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Abstract
Cell-free DNA profiling using patient blood is emerging as a non-invasive complementary technique for cancer genomic
characterization. Since these liquid biopsies will soon be integrated into clinical trial protocols for pediatric cancer treatment,
clinicians should be informed about potential applications and advantages but also weaknesses and potential pitfalls. Small
retrospective studies comparing genetic alterations detected in liquid biopsies with tumor biopsies for pediatric solid tumor types
are encouraging. Molecular detection of tumor markers in cell-free DNA could be used for earlier therapy response monitoring
and residual disease detection as well as enabling detection of pathognomonic and therapeutically relevant genomic alterations.

Conclusion: Existing analyses of liquid biopsies from children with solid tumors increasingly suggest a potential relevance for
molecular diagnostics, prognostic assessment, and therapeutic decision-making. Gaps remain in the types of tumors studied and
value of detection methods applied. Here we review the current stand of liquid biopsy studies for pediatric solid tumors with a
dedicated focus on cell-free DNA analysis. There is legitimate hope that integrating fully validated liquid biopsy–based inno-
vations into the standard of care will advance patient monitoring and personalized treatment of children battling solid cancers.

What is Known:
• Liquid biopsies are finding their way into routine oncological screening, diagnosis, and disease monitoring in adult cancer types fast.
• The most widely adopted source for liquid biopsies is blood although other easily accessible body fluids, such as saliva, pleural effusions, urine, or

cerebrospinal fluid (CSF) can also serve as sources for liquid biopsies
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What is New:
• Retrospective proof-of-concept studies in small cohorts illustrate that liquid biopsies in pediatric solid tumors yield tremendous potential to be used in
diagnostics, for therapy response monitoring and in residual disease detection.

• Liquid biopsy diagnostics could tackle some long-standing issues in the pediatric oncology field; they can enable accurate genetic diagnostics in
previously unbiopsied tumor types like renal tumors or brain stem tumors leading to better treatment strategies

Keywords Liquid biopsies . Pediatric solid tumors . Cell-free DNA profiling

Abbreviations
CSF Cerebrospinal fluid
ctDNA Circulating or cell-free tumor DNA
MRD Minimal residual disease
PCR Polymerase chain reaction)

Introduction

The analysis of circulating cell-free nucleic acids is being
introduced in several medical fields. In obstetrics, non-
invasive prenatal aneuploidy screening for trisomy 21 is well
established and widely implemented with high sensitivity and
specificity [1]. In transplantation medicine, the amount of cir-
culating donor-derived cell-free DNA in the recipient is being
explored as a surrogate marker for cellular damage in the
donated organ [23, 26]. The analysis of tumor-derived cell-
free DNA and RNA is emerging as an alternative to or com-
plementary assay for molecular genetic analyses in tumor tis-
sue biopsies. Commonly referred to as liquid biopsies, the
most widely adopted source is blood although other easily
accessible body fluids, such as saliva, pleural effusions, urine,
or cerebrospinal fluid (CSF), can also serve as sources for
liquid biopsies [27]. Moss et al. used cell type-specific meth-
ylation to track cell origin, identifying 55% of cell-free DNA
in healthy individuals as originating from white blood cells,
with contributions from erythrocyte progenitors (30%), vas-
cular endothelial cells (10%), and hepatocytes (1%) [47]. Cell-
free nucleic acids are thought to originate from apoptotic or
necrotic tissue under physiological and pathological circum-
stances, but exact biological origins and roles are still under
investigation (reviewed in [66]). The fraction of cell-free
DNA originating from the tumor is sometimes referred to as
circulating or cell-free tumor DNA both abbreviated as
ctDNA, which we will use throughout this review.
Circulating tumor cells and extracellular vesicles (30–
100 nm diameter) originating from tumor cells known as
exosomes are other biological sources for DNA, RNA, and
proteins in liquid biopsies. This review is limited to the anal-
ysis of ctDNA, the most widely adopted fraction. Siravegna
[61] andWan [73] have comprehensively reviewed how other
types of liquid biopsies can be exploited to guide patient care,
while Merker et al. [61] reviewed the current information
about clinical ctDNA assays. We refer the reader to these
reviews for more information on those topics.

