phillips-Cremins et al., 2013; Rao et al., 2014). Constraining DNA interactions within 

CTCF-CTCF loop structures in this manner may facilitate proper enhancer-promoter 

contacts.

CTCF does not generally occupy enhancer and promoter elements (Cuddapah et al., 2009; 

Dixon et al., 2012; Dowen et al., 2014; Handoko et al., 2011; Ji et al., 2016; Kim et al., 

2007; Phillips-Cremins et al., 2013; Rao et al., 2014; Rubio et al., 2008; Tang et al., 2015). 

Another TF, YY1, generally binds to enhancers and promoters and facilitates their 

interaction through YY1 dimerization (Weintraub et al., 2017). However, when CTCF does 

bind these regulatory elements, it can also contribute to enhancer-promoter interactions 

(Banani et al., 2017; Nora et al., 2017; Splinter et al., 2006; Zuin et al., 2014).

Here, we investigate DNA looping structures in the MYC locus in multiple cancers and 

identify a CTCF-occupied site at the MYC promoter that facilitates docking with essentially 

any enhancers that are formed within the 2.8 Mb MYC locus. The CTCF-occupied site at the 

MYC promoter, which we call the MYC enhancer-docking site, can be abrogated by genetic 

and epigenetic editing. Similar enhancer-docking sites occur at other oncogenes. This 

suggests a mechanism by which tumor cells can generally hijack enhancers and, with 

editing, a potential therapeutic vulnerability.

RESULTS

Cell-Type-Specific MYC Enhancers Loop to a Common Upstream CTCF Site

Previous studies have established that tumor cells acquire tumor-specific super-enhancers at 

various sites throughout the MYC locus (Figures 1A and S1A) (Bradner et al., 2017; Chapuy 

et al., 2013; Gabay et al., 2014; Gröschel et al., 2014; Herranz et al., 2014; Hnisz et al., 

2013; Lin et al., 2016; Lovén et al., 2013; Parker et al., 2013; Zhang et al., 2016; Shi et al., 

2013), but the mechanisms by which these diverse enhancer structures control MYC are not 

clear. In one case, for example, a super-enhancer located ~2 Mb downstream of the MYC 
gene has been shown to physically interact with MYC, but the mechanisms responsible for 

this specific interaction are unclear (Shi et al., 2013). To gain insights into the potential role 

of DNA loop structures in gene control at the MYC locus, we generated cohesin HiChIP 

data for HCT-116 cells and collected published DNA interaction data for three other cancer 

cell types for comparison (Figure 1B; Tables S1 and S5) (Hnisz et al., 2016a; Pope et al., 

2014). Among the DNA loop structures observed in these datasets, a large 2.8 Mb DNA loop 

was evident in all four cell types. This loop connects CTCF sites encompassing the MYC 
gene and qualifies as an insulated neighborhood. The DNA anchor sites of this 2.8 Mb DNA 

loop occur at the boundaries of a TAD found in all cells (Figure S1B). The MYC TAD 

encompasses a region previously described as a “gene desert,” because this large span of 
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DNA contains no other annotated protein-coding genes (Montavon and Duboule, 2012; 

Ovcharenko et al., 2005).

While all cells examined appear to share the TAD-spanning 2.8 Mb loop encompassing 

MYC, the loop structures within the neighborhood were found to be markedly different 

among the tumor types. The internal loops were dominated by interactions between a MYC 
promoter-proximal CTCF site and the diverse super-enhancers (Figures 1B and 1C). The 

major differences between these internal structures in the different tumor cells involved the 

different positions of the tumor-specific super-enhancer elements. Examination of Hi-C data 

for a broader spectrum of tumor cell types suggests that tumor cells generally have DNA 

contacts between the MYC promoter-proximal site and other sites within the 2.8 Mb MYC 
TAD (Figure S1B). This looping was not limited to cancer cells, because examination of 

enhancer and promoter-capture Hi-C data in a variety of normal cell types that express MYC 
(Javierre et al., 2016) revealed that cell-type-specific enhancers do indeed loop to the MYC 
proximal CTCF site (Figures S1C and S1D). This indicated that this CTCF site is also used 

during normal development by cell-type-specific enhancers to facilitate MYC expression 

and cellular proliferation.

