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Simple Summary: Preventing blindness is an urgent need in a permanently further aging society.
Glaucoma is one of the most common causes for blindness, but the exact pathomechanisms are
not yet fully understood. Although an elevated intraocular pressure is a major risk factor, patients
can have symptoms under normal pressure. Studies point towards an involvement of the immune
system in glaucoma. Hence, in an animal model, where immunization with ocular antigens leads to
intraocular-independent glaucomatous damage, we took a closer look into the pathophysiology with
the help of proteomics. The proteomic analyses revealed significant alterations of proteins already at
7 and 14 days after immunization, before glaucomatous degeneration occurs. These proteins are often
associated with the immune system. Hence, these data underline the important role of immunological
factors in glaucoma. In the future, these factors might serve as disease markers.

Abstract: Glaucoma is a neurodegenerative disease that leads to damage of retinal ganglion cells
and the optic nerve. Patients display altered antibody profiles and increased antibody titer, e.g.,
against S100B. To identify the meaning of these antibodies, animals were immunized with S100B.
Retinal ganglion cell loss, optic nerve degeneration, and increased glial cell activity were noted. Here,
we aimed to gain more insights into the pathophysiology from a proteomic point of view. Hence,
rats were immunized with S100B, while controls received sodium chloride. After 7 and 14 days,
retinae were analyzed through mass spectrometry and immunohistology. Using data-independent
acquisition-based mass spectrometry, we identified more than 1700 proteins on a high confidence
level for both study groups, respectively. Of these 1700, 43 proteins were significantly altered in
retinae after 7 days and 67 proteins revealed significant alterations at 14 days. For example, α2-
macroglobulin was found significantly increased not only by mass spectrometry analysis, but also
with immunohistological staining in S100B retinae at 7 and 14 days. All in all, the identified proteins
are often associated with the immune system, such as heat shock protein 60. Once more, these data
underline the important role of immunological factors in glaucoma pathogenesis.

Keywords: autoimmune; normal-tension; proteomics; S100B; HSP60; α2-macroglobulin; DIA mass
spectrometric analysis; glaucoma; mass spectrometry

1. Introduction

Glaucoma, one of the most common causes for blindness worldwide, comprises a
variety of eye diseases, whose pathological hallmark is a progressive loss of retinal ganglion

Biology 2022, 11, 16. https://doi.org/10.3390/biology11010016 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology11010016
https://doi.org/10.3390/biology11010016
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-4770-0210
https://orcid.org/0000-0001-7551-7395
https://orcid.org/0000-0002-3313-8845
https://orcid.org/0000-0001-7056-0829
https://orcid.org/0000-0002-6532-5979
https://doi.org/10.3390/biology11010016
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology11010016?type=check_update&version=2


Biology 2022, 11, 16 2 of 21

cells (RGC) and their corresponding axons [1]. In the initial disease stages, the core clinical
feature is visual field loss, which often remains unnoticed by the patient. When patients
are firstly clinical diagnosed, the neuropathy is unfortunately often far progressed due to
a long asymptomatic clinical phase. Hence, about 10–50% of patients are unaware that
they are affected by this disease [2–6]. The precise etiology in most people suffering from
glaucoma is still unknown. High intraocular pressure (IOP) has been identified as the
main risk factor, and it is known that blocking the axonal protein transport at the lamina
cribrosa causes an initial axonal damage and RGC death by trophic insufficiency. However,
normal-tension glaucoma (NTG) occurs in patients with physiological IOP [7] and accounts
for about 30% of glaucoma cases [8].

In addition to elevated IOP, ischemic/hypoxic damage [9], astrocyte and glia cell
alterations, as well as excessive stimulation of the glutamatergic system [10] are discussed
as possible pathomechanisms. An involvement of the immune system is also consid-
ered [11–13], due to the observation of up- and down-regulations in the systemic as well as
the ocular antibody profiles in glaucoma patients [14–16]. Additionally, antibody deposits
were demonstrated in glaucomatous retinae [17]. It is likely that a combination of several
pathogenic factors and mechanisms increases the possibility of developing glaucoma.

Currently, glaucoma treatment is based on sustained IOP lowering, which can slow
down, but not halt, disease progression [18,19]. In addition, the side effects of the topical
drug medication are not insignificant and can lead to ocular irritation, decreasing the
compliance of patients [20]. The social, economic, and emotional burden that the blindness,
resulting from the disease, poses on patients and their relatives should not be neglected.
These facts emphasize the importance of discovering new pharmacological strategies to
prevent patients from going blind and, with that, losing their autotomy.

