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INTRODUCTION

Juvenile myoclonic epilepsy (JME) is a type of idiopathic 
generalized epilepsy (IGE) that presents with typical seizure 
types such as generalized tonic-clonic seizures, myoclonic 

Development and Validation of MRI-Based Radiomics 
Models for Diagnosing Juvenile Myoclonic Epilepsy
Kyung Min Kim1*, Heewon Hwang2*, Beomseok Sohn3, Kisung Park3, 4, Kyunghwa Han3, Sung Soo Ahn3, 
Wonwoo Lee5, Min Kyung Chu1, Kyoung Heo1, Seung-Koo Lee3

1Department of Neurology, Epilepsy Research Institute, Yonsei University College of Medicine, Seoul, Korea; 2Department of Neurology, Wonju 
Severance Christian Hospital, Yonsei University Wonju College of Medicine, Wonju, Korea; 3Department of Radiology, Severance Hospital, Research 
Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea; 4Department 
of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Korea; 5Department of Neurology, Yongin Severance Hospital, 
Yonsei University Health System, Yongin, Korea

Objective: Radiomic modeling using multiple regions of interest in MRI of the brain to diagnose juvenile myoclonic epilepsy 
(JME) has not yet been investigated. This study aimed to develop and validate radiomics prediction models to distinguish 
patients with JME from healthy controls (HCs), and to evaluate the feasibility of a radiomics approach using MRI for diagnosing 
JME.
Materials and Methods: A total of 97 JME patients (25.6 ± 8.5 years; female, 45.5%) and 32 HCs (28.9 ± 11.4 years; female, 
50.0%) were randomly split (7:3 ratio) into a training (n = 90) and a test set (n = 39) group. Radiomic features were extracted 
from 22 regions of interest in the brain using the T1-weighted MRI based on clinical evidence. Predictive models were trained 
using seven modeling methods, including a light gradient boosting machine, support vector classifier, random forest, logistic 
regression, extreme gradient boosting, gradient boosting machine, and decision tree, with radiomics features in the training 
set. The performance of the models was validated and compared to the test set. The model with the highest area under the 
receiver operating curve (AUROC) was chosen, and important features in the model were identified.
Results: The seven tested radiomics models, including light gradient boosting machine, support vector classifier, random 
forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, showed AUROC values 
of 0.817, 0.807, 0.783, 0.779, 0.767, 0.762, and 0.672, respectively. The light gradient boosting machine with the highest 
AUROC, albeit without statistically significant differences from the other models in pairwise comparisons, had accuracy, 
precision, recall, and F1 scores of 0.795, 0.818, 0.931, and 0.871, respectively. Radiomic features, including the putamen 
and ventral diencephalon, were ranked as the most important for suggesting JME.
Conclusion: Radiomic models using MRI were able to differentiate JME from HCs.
Keywords: Juvenile myoclonic epilepsy; Idiopathic generalized epilepsy; Radiomics; Texture analysis; Magnetic resonance 
imaging

Received: June 23, 2022   Revised: September 21, 2022   Accepted: September 26, 2022
*These authors contributed equally to this work.
Corresponding author: Beomseok Sohn, MD, Department of Radiology, Severance Hospital, Research Institute of Radiological Science 
and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea. 
• E-mail: beomseoksohn@yuhs.ac
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://
creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, 
provided the original work is properly cited. 

jerks, and less frequently, absence seizures. JME is a major 
epilepsy syndrome, accounting for 5%–10% of all epilepsies 
and approximately 18% of idiopathic generalized epilepsies 
[1]. The clinical features of JME include an age of onset 
between 12 and 16 years, generalized spike-and-wave 
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complexes on the electroencephalogram (EEG), and normal 
routine brain MRI upon visual inspection [2].

Recently, advanced imaging analysis methods have 
revealed microstructural and functional brain abnormalities 
in JME patients. Computational MRI studies using voxel-
based morphometry, diffusion tensor imaging, and 
functional MRI have shown changes in the cortical/
subcortical volume and morphology, thalamocortical 
connectivity, and structural-functional correlations [3-
5]. In contrast, previous studies have mainly focused on 
single regions of interest (ROI) (thalamus [6], putamen [7], 
corpus callosum [8], amygdala-hippocampus [9], and frontal 
cortex [10]) or single parameters (volume, morphology, 
probabilistic tractography connectivity, and blood-oxygen-
level-dependent contrast). 