Further examination of the MYC promoter-proximal region revealed three constitutive 

CTCF binding sites (Figure 1C). All three sites were found to be occupied by CTCF in a 

wide variety of normal cells and tumor cells, and this binding pattern is shared across 

species (Figure S1C). Previous studies have examined the role of CTCF binding at all three 

sites (Filippova et al., 1996; Gombert and Krumm, 2009; Gombert et al., 2003; Klenova et 

al., 1993; Rubio et al., 2008). The two sites located within the MYC gene have been shown 

to play roles in MYC transcript start site selection and in promoter-proximal pausing of 

RNA polymerase II (Filippova et al., 1996). The CTCF binding site located 2 kb upstream of 

the major transcription start site has been reported to protect the promoter from methylation 

and to be an insulator element (Gombert and Krumm, 2009; Gombert et al., 2003). The 

DNA interaction data described here, however, suggests that this upstream site dominates 

connections with distal enhancer elements, as the majority of reads in the DNA interaction 

data are associated with this site in all tumor cells examined (Figures 1C and S1E). The −2 

kb CTCF binding site contains a number of putative CTCF binding motifs; one of these 

most closely matches the canonical CTCF motif in the JASPAR database (Sandelin et al., 

2004) and occurs within a highly conserved sequence (Figure 1D). These features, the 

presence of CTCF sites in tumor super-enhancers, and the ability of two CTCF-bound sites 

to be brought together through CTCF homodimerization (Saldaña-Meyer et al., 2014; 

Yusufzai et al., 2004) led us to further study the possibility that the −2 kb site has an 

enhancer-docking function critical to MYC expression.

MYC Promoter Proximal CTCF Site Is Necessary for Enhancer-Promoter Looping and High 
MYC Expression

To determine whether the putative enhancer-docking site plays a functional role in MYC 
expression through DNA loop formation, small perturbations of the CTCF binding site were 

generated in both alleles of the tumor cell lines K562, HCT-116, Jurkat, and MCF7 using 

clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (Figures 2A and 
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2B). Attempts at genetic perturbation by transfection with constructs carrying CRISPR/Cas9 

with a guide RNA specifically targeting the CTCF motif upstream of the MYC gene did not 

yield viable clones. To allow cells to continue to proliferate if the CTCF motif deletion was 

lethal, cells were virally transduced with an exogenous MYC gene driven by a 

phosphoglycerate kinase (PGK) promoter (Figure S2A). This construct contained sequence 

differences in the 3′ UTR that allowed discrimination between the endogenous and 

exogenous MYC mRNAs. Cells expressing this exogenous MYC gene were then subjected 

to CRISPR/Cas9 perturbation. Clones were selected with small deletions or insertions 

disrupting the canonical CTCF motif (Figures 2B and S2B) and these cells were further 

characterized. CTCF chromatin immunoprecipitation quantative polymerase chain reaction 

(ChIP-qPCR) showed complete loss of CTCF binding to this site in K562 and HCT-116 

cells and a 60%–70% reduction in CTCF binding at this site in Jurkat and MCF7 cells 

(Figure 2C). RNA analysis revealed a 70%–80% reduction of endogenous MYC mRNA in 

the absence of the enhancer-docking site in all of these cell types (Figure 2D). Furthermore, 

an inducible CRISPR/Cas9 perturbation model showed reduced proliferation for these four 

cell types upon induction of CTCF-site deletions (Figures S2C–S2G). These results indicate 

that the CTCF motif in the MYC enhancer-docking site is necessary for CTCF binding, for 

high levels of MYC expression and for cellular proliferation.