Opportunities for liquid biopsies in pediatric
oncology

The discovery of ctDNA dates back to 1977 [40]. However,
technological advances have only recently made routine and
sensitive analysis feasible, with the advent of the digital poly-
merase chain reaction (PCR, Fig. 1a) and massively parallel
sequencing (Fig. 1b) [27, 61]. The liquid biopsy approach has
significant theoretical advantages over classical biopsies,
which are often invasive, costly, and potentially harmful to
patients. Liquid biopsies are relatively simple to obtain, mak-
ing them less invasive and less expensive. The patient also
benefits from the potential for improved care through finer
time-resolved diagnostic monitoring. Liquid biopsies can fa-
cilitate increased diagnostic accuracy and enable therapy re-
sponse monitoring and minimal residual disease (MRD) de-
tection for solid tumors. Tissue biopsy also only reflects a
subpopulation of the tumor cells, creating sampling bias.
Liquid biopsy better detects spatial or subclonal tumor hetero-
geneity [15, 25]. Liquid biopsies also enable monitoring of
tumor clonal evolution and detection of therapy-relevant nov-
el mutations arising during treatment. Early cancer detection
through liquid biopsy is also emerging as a way to perform
population surveillance [2]. For many pediatric tumor types, it
remains unknown if and to what degree liquid biopsy–based
tests will contribute to diagnosis, treatment stratification, and
follow-up monitoring. We will discuss the current state of
liquid biopsy applications in pediatric oncology and indicate
where opportunities can be found.

Screening and early diagnosis

Little is known about the role of liquid biopsies in cancer
screening for the pediatric population.

Screening for cancer requires an easy, low-cost, and low-
impact test with a minimalized false detection rate. A test with
very high sensitivity and specificity will still detect many false
positives if a disease it screens for is very rare, as is the case for
cancer in children. As an example, a hypothetical screening
test with 99.9% specificity and sensitivity for neuroblastoma,
which affects 9–12 children (< 15 years) per million, would
generate 988 false positives per 1000 positively screened
cases when screening all children under 15 years of age in
the general population. Earlier attempts to screen populations
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for neuroblastoma by ultrasound [51, 57, 76] did not reduce
mortality, but overdiagnosed benign adrenal masses as neuro-
blastomas. The utility of cancer screening in the general pedi-
atric population remains dubious, since cancer screening only
becomes clinically relevant if patient benefit can be achieved.
Either preventive therapeutic options taken to avoid cancer
development (e.g., colectomy in patients with familial adeno-
matous polyposis) or improved outcome due to treatment after
early tumor detection can make screening useful. It is current-
ly unclear what the gold standard is for early cancer detection
programs in children with cancer predisposition syndromes
stemming from gene mutations in the germline, such as Li-
Fraumeni (TP53), Von Hippel Lindau (VHL), familial adeno-
matous polyposis (APC), DICER1 syndrome or subtypes of
primary immunodeficiencies [34]. Liquid biopsies may play a
role in this setting in the (near) future, but much controversy
remains about correct follow-up since studies with high-
quality follow-up remain scarce [39, 54, 65, 75]. Liquid
biopsy–based screening could potentially be more accurate,
simpler, and associated with less discomfort than current

monitoring protocols. Children affected by constitutional mis-
match repair deficiency, whose chance of developing cancer
by 18 years of age is estimated to be as high as 80 percent [75],
could benefit from early detection.