Radiomics can provide information such as intensity 
distributions, spatial relationships, textural heterogeneity, 
and shape descriptors [11]. Radiomics aims to extract 
quantitative and ideally reproducible information, such 
as complex patterns that are difficult to recognize [12]. 
Thus, the radiomics methodology is thought to be useful 
in elucidating the complex pathogenic networks involved 
in epileptogenesis. Although recent studies have used 
radiomics in patients with epilepsy, radiomics studies in 
patients with JME are limited [13,14]. 

Therefore, this study aimed to develop and validate 
radiomics-based prediction models using routine 
conventional MRI to distinguish patients with JME from 
healthy controls (HCs). This study will be helpful in 
evaluating the feasibility of a radiomics approach using MRI 
for diagnosing JME.

MATERIALS AND METHODS

Patient Selection and Characteristics
A total of 103 consecutive JME patients (25.6 ± 8.5 

years; female, 45.5%) were enrolled retrospectively, who 
visited the epilepsy clinic of Severance Hospital (tertiary 
care center) between January 2000 and December 2020. 
The initial diagnosis of patients with JME was reconfirmed 
by reviewing the medical records of the two institution’s 
neurologists. JME was diagnosed based on the clinical 
and EEG features set by the International League Against 
Epilepsy [2]. All patients with JME had typical seizures, 
such as myoclonic jerks and generalized tonic-clonic 
seizures. Routine scalp EEG demonstrated generalized 
polyspikes or spike-and-wave complexes in all patients. The 

MRI interpretation records were normal. Two board-certified 
neuroradiologists (5-year and 11-year experiences) reviewed 
all the MRI data to confirm their previous reading, and no 
abnormal findings were discovered. Two patients with JME 
were excluded because of the poor image quality of the MRI 
examinations. For the control group, 45 healthy participants 
without a history of medical, neurological, or psychiatric 
disorders volunteered for brain MRI for research purposes in 
our hospital from June 2015 to June 2016. The MRI results 
of all the 45 HCs were normal. Subsequently, 32 HCs (28.9 
± 11.4 years; female, 50.0%) matching the age range and 
gender composition were finally chosen for study analysis.

This retrospective study was approved by the Institutional 
Review Board of Severance Hospital (IRB No. 4-2021-1196), 
and the requirement for informed consent was waived. 
All the procedures were performed in accordance with the 
Declaration of Helsinki.

Image Acquisition
All preoperative MRI scans were performed using a 3T MRI 

system with an eight-channel sensitivity-encoding head coil 
(Achieva or Ingenia, Philips Healthcare; TrioTim, Siemens). 
All images were submitted to two imaging experts for visual 
analysis. The detailed acquisition parameters are described 
in the Supplement.

Image Processing and Radiomic Feature Extraction
During image processing and feature extraction, the 

status of the patients (JME vs. HCs) was blinded. Pre-
processing of the images was performed to standardize 
the data analysis across patients. The FreeSurfer 6.0.0 
software (https://surfer.nmr.mgh.harvard.edu) was used 
to obtain subject-specific masks of brain regions. This 
procedure involves motion correction of T1-weighted 
images, removal of non-brain tissue [15], automatic 
Talairach transformation, segmentation of subcortical white 
matter and deep gray matter structures [16], intensity 
normalization, tesselation of the gray matter/white 
matter boundary [17], automated topology correction, 
and surface deformation following intensity gradients 
[18]. The FreeSurfer automatically segments multiple brain 
structures. During auto-segmentation, four patients with 
JME were excluded because of segmentation errors. From 
multiple segmentations of brain structures, 22 ROI masks 
were selected based on clinical evidence from previous JME 
imaging research: bilateral cerebral white matter [19,20], 
bilateral thalamus [7,21], bilateral caudate [22,23], 