If the putative MYC enhancer-docking site contributes to looping interactions with distal 

enhancers, then the loss of this site should cause a decrease in DNA interactions between the 

MYC promoter and the distal super-enhancers. We used chromosome conformation capture 

combined with high-throughput sequencing (4C-seq) to compare super-enhancer interactions 

in K562 and HCT-116 cells with normal or perturbed CTCF binding motifs. The 4C-seq 

data in K562 cells indicated that the MYC enhancer-docking site interacts predominantly 

with distal super-enhancers located ~0.3 Mb and ~2 Mb downstream of the MYC gene and 

that the majority of these interactions were significantly reduced when the putative CTCF 

motif was perturbed (Figures 3A and S3A). In order to control for any direct effects of a 

genetic alteration near the viewpoint, 4C-seq was performed with a viewpoint placed in the 

downstream super-enhancer. This showed clear interactions with the MYC enhancer-

docking site as well as with the nearby super-enhancer, and these interactions were 

significantly reduced upon perturbation of the CTCF motif (Figures 3B and S3B). Similar 

results were obtained in HCT-116 cells, where the viewpoint was centered on the super-

enhancer located ~0.4 Mb upstream of the MYC gene (Figure S3C). These results showed 

that the CTCF site in the promoter-proximal region of MYC is important for optimal 

interaction with distal enhancers and supports the idea that this CTCF site functions as an 

enhancer-docking site.

Loss of MYC Expression with Methylation of Enhancer-Docking Site

CTCF binding is abrogated when its sequence motif is methylated (Bell and Felsenfeld, 

2000; Maurano et al., 2015), and the MYC enhancer-docking site occurs within a CpG 

island that is consistently hypomethylated in different tumor types as well as in different 

normal tissues (Figures S4A and S4B). The recent development of tools that permit site-

specific DNA methylation (Liu et al., 2016; Siddique et al., 2013) suggested a means to 

disrupt MYC expression by methylation of the enhancer-docking site. To achieve targeted 
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methylation, we created a construct to express a dCas9 fusion protein consisting of the 

catalytic domain of DNMT3A and the interacting domain of DMNT3L. This dCas9-

DNMT3A-3L protein was targeted to the MYC enhancer-docking site in K562 and HCT-116 

cells using multiple guide RNAs that span the region (Figures 4A and 4B). The targeting of 

dCas9-DNMT3A-3L resulted in robust local DNA methylation (Figure 4C) and a 40%–50% 

reduction in mRNA levels in both cell types (Figure 4D). The methylated region likely 

contains binding sites for additional TFs that may be sensitive to DNA methylation, so it is 

possible that the reduced mRNA levels are due to multiple factors. In order to test whether 

disruption of TFs other than CTCF contribute to the reduction in MYC mRNA levels, the 

dCas9-DNMT3A-3L was targeted to the MYC enhancer-docking site in CTCF-site deleted 

K562 cells. No further reduction of MYC mRNA levels was observed under these conditions 

(Figures S4C and S4D), indicating that loss of CTCF was a major contributor to the 

observed reduction of MYC expression upon targeted methylation of the MYC enhancer-

docking site. These results demonstrate that epigenetic editing of the enhancer-docking site 

can reduce MYC expression.

CTCF Enhancer-Docking Sites at Additional Genes

Previous genomic studies have noted that CTCF might engender enhancer-promoter 

interactions at a minority of genes (Banani et al., 2017; Nora et al., 2017; Splinter et al., 

2006; Zuin et al., 2014). We therefore identified the set of genes whose promoter-proximal 

regions contain CTCF-bound sites and that show evidence of enhancer interactions in K562, 

Jurkat, and HCT-116 cells. We identified all active transcription start sites (TSSs) that have 

at least one CTCF-bound site within 2.5 kb of the TSS that interacts with at least one 

enhancer. This yielded between 555 and 1,108 TSSs with a nearby CTCF site that loops to 

an active enhancer (Figure 5A; Table S2). We define these TSSs as having a putative CTCF 

enhancer-docking site. The majority of TSSs identified in this analysis were identified in 

only one cell type, with only 52 TSSs identified in all three cell types (Figure 5B). 

Nonetheless, these putative enhancer-docking sites tended to be constitutively bound by 

CTCF in all three cell types, and the CTCF motifs in these sites showed high sequence 

conservation (Figures 5C and 5D). This suggests that these putative enhancer-docking sites 

are occupied by CTCF regardless of interaction with active enhancers and that differences in 

cell-type-specific enhancers are largely responsible for differential use of enhancer-docking 

site genes in these cells.