Diagnostics and therapeutic stratification

Data describing the diagnostic utility of liquid biopsies in
pediatric oncology is accumulating. One multi-entity study
by Kurihara et al. detected cell-free DNA in plasma samples
from all 44 patients with a diverse range of pediatric tumors,
but could not definitively show it was tumor-derived because
of the paucity in genomic alterations [38]. No large-scale
multi-entity studies assessing the diagnostic potential of
ctDNA in patients with pediatric solid tumors have been com-
pleted to date. However, ultralow passage whole-genome se-
quencing conducted on 45 pediatric diagnostic pretreatment
plasma samples [36] demonstrated the presence of ctDNA in
more than half of samples from patients with osteosarcoma,
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Fig. 1 The optimal technique for cell-free DNA (cfDNA) analysis is
chosen depending on the clinical question at hand. Commonly used
techniques are digital PCR (dPCR) and massively parallel, or “next-
generation,” sequencing. Digital PCR (panel a), with its unmatched
sensitivity, is suited for monitoring known (hotspot) mutations, can be
used to detect amplifications or losses of one or two pre-specified
genomic regions and to detect pre-defined sites of genomic fusion.
Massive parallel sequencing (panel b) is useful to detect all types of
genomic alterations, depending on the sequencing strategy used. It can
evaluate single nucleotide variants (SNVs), copy number aberrations
(CNA), genomic fusions or a combination thereof. Whole-genome

sequencing (WGS) results in uniform coverage across the entire
genome. When performed at low coverage, the technique is termed
shallow WGS, and is a cost-effective method to detect CNAs.
Performed at higher coverage, the detailed analysis of mutations or
translocations on a genome-wide scale is feasible. Whole-exome
sequencing (WES) focuses the sequencing effort on the coding regions
of the genome, but non-coding or structural variation is largely missed.
Targeted sequencing will result in extremely high coverage over a small
proportion of the genome, allowing the detection of variants in that
specific region with high sensitivity. PCR, polymerase chain reaction.
CTC, circulating tumor cells
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neuroblastoma, Wilms tumor, and alveolar rhabdomyosarco-
ma. Changes in cell-free DNA plasma load also correlated
with treatment response, with higher loads detected in patients
with progressive disease.We discuss the studies conducted for
single cancers in the context of each disease below. Further
evidence of the feasibility of ctDNA detection across different
pediatric cancers and different biological sources will come
from the ongoing NGSkids (NCT02546453) and
MICCHADO (NCT03496402) trials.

NeuroblastomaRecent evidence demonstrates that copy num-
ber alterations, a mandatory analysis for risk stratification, can
be determined from cell-free DNA in blood plasma from neu-
roblastoma patients [14, 68]. Chromosomal copy number pro-
files assessed from ctDNA by shallow whole-genome se-
quencing (at 0.4-fold genomic coverage) were highly concor-
dant with profiles generated from the gold standard, array-
based comparative genomic hybridization from the primary
tumor biopsy. Work by Combaret et al. showed that the two
activating ALK mutations commonly occurring in neuroblas-
tomas can be detected in plasma by droplet digital PCR with
high sensitivity and specificity (90–100%), producing results
concordant to those achieved with deep sequencing [18].
Quantitative PCR-based detection of MYCN amplifications
in peripheral blood from neuroblastoma patients was proven
feasible in 2002, before the concept of cancer liquid biopsies
was established [17]. Detection sensitivity and specificity is
further improved by droplet digital PCR [41]. In all four of the
above-mentioned studies, genomic alterations were detected
in circulating cell-free DNA that were not detectable in the
primary tumor biopsy, suggesting that liquid biopsy diagnos-
tics may be better at capturing tumor heterogeneity or detect-
ing alterations present in metastases.

Ewing sarcoma The diagnostic hallmark for Ewing sarcoma is
a rearrangement involving the EWSR1 gene, most commonly
EWSR1-FLI1 and EWSR1-ERG rearrangements, while other
rare translocation partners have been reported. EWSR1 fusion
genes can be detected in circulating cell-free DNAwith drop-
let digital PCR or targeted sequencing, providing a liquid
biopsy–based diagnostic strategy [37, 60].