https://surfer.nmr.mgh.harvard.edu
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bilateral putamen [7,24], bilateral globus pallidus [25], 
bilateral hippocampus [26,27], bilateral amygdala [9,28], 
bilateral ventral diencephalon [29,30], brainstem [31], 
and corpus callosum (anterior, mid-anterior, central, mid-
posterior, and posterior) [32,33]. Their clinical relevance 
has been established through a review of published studies 
[34,35]. Subsequently, the T1-weighted images were re-
sampled to an identical spatial resolution of 1 x 1 x 1 mm. 
A board-certified neuroradiologist inspected all the images 
and masks to ensure accuracy. No modifications were made 
to maintain a fully automated segmentation pipeline. These 
images were subjected to N4 bias correction to remove 
low-frequency intensity and non-uniformity. Subsequently, 
z-score image normalization was performed. Subsequently, 
radiomic features were extracted from the masks on T1WI 
using PyRadiomics (http://www.radiomics.io/pyradiomics.
html) with a bin count of 32, including shape, first order, 
grey level co-occurrence matrix, grey level run-length matrix, 
grey-level size zone matrix, neighboring grey tone difference 
matrix, and grey level dependence matrix [36]. 

Machine Learning and Statistical Analysis
A random stratified split was performed to divide the 

129 patients into training and test sets (7:3 ratio). The 
stratification factor was the diagnosis of the patients. 
To achieve a high-performing model, a grid search was 
conducted on the following machine learning methods: 
1) logistic regression, 2) support vector classifier (SVC), 
3) decision tree, 4) random forest, 5) gradient boosting 
machine (GBM), 6) LightGBM, and 7) extreme gradient 
boosting (XGBoost). A detailed description is provided in 
the Supplement. Radiomic feature values were z-normalized 
for logistic regression and the SVC model, whereas the 
original feature values were used for the tree-based models. 
If the feature reduction step was not built-in in the machine 
learning method, the LASSO feature reduction was applied 
first. The models were trained using the training sets, and 
a hyperparameter tuning was performed. Hyperparameter 
tuning was done by a 5-fold cross-validation in the training 
set. Efforts were made to adhere to the radiomics quality 
score system and transparent reporting of a multivariable 
prediction model for the individual prognosis OR diagnosis 
(TRIPOD) initiative as much as possible. However, as 
the HC cohorts were age- and sex-matched to the JME 
cohort, there were no clinically significant differences in 
age and sex between the JME and HC groups. Therefore, a 
multivariable analysis with those non-radiomics features 

was not performed [37,38]. 
The model employs weighted scaling and the synthetic 

minority oversampling technique (SMOTE) for further 
performance improvement [39]. The patient was blinded 
during the development and tuning of the models. The 
performance of each fine-tuned model was calculated using 
the test set, including accuracy, precision, recall, F1 score, 
and area under the receiver operating characteristics curve 
(AUROC). For a cut-off value of 0.5, the median probability 
value was chosen. The AUROC was compared between the 
model with the highest AUROC and each other in a pairwise 
manner using the Delong’s method.

To examine which features played an important role in 
the final prediction, the mean absolute Shapley value for 
each of the selected input features was calculated using 
the Shapley additive explanations (SHAP) algorithm in the 
model with the highest AUROC [40]. 

Reconfirm the Performance of Selected Machine Learning 
Method and Important Features

Considering the repeatability of the machine learning 
method and the robustness of the selected features, 
reconfirmation was performed using the machine learning 
technique with the highest AUROC. The identical training 
and test sets were used. The SMOTE and MinMaxScaler were 
used for feature pre-processing. The SelectKBest approach’s 
f-classification and mutual information methods were used 
to select the features. An odd number of features—one 
to 39, were chosen. Finally, a total of forty models were 
constructed. In the test set, the AUROC of the 40 models 
were calculated. According to their anatomical structures, 
the number of chosen features was tallied for each of the 
40 models.

All processes up to this point were carried out using the 
Python 3 (Python Software Foundation) with the Scikit-
learn library v0.21.2, and the R software (version 3.5.1; 
R Foundation for Statistical Computing). p < 0.05 was 
considered to indicate a statistically significant difference; 
p values were two-sided.