Gene ontology analysis of the genes with putative enhancer-docking sites found different 

processes to be significantly enriched in each cell type, and these processes were dominated 

by the cellular identity of the cell lines (Figure S5A; Table S3). Common processes among 

the three cell types include cell cycle and other cancer-related processes such as gene 

expression and response to signaling (Figure S5A). A number of cancer-associated genes 

were found, including TGIF1, VEGFA, RUNX1, and PIM1 (Figure 5E), as well as others 

(Figure S5B). We conclude that genes other than MYC are likely regulated by CTCF-bound 

enhancer-docking sites and that these include multiple cancer-associated genes.
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DISCUSSION

Aberrant transcriptional activation of the MYC oncogene occurs frequently in tumor cells 

and is associated with tumor aggression. MYC resides within a 2.8 Mb TAD and its aberrant 

activation is generally accomplished by acquisition of a super-enhancer somewhere within 

that TAD. How these diverse cancer-specific super-enhancers loop long distances to 

specifically interact with MYC has not been clear. We find that the diverse super-enhancers 

commonly interact with, and depend on, a conserved CTCF binding site located 2 kb 

upstream of the MYC promoter. Because tumor super-enhancers can encompass genomic 

regions as large as 200 kb, and CTCF occupies sites that occur on average every 10 kb, there 

is considerable opportunity for super-enhancers to adventitiously contain a CTCF-bound 

site, which in turn could serve to interact with the MYC CTCF site (Table S6). Thus, 

different tumor super-enhancers have the opportunity to form through diverse mechanisms 

throughout this large TAD and can exploit the MYC CTCF site to interact with and activate 

MYC expression.

The concept that enhancer-promoter interactions generally occur within larger chromosomal 

loop structures such as TADs, which are themselves often formed by the interaction of 

CTCF proteins bound to each of the TAD loop anchors (Dekker and Mirny, 2016; Fraser et 

al., 2015; Gorkin et al., 2014a; Hnisz et al., 2016a), is supported by the observations 

described here. These larger loop structures tend to insulate enhancers and genes within the 

CTCF-CTCF loops from elements outside those loops. Constraining DNA interactions 

within CTCF-CTCF loop structures in this manner may facilitate proper enhancer-promoter 

contacts.

The evidence described here argues that diverse human tumor cell super-enhancers depend 

on the MYC CTCF site for optimal levels of enhancer-promoter looping and mRNA 

expression. A recent independent study in K562 cells used a tiling CRISPR screen to 

systematically perturb the MYC locus and also found that full MYC expression and cell 

proliferation is dependent on this region (Fulco et al., 2016). However, deletion of the −2 kb 

CTCF site has limited effects on MYC expression in mice (Dave et al., 2017; Gombert and 

Krumm, 2009), and some translocated enhancers can drive MYC expression in the absence 

of this CTCF site (Shiramizu et al., 1991). There are several potential explanations for these 

diverse results. It is possible that the −2 kb CTCF site is important for optimal MYC 
expression levels in human cells, but not in mice. It is conceivable that the deletion of a 

region containing the CTCF site can be compensated by features of the new enhancer 

landscape in the deletion mutations. Furthermore, additional mechanisms normally involved 

in enhancer-promoter interactions, such as YY1-YY1 interactions, may mask the loss of the 

CTCF site in vivo; YY1 is present in the MYC promoter region and is thus likely to 

contribute to DNA looping and expression (Weintraub et al., 2017).