Lymphomas Although no detailed genomic analysis was con-
ducted, two studies detected significantly higher cell-free DNA
loads in plasma from 201 pediatric patients with various lym-
phoma subtypes [49] and 155 patients with Hodgkin lymphoma
[55] as compared with plasma from healthy controls. High cir-
culating cell-free DNA levels correlated with poor prognosis in
patients with Hodgkin lymphoma [49], and are present at diag-
nosis in plasma from patients with B cell non-Hodgkin lympho-
ma, but decrease during treatment [43]. Pathognomonic NPM-
ALK fusion genes are readily detectable in plasma from patients
with anaplastic large cell lymphoma [49].

Renal tumors Pediatric renal tumors are most often not
biopsied due to the risk of tumor rupture, which would spill
tumor cells into the peritoneal cavity and require treatment
intensification. This lack of histological confirmation at diag-
nosis can lead to misdiagnosis and suboptimal treatment of
non-Wilms type tumors. Jimenez et al. [33] retrospectively
examined plasma samples collected at diagnosis of different
renal tumor types in 18 patients. Tumor-specific copy number
and/or single-nucleotide alterations were detected in plasma
from all but one patient. Molecular characterization of kidney
tumors from plasma samples collected at diagnosis could,
therefore, open the door to more appropriate and tumor-
specific neoadjuvant chemotherapy. A small proof-of-
concept study [67] developed and applied a PCR assay detect-
ing internal tandem duplications in BCOR, a hallmark of clear
cell sarcoma of the kidney, to plasma samples. This assay was
used to pre-operatively differentiate clear cell sarcoma from
nephroblastoma in four patients.

Brain tumors Pathological examination is the gold standard
for definitive brain tumor diagnosis and subtyping, but this
is often challenging. The most recent WHO classification de-
fines molecular parameters in addition to histopathology for
diagnosis [42]. Classification of brain tumors by methylation
analysis appears to outperform histopathological diagnostics
at least for several tumor types [12, 52, 62]. This predicts a
major role for ctDNA-based diagnosis of central nervous sys-
tem tumors, facilitating early management and therapy, espe-
cially in cases where tumor localization prevents resection.
Cell-free DNA load in blood plasma has only been tested in
pediatric patients with medulloblastomas (among brain tu-
mors) to date, where its presence was demonstrated in 40%
of patients [7]. Tumor-derived histone H3 gene mutations
were detected in blood plasma from pediatric patients with
diffuse midline gliomas [31]. Martinez-Ricarte et al.were able
to classify 17 of 20 patients (including 2 children) with diffuse
gliomas by analyzing only 7 genes in cell-free DNA fromCSF
[44]. Paret et al. reported on one pediatric case of
neuroepithelial high-grade tumor of the central nervous sys-
tem showing a BCOR internal duplication, whose detection in
plasma cell-free DNA correlated with relapse development
[53]. The blood-brain barrier significantly restricts the amount
of ctDNA entering the blood [7, 22]. An alternative source of
ctDNA for brain tumors is CSF, which has been demonstrated
to contain ctDNA to a certain extent in adult patients [58].
Many pediatric patients with brain tumors present with criti-
cally elevated intracranial pressure [50], in whom acute neu-
rosurgical intervention is necessary. CSF can be safely obtain-
ed for ctDNA analysis during this procedure with no addition-
al risk or burden to the patient. The diagnostic utility of this
analysis across the range of both high- and low-grade pediatric
brain tumors has not yet been explored. We expect this evi-
dence to emerge within the next years, as techniques for cell-
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free DNA methylation detection are being further developed
[21, 59]. CSF can also be obtained by lumbar puncture; while
not minimally invasive, this technique is a relatively safe and
often included in routine testing for neurological symptoms in
pediatric patients and as a staging tool in brain tumors.When a
CNS tumor is suspected, the benefit of a lumbar puncture to
obtain CSF for ctDNA analysis might outweigh the risks as-
sociated with sampling.