RESULTS

Finally, 97 patients with JME and 32 HCs were recruited 
for this study. The median age of onset and mean duration 
of JME were 14 years (range, 7–22 years) and 7 years (range, 
1–42 years), respectively. 27 patients were drug-naïve, and 
70 were taking antiseizure medications. The JME and HC 

http://www.radiomics.io/pyradiomics.html
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groups had similar mean ages (mean ± SD; JME = 25.6 ± 
8.5; HC = 28.9 ± 11.4; p = 0.136) and gender composition 
(female %; JME = 45.4%; HC = 50.0%, p = 0.648). After a 
random stratified split, the 129 subjects were divided into 
either a training set group (n = 90) or a test set group (n = 
39); their characteristics are shown in Table 1. There were 
no statistically significant differences between the training 
and test sets.

For all the 129 patients, fully automated segmentation 
of deep brain structures was successfully achieved using 

the FreeSurfer software. A total of 2354 radiomic features 
were extracted from each patient using the PyRadiomics 
pipeline. The flow of this investigation is shown in Figure 
1. The seven radiomics models, LightGBM, SVC, random 
forest, logistic regression, XGBoost, GBM, and decision tree, 
showed AUROC values of 0.817, 0.807, 0.783, 0.779, 0.767, 
0.762, and 0.672, respectively, in the test set (Fig. 2), and 
their further performance results are shown in Table 2. The 
LightGBM model showed the highest AUROC, although it did 
not show a statistically significant difference from other 
models (Table 2). The performance of the LightGBM model 
was 79.5% in accuracy, 80.0% in precision, 96.6% in recall, 
and 87.5% in the F1 score. 

The mean absolute Shapley value for each feature of 
the model was calculated to assess feature importance. 
Two features from the putamen and one from the ventral 
diencephalon were ranked as the most important (Fig. 3). High 
values of dependence non-uniformity and zone percentage 
from the right and left putamen, respectively, could 
successfully predict JME. Conversely, low values of large-area 
high gray-level emphasis from the right ventral diencephalon 
were important for predicting the absence of JME in HCs. 

Forty LightGBM models were produced as a consequence 

Fig. 1. Flowchart of image processing, radiomics feature extraction, machining learning model development, and performance 
validation. GBM = gradient boosting classifier, LightGBM = light gradient boosting machine, SVC = support vector classifier, T1WI = T1 weighted 
image, XGBoost = extra gradient boost

Table 1. Clinical Characteristics of the Training and Test Sets

Training Set 
(n = 90)

Test Set 
(n = 39)

P

Age, years 27.3 ± 10.6 24.5 ± 7.7 0.114
Sex 0.661

Male 47 (52.2) 22 (56.4)
Female 43 (47.8) 17 (43.6)

Status 0.885
JME 68 (75.6) 29 (74.4)
HC 22 (24.4) 10 (25.6)

Age indicates the mean ± standard deviation. Other data are 
presented as the number of patients with % in parentheses. HC = 
healthy control, JME = juvenile myoclonic epilepsy
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of reconfirmation. As a result of the SelectKBest 
methodology, each model selected a specific number of 
features (ranging from one to 39). From the 40 models in 
the test set, the average AUROC value was 0.795 (range 
0.714–0.831). Among the 800 selected features from the 
40 models, the putamen contributed 507 features, followed 
by the thalamus (n = 135), ventral diencephalon (n = 101), 
and caudate (n = 36). 

DISCUSSION

The main findings of this study were as follows: 1) 
radiomics models, including multiple ROIs, may have the 
potential to discern patients with JME from HCs, and 2) the 
putamen has important radiomics features for predicting JME.