Our studies suggest that an additional set of human genes, beyond MYC, may utilize 

promoter-proximal enhancer-docking sites to mediate cell-type-specific enhancer-promoter 

interactions. Such CTCF-mediated enhancer-promoter interactions are generally nested 

within larger CTCF-mediated loops that would function as insulated neighborhoods. At 

these genes with CTCF-mediated enhancer docking, the promoter-proximal enhancer-
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docking sites tend to be constitutively bound by CTCF and these binding sites tend to be 

highly conserved. Indeed, two studies have reported that these genes tend to lose expression 

upon perturbation of CTCF (Nora et al., 2017; Zuin et al., 2014), consistent with a role for 

CTCF in enhancer-promoter looping. Among these genes are cancer-associated genes that 

likely employ this mechanism to engender interactions with tumor-specific enhancers. For 

example, at CSNK1A1, a drug target in acute myeloid leukemia (AML) tumor cells (Järås et 

al., 2014), VEGFA, which is upregulated in many cancers (Goel and Mercurio, 2013), and 

RUNX1, a well-defined oncogene in AML (Deltcheva and Nimmo, 2017), the evidence 

suggests that super-enhancers in these cancer cells use a CTCF enhancer-docking 

mechanism to interact with the oncogene. Thus, a CTCF-dependent enhancer-docking 

mechanism, which presumably facilitates interaction with different cell-specific enhancers 

during development, is exploited by cancer cells to dysregulate expression of prominent 

oncogenes.

MYC dysregulation is a hallmark of cancer (Bradner et al., 2017). The c-MYC TF is an 

attractive target for cancer therapy because of the role that excessive c-MYC levels play in a 

broad spectrum of aggressive cancers (Felsher and Bishop, 1999; Jain et al., 2002; Soucek et 

al., 2008), but direct pharmacologic inhibition of c-MYC remains an elusive challenge in 

drug discovery (Bradner et al., 2017). The MYC enhancer-docking site, and presumably 

those of other oncogenes, can be repressed by dCas9-DNMT-mediated DNA methylation. 

Oncogene enhancer-docking sites may thus represent a vulnerability in multiple human 

cancers.

EXPERIMENTAL PROCEDURES

Further details and an outline for resources used in this work can be found in Supplemental 

Experimental Procedures.

CRISPR/Cas9 Genome Editing

Genome editing was performed using CRISPR/Cas9 essentially as described previously 

(Ran et al., 2013). The genomic sequences complementary to all guide RNAs are listed in 

Table S4.

ChIP-Seq

ChIP was performed as described previously (Lee et al., 2006). Approximately 30 million 

cells were crosslinked for 10 min at room temperature by the addition of one-tenth of the 

volume of 11% formaldehyde solution to the growth media followed by 5 min quenching 

with 125 mM glycine. Cells were washed twice with PBS, and then the supernatant was 

aspirated and the cell pellet was flash frozen at −80°C. 100 µL Protein G Dynabeads 

(Thermo 10003D) were blocked with 0.5%BSA (w/v) in PBS. Magnetic beads were bound 

with 40 µL anti-CTCF antibody (Millipore 07–729). Nuclei were isolated as previously 

described (Lee et al., 2006) and sonicated in lysis buffer on a Misonix 3000 sonicator for 5 

cycles at 30 s each on ice (18–21 W) with 60 s on ice between cycles. Sonicated lysates 

were cleared once by centrifugation and incubated overnight at 4°C with magnetic beads 

bound with antibody to enrich for DNA fragments bound by the indicated factor. Beads were 
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washed with wash buffers A, B, C, and D sequentially. DNA was eluted, cross-links were 

reversed, and DNA was purified with phenol chloroform extraction and ethanol 

precipitation. Libraries for Illumina sequencing were prepared following the Illumina 

TruSeq DNA Sample Preparation v2 kit and sequenced on the Illumina HiSeq 2500 for 40 

bases in single-read mode.

4C-Seq

A modified version of 4C-seq (van de Werken et al., 2012) was developed (Supplemental 

Experimental Procedures). The major change was the ligation is performed in intact nuclei 

(in situ). This change was incorporated because previous work has noted that in situ ligation 

dramatically decreases the rate of chimeric ligations and background interactions (Rao et al., 

2014).

HiChIP

HiChIP was performed essentially as described (Mumbach et al., 2016). 10 million HCT116 

cells were crosslinked for 10 min at room temperature by the addition of one-tenth of the 

volume of 11% formaldehyde solution to the growth media followed by 5-min quenching 

with glycine. Cells were washed twice with PBS, and then the cell pellet was flash frozen in 

liquid nitrogen. Frozen samples were processed according to protocol (Supplemental 

Experimental Procedures).