Retinoblastoma Although not minimally invasive or easily
accessible, the vitreous fluid has been retrospectively exam-
ined in 26 patients with retinoblastomas. Tumor-specific copy
number alterations and RB1mutations detected in the vitreous
fluid using shallow whole-genome sequencing strongly corre-
lated with the need for eye enucleation. This testing may be-
come a biomarker to guide the important decision whether to
enucleate or salvage the eye in future trials [5, 6]. Blood-based
liquid biopsies have not been explored for retinoblastoma.

Evaluating therapeutic response and clonal
evolution

Liquid biopsy–based monitoring of therapy response in pedi-
atric cancer patients has been evaluated in some studies in
limited patient numbers, but clear evidence from prospective-
ly validated large studies has not yet been published. Tumor
heterogeneity and longitudinal follow-up of single-nucleotide
variants and copy number aberrations in circulating cell-free
DNA have best been explored to date in a study by Chicard
et al. [15]. Using a combination of whole-exome and targeted
sequencing of both the primary tumor and plasma samples
collected at different time points, the authors demonstrated
the subclonal makeup of neuroblastomas and the accumula-
tion of additional genomic alterations during tumor evolution
towards therapy-resistant disease. Some alterations were po-
tentially targetable (MAPK pathway) suggesting an applica-
tion for liquid biopsy diagnostics in therapy decisions and
response evaluation [15]. We demonstrate the difference that
could be made by liquid biopsy–based monitoring in the clin-
ical course of a theoretical patient with neuroblastoma (Fig. 2).

Minimal residual disease and early relapse
detection

Two major opportunities provided by liquid biopsies are to
improve MRD monitoring under primary treatment and the
early molecular-based diagnosis of relapse during follow-up.
MRD detection is well established for children with acute
lymphoblastic leukemia since the beginning of the 2010s,
and is now part of routine follow-up in many frontline treat-
ment protocols both to determine optimal treatment intensity

and to diagnose relapse prior to the onset of clinical symptoms
[11, 32]. Based on the analysis of plasma obtained from 44
pediatric patients with different solid tumors using next-
generation sequencing and droplet digital PCR, Kurihara
et al. suggest that total ctDNA amount can serve as a marker
to evaluate how completely a pediatric tumor is resected fol-
lowing surgery [38]. Whole-genome profiling of primary neu-
roblastomas was used to generate tumor-specific DNA-based
PCR assays for MRD monitoring in blood and bone marrow
in eight patients, providing proof-of-concept for this paradigm
in solid tumors. The MRD panel was capable of predicting
disease relapse or bone marrow progression in four of five
patients [69]. Further, different mRNA markers are being ex-
plored for MRD detection in blood (PHOX2B, TH, DDC,
DBH, and CHRNA3) and bone marrow (PHOX2B, TH,
DDC, CHRNA3, and GAP43) from neuroblastoma patients
[63, 71]. This mRNA-based detection panel can be applied
to assess treatment response as well as MRD detection, since
high panel transcript levels at diagnosis, after induction ther-
apy, and at the completion of treatment were associated with
worse patient outcome [19, 64, 70, 72, 78]. Increasing evi-
dence suggests that treatment follow-up using liquid biopsies
is also feasible for patients with Ewing sarcoma.Measurement
of the EWSR1 fusion gene copy numbers in 234 blood sam-
ples from 20 patients showed that recurring or increasing
levels correlated with relapse [37]. In another study, patient-
specific primers for use in droplet digital PCR were
established to detect tumor-specific ESWR-ETS fusion gene
breakpoint fragments in plasma samples from, to date, three
patients with Ewing sarcoma. In two of these patients, fusion
gene fragments were detected in plasma samples at a time
when the disease was radiographically undetectable, altogeth-
er suggesting that measuring tumor-specific EWS-ETS fusion
gene breakpoint fragments in the blood may serve as a reliable
personalized biomarker for early relapse detection in patients
with Ewing sarcoma [30].