Early diagnosis of JME is pivotal for a favorable prognosis 
[41]. However, JME has often not been recognized by 
clinicians, and until now, its diagnosis has mainly been 
based on clinical and characteristic EEG features. Several 
quantitative MRI studies using voxel-based morphometry 
(VBM) have been published. Many studies have revealed 
thalamus and cortex anomalies in patients with JME 
compared with HCs [30,42,43]. The radiomics approach 
could have a similar advantage to VBM using the VBM 
software. It could also provide robust segmentation and 
volumetric analysis, as well as textural analysis. In addition, 
several studies using surface-based morphometry (SBM) 
have shown cortical thickness changes in the multifocal 
cortex [44,45]. The SBM can analyze the gyral curvature 
or connectivity of multiple gyri and sulci [46]. However, 
our approach does not reflect the different characteristics 
of the cortex. Instead of cortex parcellation, we focused 
more on segmentation and holistic shape, first-order, and 
texture feature analysis of the subcortical deep gray matter. 
Another advantage of the radiomic approach is that it can 
include the white matter analysis using multiple ROI. Many 
previous studies have investigated white matter changes 
using various methods [19,20,47]. Some studies have 
utilized neural networks. Recently, a study reported that 
advanced diffusion MRI and convolutional neural networks 
can detect JME with reliable accuracy [48]. Our radiomics 
models showed comparable performance to conventional T1 
weighted MRI in differentiating patients with JME from HCs. 
In light of the increasing amount of JME imaging research, 
it is necessary to create a model that can use such data by 
combining multiple ROIs across several brain structures, 
which was the aim of this study. The tree-based machine 
learning method LightGBM showed the highest AUCs in 
this study. The tree-based machine learning methods are 
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Fig. 2. ROC curves of all models in the test set. AUC = area 
under the curve, GBM = gradient boosting machine, LightGBM = light 
gradient boosting machine, ROC = receiver operating characteristic, 
SVC = support vector classifier, XGBoost = extra gradient boost

Table 2. The Performances of the Final Models in the Test Set
Final Model

AUROC (95% CI) P*
Accuracy Precision Recall F1 Score

LightGBM 0.795 (31/39) 0.818 (27/33) 0.931 (27/29) 0.871 0.817 (0.665–0.970) Reference
SVC 0.795 (31/39) 0.862 (25/29) 0.862 (25/26) 0.862 0.807 (0.654–0.959) 0.460
Random forest 0.769 (30/39) 0.778 (28/36) 0.966 (28/29) 0.862 0.783 (0.623–0.942) 0.446
Logistic regression 0.769 (30/39) 0.857 (24/28) 0.828 (24/29) 0.842 0.779 (0.622–0.937) 0.575
XGBoost 0.795 (31/39) 0.800 (28/35) 0.966 (28/29) 0.875 0.767 (0.580–0.954) 0.103
GBM 0.769 (30/39) 0.813 (26/32) 0.897 (26/29) 0.852 0.762 (0.597–0.927) 0.561
Decision tree 0.769 (30/39) 0.813 (26/32) 0.897 (26/29) 0.852 0.672 (0.490–0.854) 0.848

A cut-off value of 0.5, the median of the probability, was used to obtain performance metrics. *p value was used for pairwise 
comparison of AUROC values between LightGBM and each other model using Delong’s method. AUROC = area under the receiver operating 
characteristic curve, CI = confidence interval, GBM = gradient boosting classifier, LightGBM = light gradient boosting machine, SVC = 
support vector classifier, XGBoost = extra gradient boost
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relatively easy to understand and do not require feature 
scaling such as standardization or normalization [49]. In 
addition, the LightGBM has a relatively high learning speed. 
Therefore, the LightGBM method can be effectively used 
in radiomics-based machine-learning studies. Given that 
the protocol employed in this study showed relatively high 
predictive power for JME, the described methods should 
be considered highly valid for future radiomics research on 
patients with epilepsy.

In this study, the SHAP values of the model were 
investigated. The mean absolute Shapley value has been 
introduced here to create an explainable radiomics model 
and solve its notorious “black box” nature [40]. In this 
study, the putamen and ventral diencephalon had high 
SHAP values in the LightGBM model, suggesting that 
they are likely to have abnormalities in the brains of 
patients with JME. In addition, putamen-derived features 
were frequently selected by the reconfirmation process. 
Among the 40 models, the putamen contributed the most 