Targeted Methylation and Bisulfite Sequencing

To perform targeted methylation, cells were transfected with a dCas9-DNMT3A-3L 

construct and five guides. To generate the dCas9-DNMT3A-3L construct, dCas9 was 

isolated from pSQL1658 (Addgene 51023) by PCR. Cas9 was removed from pX330-Cas9 

(Addgene 42230) and replaced by DNMT3A-3L (Siddique et al., 2013). Guide RNAs used 

for targeting can be found in Table S4.

Statistical Methods

ChIP-Seq Data Analysis—ChIP-seq datasets were generated for this study as well as 

collated from previous studies (Table S5) and were aligned using Bowtie (version 0.12.2) to 

the human genome (build hg19, GRCh37) with parameter -k 1 -m 1 -n 2. We used MACS 

version 1.4.2 with the parameter “-no-model-keep-dup=auto.” A p value threshold of 

enrichment of 1e-09 was used.

4C Analysis—4C-seq reads were trimmed and mapped using bowtie with options -k 1 -m 

1 against the hg19 genome assembly. We only used the reads from non-blind fragments for 

further analysis. The normalized profile of each sample was smoothened using a 6-kb 

running mean at 500-bp steps across the genome. Quantification of the 4C signal counted 

the reads per fragment per million sequenced reads in the super-enhancers or the CTCF 

MACS peak calls.

HiChIP and ChIA-PET Data Analysis—We developed a new software pipeline and 

analytical method called origami to process HiChIP and chromatin interaction analysis by 

paired-end tag sequencing (ChIA-PET). The software and releases can be found at https://
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github.com/younglab/origami using version alpha20160828. The ChIA-PET datasets 

analyzed along with their corresponding linker sequence and called interactions in and 

around the MYC TAD can be found in Table S4. Each ChIA-PET datasets was processed as 

follows: the reads were first trimmed and aligned using origami-alignment. Each end of a 

paired end tag (PET) with a linker sequence were separately mapped to the hg19 genome 

assembly using bowtie with the following options: -v 1 -k 1 -m 1. After alignment, the 

separated PETs were re-paired in the final BAM output. After repairing, all duplicated PETs 

within the data were removed. Peaks were called on the re-paired ChIA-PET reads using 

MACS1 v1.4.2 with the following parameters: -nolambda -nomodel -p 1e–9.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Tumor-specific super-enhancers loop to an enhancer-docking site at the MYC 
oncogene

• Deletion or methylation of MYC enhancer-docking site reduces enhancer-

promoter looping

• MYC enhancer-docking site provides common vulnerability in diverse cancer 

cells

• Similar docking sites for multiple enhancers occur at additional genes
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Figure 1. Cell-Type-Specific Super-Enhancers in the MYC Locus Loop to a Common CTCF Site
(A) The 4.5 Mb region surrounding the MYC gene. The 2.8 Mb TAD containing MYC and 

portions of the two adjacent TADs are indicated with thick black horizontal lines. Super-

enhancers (data from Becket et al., 2016; Frietze et al., 2012; Lin et al., 2012; Pope et al., 

2014; Wang et al., 2011) are shown in colored boxes for a panel of tumor cell lines that 

express MYC.

(B) Chromosome interaction data at the ~3 Mb MYC locus. For HCT-116, SMC1 HiChIP 

interactions with an origami score of at least 0.9 and a minimum PET count of 9 are shown 

as purple arcs; the insulated neighborhood spanning interaction, which encompasses the 
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TAD, is shown as a blue arc (data from this study). For MCF7, Pol II ChIA-PET interactions 

with an origami score of at least 0.9 are shown as purple arcs; the insulated neighborhood 

spanning interactions from CTCF ChIA-PET data are shown in blue (data from ENCODE 

and Li et al., 2012). For K562, RAD21 ChIA-PET interactions with an origami score of at 

least 0.9 are shown as purple arcs; the insulated neighborhood spanning interaction is shown 

in blue and has an origami score of 0.44 (data from Heidari et al., 2014). For Jurkat, SMC1 

ChIA-PET interactions with an origami score of at least 0.99 are shown as purple arcs; the 

insulated neighborhood spanning interactions are shown in blue (data from Hnisz et al., 

2016a). CTCF ChIP-seq peaks are depicted as purple rectangles, super-enhancers are 

depicted as red rectangles, and typical enhancers are depicted as gray rectangles (data from 

this study; Hnisz et al., 2016a; Pope et al., 2014).