Limitations and challenges

Quality issues and standards The pre-analytical phase, includ-
ing type and handling of the blood collection tube, storage
temperature, time-to-processing and centrifugation speed, all
influences the availability and composition of cell-free DNA
in the sample [24]. For example, white blood cell lysis further
increases their contribution to total cell-free DNA and dilutes
the ctDNA fraction. Most studies conducted so far have uti-
lized retrospectively collected plasma and blood samples,
preventing investigation of pre-analytical variables that might
interfere with the amount of ctDNA or total cell-free DNA.
Standardizing pre-analytical variables will be necessary be-
fore liquid biopsies can enter routine clinical care.
Preservation tubes for cell-free DNA analysis exist and have
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clearly proven capable of stabilizing cell-free DNA for longer
periods [35, 45], but are more expensive and not often on hand
in all hospitals. Further testing is necessary to arrive at stan-
dards to maintain quality for different liquid biopsy–based
assays.

Physiology of cell-free DNA Analogous to other pediatric bio-
logical variables, it is to be expected that processes regulating
the shedding of cell-free DNA into the bloodstream and its
metabolism may be different in children and adults, and may
even vary between infants, young children, and adolescents.
Cell-free DNA levels were shown to be higher in older indi-
viduals (19–30 and 67–97 age groups were compared) in the
general population, and authors speculated that older people
could have difficulty clearing cell-free DNA from the blood
[47]. It is conceivable that health, similar to age, has a general
impact on plasma cell-free DNA content. Comorbidities can
also occur in pediatric cancer patients (e.g., acute and chronic
kidney disease, sepsis) that have been shown to elevate total
circulating cell-free DNA levels [16]. Data from adult patients
show that the ctDNA compartment makes up a significantly
higher fraction of circulating cell-free DNA in plasma from

patients with high-stage and metastatic disease than low-stage
disease [7], indicating liquid biopsies may be more relevant in
high-stage and metastatic disease in children with cancer as
well. The one study of retrospectively collected plasma sam-
ples from patients with multiple pediatric cancer types detect-
ed a significantly higher level of cell-free DNA in plasma
from patients with neuroblastoma compared with patients
with Ewing sarcoma, osteosarcoma, Wilms tumor, and alveo-
lar rhabdomyosarcoma [36]. However, relative ctDNA plasma
loads have not yet been thoroughly investigated across pedi-
atric cancer types and stages. Circulating cell-free DNA has
been most intensively studied in patients with neuroblastoma
to date. Total cell-free DNA levels are approximately 100-fold
higher in plasma from patients diagnosed with high-risk neu-
roblastoma than in healthy adults, indicating that tumor-
derived DNA contributes largely to the circulating DNA in
high-risk patients. Tumor-derived DNA was estimated to
make up between 3 and 99% of circulating cell-free DNA in
these patients [15, 36]. While these investigations indicate
liquid biopsies may be more beneficial for patients with
high-stage or metastatic disease, we should be careful of gen-
eralizing from the limited data available at this time. The
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extent to which patient age, tumor type, disease stage, or other
variables impact the uses or usefulness of liquid biopsies will
only become clear after their systematic integration in studies
accompanying trials.

Low rates of recurrent genomic alterations common to pedi-
atric cancers In comparison with adult tumor types, hotspot
mutations and recurrent genomic alterations are rare in pedi-
atric cancer [28]. Recurrent genetic alterations or hotspot mu-
tations that are tumor-specific are ideal targets for ctDNA
diagnostics or MRD detection [13]. They offer the advantage
that highly optimized assays, such as those applying droplet
digital PCR, can be developed for their detection. Although
altogether rare, some notable exceptions for hotspot mutations
and recurrent genomic alterations that impact clinical care
exist. This includes ALKF1174 and ALKR1275 mutations and
MYCN amplifications in primary neuroblastomas [29, 56,
63], the BRAFV600E mutation in Langerhans cell histiocytosis
[3], and EWSR1 translocations in Ewing sarcoma [20], to
name a few.