For the investigation of pathomechanisms and novel therapies, it is necessary to have
suitable models that allow for such screening. To inquire whether antibodies detected in
glaucoma patients are part of glaucoma pathogenesis or a result of disease progression, the
experimental autoimmune glaucoma (EAG) animal model was established. This animal
model is based on findings in glaucoma patients. A high autoantibody titer against S100B, a
small calcium binding protein, was detected in samples from glaucoma patients [21]. In the
central nervous system, S100B is mainly expressed by glial cells, such as oligodendrocytes,
Schwann cells, ependymal cells, retinal Müller cells, and astrocytes [22]. S100B regulates
and maintains the homeostasis of the important second messenger calcium and is, there-
fore, involved in many cell activities, such as signal transduction, cell differentiation, the
regulation of cell motility, transcription, and cell cycle processes [23,24]. Extracellularly,
S100B can act as a signal molecule and bind to receptors, such as the receptor for advanced
glycation end products (RAGE). In high concentrations, S100B can have negative effects
and lead to cell death. For example, the binding of RAGE can induce the activation of
microglia cells, leading to a release of proinflammatory cytokines to an excessive extent [25].
Furthermore, there seems to be a link between S100B and different neuronal diseases [26].

In a previous study, we could observe that immunization with S100B in rats led to a
significant loss of RGCs after 28 days and a fast degeneration of optic nerves. Interestingly,
the IOP in this model was not altered [27]. Therefore, S100B immunization can be used
to mimic the effects seen in NTG. The purpose of the presented study was to discover
pathological pathways underlying glaucoma using the EAG model. Therefore, retinae
were prepared and lysed; then, altered proteins were, for the first time, analyzed with
mass spectrometry in data-independent acquisition (DIA) mode 7 and 14 days after S100B
immunization. DIA leads, in contrast to data-dependent acquisition, to a more complete
map of the fragment ion spectra, because all ions in a predefined mass/charge (m/z) range
(or, time window) are fragmented. Based on this, DIA is gaining increasing importance
for comprehensive label-free mass spectrometric analysis. Additionally, we performed
immunohistological evaluations of different proteins, which were found to be altered in
the mass spectrometry study.
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2. Materials and Methods
2.1. Animals

All procedures concerning animals adhered to the ARVO statement for the use of ani-
mals in ophthalmic and vision research. All experiments involving animals were approved
by the animal care committee of North Rhine–Westphalia, Germany, and were performed in
accordance with relevant guidelines and regulations (approval codes: 84-02.04.2013_A291
and 81-02.04.2019_A071).

Male Lewis rats (Charles River, Wilmington, MA, USA), 6 weeks of age, were used for
the experiments and kept under environmentally controlled conditions with free access
to chow and water (n = 9/group/point in time). Detailed observations and health checks,
including eye exams, were performed regularly, as described previously [28].

2.2. Immunization

Rats received a single dose of 1 mg/mL S100B (Sigma–Aldrich, St. Louis, MO, USA)
intraperitoneally [29]. The antigen was first mixed with incomplete Freund’s adjuvant
(200 µL) plus 3 µg pertussis toxin (both Sigma–Aldrich). The animals of the control group
were injected with 0.9% sodium chloride with equivalent doses of Freund’s adjuvant and
pertussis toxin.

To obtain the retinae for proteomic analysis and (immune-)histology, animals were
sacrificed 7 and 14 days after immunization by carbon dioxide inhalation.

2.3. Mass Spectrometric Analysis of Retinae Samples

The preparation of 6 pooled retinae samples for the creation of a retina-specific spectral
library was described previously by Reinehr et al. [30]. Briefly, the eyes were enucleated,
retinae were carefully extracted, and homogenization was performed by sonication.

The preparation of the actual study samples (n = 8/group/point in time) for DIA-based
measurements was performed with minor changes. In total, 20 µg of each retina lysate was
loaded on a NuPAGE™ 10% Bis–Tris gel (Fisher Scientific Inc., Waltham, MA, USA). Gel
electrophoresis was limited to 50 V for 15 min. After stopping electrophoresis, gels were
stained with Coomassie blue (SimpleBlue™ SafeStain, Fisher Scientific Inc.) according to
the manufacturer’s instructions. The resulting single protein band per lane was dissected
and transferred into a new glass vial. The protein bands were destained, pH was adjusted,
and disulphide bridges were reduced as well as modified. After finishing the incubation
cycle, gel pieces were dried and resuspended in 9.5 µL trypsin solution (0.033 µg/µL;
SERVA Electrophoresis GmbH, Heidelberg, Germany) plus 12 µL 50 mM ammonium
bicarbonate. Trypsin digestion and the elution of peptides were performed as described
earlier [30]. The resulting peptide extract was completely dried in a vacuum concentrator
and resuspended in 30 µL 0.1% (v/v) trifluoroacetic acid. The peptide concentration was
determined with amino acid analysis [31]. For mass spectrometric analysis, 80 ng of this
peptide extract were transferred to a new glass vial and filed up to a volume of 14.5 µL
with 0.1% (v/v) trifluoroacetic acid. Finally, 1 µL “indexed Retention Time” (iRT) peptides
(Biognosys AG; Schlieren, Switzerland) were added to each retina sample.