(C) CTCF ChIP-seq and SMC1 ChIA-PET read counts in the MYC promoter regions. 

Purple tracks display CTCF ChIP-seq signal in the four cell lines from (B). Light blue track 

displays the read counts from read pileup of Jurkat SMC1 ChIA-PET data, showing that the 

major peak of SMC1 ChIA-PET reads occurs at the −2 kb CTCF site. Dark blue bars 

indicate CpG islands. ChIP-seq read counts are shown in reads per million sequenced reads 

per base pair. ChIA-PET reads are shown as read counts per base pair.

(D) The top panel depicts all putative CTCF binding motifs as blue arrows, which indicate 

the orientation of the motif. The CTCF motif depicted in dark blue occurs in the most 

conserved region and shows the best match with consensus CTCF motif. 100 vertebrate 

conservation from the UCSC genome browser is depicted in the middle panel. The JASPAR 

score for all the motifs is indicated with blue bars. The position weight matrix for the 

canonical JASPAR CTCF motif and the actual sequence is shown below.

See also Figure S1
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Figure 2. Perturbation of the Core CTCF Motif in the MYC CTCF Loop-Anchor Reduces CTCF 
Occupancy and MYC Expression
(A) Schematic representation of the experiment. HCT-116, K562, Jurkat, and MCF7 cells 

were transduced with a construct expressing MYC under a PGK promoter and selected for 

successful integration. These cells were then transiently transfected with plasmid carrying 

Cas9 and a gRNA targeting the CTCF binding motif. Positive cells were identified and 

selected using fluorescence-activated cell sorting (FACS). These cells were multiplied, and 

clonal populations were characterized.

(B) The DNA sequences in the vicinity of the core CTCF motif and the mutations generated 

in clonal populations of K562, HCT-116, Jurkat, and MCF7 cell lines. The reference (WT, 
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wild-type) sequence highlighted in blue is complementary to the gRNA sequence targeting 

the most prominent CTCF motif (shown here in bold colored sequence). For the aneuploid 

MCF7 cell line, the two most common mutations are depicted.

(C) ChIP-qPCR showing reduction of the CTCF occupancy in Δ-CTCF K562, HCT-116, 

Jurkat, and MCF7 cells. p values were generated with a Student’s t test. Error bars represent 

the SD of the mean from three technical replicates.

(D) qPCR showing reduction of endogenous MYC mRNA levels in Δ-CTCF K562, 

HCT-116, Jurkat, and MCF7 cells. p values were generated with a Student’s t test. Error bars 

represent the SD of the mean from three biological replicates.

See also Figure S2
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Figure 3. Perturbation of the MYC Enhancer-Docking Site Reduces Looping to Super-Enhancers
(A) 4C analysis showing reduced looping of the MYC promoter proximal CTCF site to 

super-enhancers in CTCF motif deletion cells (ΔK562) versus unmodified cells (K562). 

H3K27Ac ChIP-seq and CTCF ChIP-seq are shown in blue and purple colors respectively. 

Blowups show the 4C interactions for three K562 specific super-enhancers. The 4C 

viewpoint is situated 112 base pairs upstream of the deleted loop-anchor region.

(B) 4C analysis showing reduced looping of the MYC promoter proximal CTCF site to 

super-enhancers in CTCF motif deletion cells (ΔK562) versus unmodified cells (K562) 

using a viewpoint centered on the most distant super-enhancer downstream of the MYC 
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gene. H3K27Ac ChIP-seq and CTCF ChIP-seq are shown in blue and purple, respectively. 