(507/800, 63.4%). The putamen has been shown to have 
microstructural and macrostructural defects in previous JME 
studies [7], and has been implicated in the pathophysiology 
of JME as a site of decreased dopamine receptor binding 
[50]. The ventral diencephalon is an unfamiliar anatomical 
structure in the human brain. Ventral diencephalon masks 
were generated using Freesurfer’s auto-segmentation. 
Given the location of the ventral diencephalon mask, it 
covers the ventral posterior thalamus, which is related 
to JME (Supplementary Fig. 1) [3,51]. Nevertheless, 
our full auto-segmentation pipeline using open-source 
software is preferred over the semi-auto-segmentation 
or manual segmentation because it is a reproducible and 
reliable method that is unaffected by inter- or intra-rater 
differences. Furthermore, the time-consuming laborious 
nature of mapping the ROI is a fundamental downside 
of the radiomic technique, which can be significantly 
diminished by auto-segmentation. On the other hand, the 
FreeSurfer’s auto-segmentation is free from laborious ROI 
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Fig. 3. The feature importance according to the mean absolute SHAP value for the prediction of JME in the LightGBM model from 
the test set. Feature 1328 (right putamen dependence non-uniformity normalized), feature 391 (left putamen zone percentage), and feature 
1773 (right ventral diencephalon large area high gray level emphasis) were ranked as the highest three in importance. Feature 1328: right 
putamen (dependence non-uniformity normalized), feature 391: left putamen (zone percentage), feature 1773: right ventral diencephalon (large-
area high-gray-level emphasis), feature 1656: right amygdala (large dependence low gray level), feature 986: WM, right side (correlation), feature 
56: WM, left side (gray level non-uniformity), feature 1789: right ventral diencephalon (long-run high gray level emphasis), feature 379: left 
putamen (gray level variance), feature 384: left putamen (low gray level zone emphasis), feature 1366: right putamen (run length non-uniformity 
normalized). JME = juvenile myoclonic epilepsy, LightGBM = light gradient boosting machine, SHAP = shapley additive explanation, WM = white 
matter
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mapping; however, it is still a time-consuming process. We 
hope that this aspect will be alleviated in future studies, 
for example, by adopting Fastsurfer or other deep learning-
based segmentation programs.

This study had several limitations. First, owing to the low 
prevalence of JME, this investigation was conducted with a 
limited sample size at a single institution. Further research 
with a larger sample size at multiple centers is needed 
for external validation. An external validation would be 
beneficial for assessing the reproducibility and optimizing 
the model. To prevent overfitting and validate the model, 
an independent test set was used as a feasible and practical 
method in this study. In addition, the same machine learning 
method was trained several times with varying quantities of 
features to confirm that there was no significant degradation 
in performance. The primary purpose of this study was 
to evaluate the feasibility of a radiomics approach using 
brain MRI for the diagnosis of JME. An external validation 
has not yet been performed using the JME radiomics. 
Second, it was impossible to obtain three-dimensional 
fluid-attenuated inversion recovery (3D-FLAIR) images of 
some patients; therefore, the study was conducted using 
only the T1-weighted images. Future studies are needed to 
achieve increased accuracy by adding FLAIR 3D images or 
other multiparametric MRI sequences. Third, this study did 
not exclude the effects of disease exposure and treatment. 
However, a wide range of disease durations and treatment 
exposures may reflect the real clinical settings. More number 
of patients are needed to confirm the statistical significance 
of the wide range of epilepsy durations. Finally, radiomic 
features from 22 distinct ROIs were derived, and the results 
were sensitive to feature clustering. Multi-collinearity is a 
major issue, because it introduces bias when calculating the 
regression coefficient of each feature. However, machine-
learning studies often focus on the predictive power of 
all features rather than testing each variable individually. 
Nevertheless, further research is required to overcome this 
correlation issue.

This study had several strengths. First, this study 
developed and validated a diagnostic model for JME with 
the radiomics features of routine conventional MRI. JME 
is a major epileptic syndrome within IGE, but is often 
underdiagnosed [52]. The role of MRI as a diagnostic 
tool is limited because it shows visually normal MRI in 
JME. However, the MRI prediction model proposed in 
this study can improve clinical suspicion and prognosis 
by reducing the duration of unsuccessful treatment [41]. 

Second, by creating a model using multiple ROIs, this 
study comprehensively evaluated the brain structures 
implicated in previous studies as likely to have structural 
and functional abnormalities in the JME. Finally, these 
results showed some consistency with the results of several 
previous investigations, thus suggesting the validity of our 
methods for application in subsequent studies.

In conclusion, radiomics models using MRI were able 
to differentiate JME from HCs and may be feasible as a 
method to diagnose JME. Therefore, further studies are 
warranted. 
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