Impact on therapy and outcome Liquid biopsy–based diag-
nostics, when optimized, can support improved MRD
monitoring and early relapse detection and provide in-
formation for therapy decisions. The value of monitor-
ing recurrence will remain limited without the availabil-
ity of adequate relapse treatments, but this limitation
also exists for on-going large concerted biology-driven,
early phase precision medicine trials for high-risk, re-
lapsed or refractory pediatric cancers (eSMART:
NCT02813135 ; INFORM [77 ] ; P ed -MATCH:
NCT03155620; PRISM: NCT03336931; iCat2 from the
GAIN Consortium: NCT02520713). All these studies
require extensive molecular profiling of relapsed tumor
samples before trial entry. Some (early phase) clinical
trials for relapsed patients now include ctDNA analysis
to follow the evolution of tumor genetics during
t a rg e t ed t r e a tmen t ( eSMART; MAPPYACTS :
NCT02613962).

Discussion and conclusions

Liquid biopsy applications for pediatric oncology are
lagging behind their adult counterpart, and studies so
far have mostly been retrospective proof-of-concept
studies in small cohorts. Nevertheless, these proof-of-
concept studies illustrate that the technology yields sub-
stantial potential (Table 1). Pediatric tumor types,
consisting mainly of highly immature and fast-growing
tumor cells, might even be better suited to liquid
biopsy–based genomics than many cancers arising in
adult patients. Larger and especially prospective clinical

trials are needed to fully explore the potential of liquid
biopsy–based diagnosis, therapy response monitoring,
and residual disease detection. In comparison with adult
oncology, where less than 5% of patients are enrolled in
a randomized controlled trial [48], the majority of chil-
dren with cancers are enrolled. The first randomized
controlled trials in pediatric oncology that will collect
liquid biopsies to explore its potential are currently be-
i ng in i t i a t ed (NCT02546453 , NCT03496402 ,
NCT03336931). The data generated will hopefully elu-
cidate whether this novel technology is complementary
to traditional diagnostic procedures and demonstrate
what impact they can have on clinical decision making.
We expect to see many novel frontline international
treatment protocols make use of liquid biopsy diagnos-
tics in the future. Blood-based liquid biopsies might be
the first step, but in due time, could be complemented
or replaced by urine [10] or other fluid sources, such as
saliva or CSF [46], as has developed for specific appli-
cations in the adult population.

For specific disease types, liquid biopsy diagnostics
may be able to resolve some long-standing issues. The
discussion of whether to perform surgery first, or what
type of chemotherapy should be applied for renal tu-
mors might become resolved by liquid biopsy–based
genomic profiling to improve diagnostics and risk strat-
ification [8]. Identifying a kidney tumor as a Wilms or
other tumor entity (e.g., differential diagnosis between
Wilms tumor and clear cell sarcoma) from genomic pro-
filing of circulating cell-free DNA at diagnosis would
eliminate the need to resort to risky tissue biopsies with
the potential to cause tumor rupture. Molecular classifi-
cation of renal tumors through liquid biopsy approaches
might directly impact the clinical course in up to 10%
of children who currently succumb to a renal tumor.
Additional valuable genomic insights might be available
through liquid biopsy–based analysis of diffuse intrinsic
pontine gliomas, for which no effective treatment strat-
egies currently exist and biopsy at diagnosis is limited
by the risks involved. Improved biological insights
could drive development of novel, effective therapies.
Liquid biopsies may even have an impact in general
pediatrics, for example, in the diagnostic workup of an
enlarged lymph node. A well-validated and highly sen-
sitive test to detect lymphoma-associated genetic alter-
ations might reduce the number of lymph node biopsies
necessary to diagnose lymphadenitis as opposed to lym-
phoma. We expect the clinical impact of liquid biopsy
diagnostics to become clear in the field of pediatric
oncology in the coming decade. Well-organized prospec-
tive multicenter trials will be necessary to further delin-
eate the potential applications and clinical utility of this
novel technology.
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