Blowups show the 4C interactions at the MYC promoter and distant super-enhancer near the 

viewpoint. Shading represents the 90% confidence interval based on three biological 

replicates. Peak calls from the H3K27Ac ChIP-seq were used to define the regions to be 

quantified and are indicated in gray boxes at the bottom of the panels. Boxplots show 

quantification of the reads per fragment for the indicated regions. p values were generated 

using Student’s t test, and data pairs with a p value < 0.05 are indicated with an asterisk. 

Reads are shown in reads per million sequenced reads per base pair. Typical enhancers and 

super-enhancers are shown as gray boxes and red boxes, respectively.

See also Figure S3
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Figure 4. dCas9-Mediated Methylation of the CTCF Loop-Anchor Site Reduces MYC Expression 
in Tumor Cells
(A) Top panel shows CTCF ChIP-seq at the MYC gene region in HCT-116 cells. ChIP-seq 

reads are shown in reads per million sequenced reads per base pair. Bottom panels shows a 

blowup of the ~700-bp region underneath the CTCF peak depicting the CTCF motifs (blue 

arrows) and the gRNAs (red rectangles) used to target dCas9-DNMT3A-3L to the enhancer 

anchor. Lollipop symbols indicate the location of CpGs that are assayed for methylation 

levels in (C).

(B) Schematic representation of the experiment. HCT-116 or K562 cells were transfected 

with plasmids encoding the dCAS9-DNMT3A-3L, GFP, and a gRNA together with a 

plasmid encoding 2 additional gRNAs. HCT-116 or K562 cells were isolated by FACS after 

2 days, and DNA and RNA were isolated.

(C) Methylation at MYC promoter loop-anchor site in untreated cells and cells transfected 

with dCas9-DNMT3A-3L in conjunction with the 5 indicated gRNAs.
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(D) qPCR analysis of MYC mRNA levels and fraction of methylated CpGs for untreated and 

dCas9-DNMT3A-3L + 5 gRNA transfected cells. Error bars represent the SD of the mean 

for three biological replicates.

See also Figure S4
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Figure 5. Putative Enhancer-Docking Sites Occur at Additional Genes with Prominent Roles in 
Cancer
(A) Identification of genes with putative enhancer-docking sites. Genes were filtered for 

their expression status, presence of a CTCF binding site within 2.5 kb of the TSS and 

evidence of looping to an active enhancer, defined by H3K27Ac ChIP-seq.

(B) Venn-diagram showing the overlap of TSSs with putative CTCF enhancer docking in 

K562, HCT-116, and Jurkat cells.

(C) Venn-diagrams showing the number of TSSs from active genes, the number of these that 

exhibit putative CTCF enhancer-docking and how many of these have a constitutive CTCF 

site within 2.5 kb of the TSS.

Schuijers et al. Page 24

Cell Rep. Author manuscript; available in PMC 2018 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) Conservation analysis of the CTCF motifs in the CTCF-bound elements in putative 

enhancer-docking sites. The mean 46-way PhastCons score of the highest JASPAR scoring 

motifs in CTCF peaks within putative CTCF enhancer docking and their flanking regions are 

shown.

(E) Examples of genes with putative CTCF enhancer-docking sites from the different cell 

types analyzed. CTCF ChIP-seq peaks are shown as purple rectangles, typical enhancers are 

shown as gray rectangles, and super-enhancers are shown as red rectangles. Black arrows 

indicate the CTCF sites that may facilitate enhancer docking. The insulated neighborhood 

loop is shown in blue and loops internal to it are shown in purple. HCT-116 HiChIP 

interactions internal to the neighborhood with an origami score of at least 0.9 and a 

minimum PET count of 15 are shown for the TGIF1 locus. Jurkat SMC1 ChIA-PET 

interactions internal to the neighborhood with an origami score of at least 0.97 are shown for 

the RUNX1 locus. K562 RAD21 ChIA-PET interactions internal to the neighborhood with 

an origami score of at least 0.9 and a minimum PET count of 30 are shown for the VEGFA 
locus. K562 RAD21 ChIA-PET interactions internal to the neighborhood with an origami 

score of at least 0.9 and aminimum PET count of 30 are shown for the PIM1 locus. Data are 

from this study and two others (Hnisz et al., 2016a; Heidari et al., 2014).

See also Figure S5
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