The mass spectrometric analysis for the study samples was comparable to the spectral
library samples performed with a Q Exactive™ HF mass spectrometer (Fisher Scientific Inc.)
but in DIA mode. The scan range for the full MS1 was set to 350 to 1100 m/z with a resolu-
tion of 120,000. Fragmentation was performed by HCD with a resolution of 30,000 and a
stepwise NCE of 25.5%, 27%, and 30%. The first fixed mass was set to 200 m/z (ACG 3e6,
maximum injection time automatic) and the default charge state set to ≥+4. The thereby
generated date set for the study samples has been uploaded to ProteomeXchange with the
identifier PXD023995.

2.4. Data Evaluation and Functional Analysis

Acquired mass spectrometric data were analyzed with the interface Spectronaut™
Pulsar (Biognosys) with default settings and minor changes, as used in Barkovits et al. [32].
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Briefly summarized, the retina sample dataset described previously [30] was taken to
generate a retina-specific spectral library (reference data set). The false discovery rate
(called Qvalue) was set to a threshold of 1%. For further statistical evaluation, proteins had
to be quantified in at least 80% of the samples of one study group. Further filter criteria,
such as a ratio >30% (fold change of more than 1.3) and a Student’s t-test with p < 0.05,
were calculated manually (* p < 0.05, ** p < 0.01, *** p < 0.001).

For a functional proteomic analysis, the Reactome pathway database was used, a
curated database for the visualization, interpretation, and analysis of pathway knowl-
edge [33]. Importantly, all protein IDs were mapped to human equivalents prior to analysis.
A binomial test was used to calculate the probability shown for each result and the p-values
were corrected for the multiple testing (Benjamini–Hochberg procedure) that arises from
evaluating the submitted list of identifiers against every pathway. Additionally, all pro-
teins were further evaluated with the STRING bioinformatic database, which provides a
comprehensive overview of the direct and indirect relationships as well as the interactions
between proteins [34].

2.5. Tissue Preparation for Immunohistology

At 7 and 14 days after immunization, the control and the S100B eyes were enucleated
and fixed in 4% paraformaldehyde for 60 min. Subsequently, the rat eyes were treated
with 30% sucrose and were embedded in a Neg-50 compound (Tissue Tek; Fisher Scientific
Inc.). On a cryostat (Fisher Scientific Inc.), 10-µm cross-sections were cut, mounted on
microtome slides (Histobond, Paul Marienfeld GmbH & Co. KG, Lauda-Königshofen,
Germany), and dried overnight. Afterwards, the sections were fixed in ice-cold acetone
(VWR, Radnor, DE, USA) for 10 min.

2.6. Hematoxylin and Eosin Staining

Exemplary retinal cross-sections from both groups and points in time were stained
with hematoxylin and eosin (H&E; both Merck, Darmstadt, Germany), dehydrated in
ethanol, and treated with xylene before the sections were covered with Eukitt (O.Kindler,
Bobingen, Germany). Images were acquired at 200×magnification using an Axio Imager
M1 microscope (Zeiss, Oberkochen, Germany).

2.7. Immunofluorescence Staining

The immunofluorescence staining of specific cell types in the retina was performed as
described previously (n = 5/group/point in time) [27]. First, all cross-sections (6 sections/eye)
were blocked with a mixture of 10–20% serum, 0.1% TritonX-100 (Sigma–Aldrich), and PBS
(Biochrome, Schaffhausen, Germany) for one hour. The specific first antibodies (Table S1)
were diluted in the same mixture and incubated overnight at room temperature. After three
washing steps with PBS, all sections were incubated with Alexa Fluor 555- or Alexa Fluor
488-labelled secondary antibodies (Table S1). To visualize cell nuclei, 4′,6 diamidino-2-
phenylindole (DAPI; SERVA Electrophoresis GmbH), diluted in distilled water, was applied
to the sections. Finally, the sections were covered with Shandon-Mount (Fisher Scientific
Inc.). Negative controls were performed for all antibody stains using only secondary
antibodies.

2.8. Histological Evaluation

Four images (two peripheral and two central) per retinal cross-section were acquired
at 400× magnification using the Axio Imager M2 microscope (Zeiss). Afterwards, an
equal area of each picture was cut out using Corel Paint Shop software (Corel Corporation,
Ottawa, ON, Canada).

The number of RNA-binding proteins with multiple splicing (RBPMS)+ cells in the
ganglion cell layer and calretinin+ cells in the inner nuclear layer were counted using ImageJ
software (National Institute of Health, Bethesda, MD, USA). To measure the area of HSP60
and α2-macroglobulin, pictures were processed using an ImageJ macro (National Institute
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of Health), as described previously [35,36]. Briefly, pictures were converted into greyscale
(32-bit), and a rolling ball radius of 40 pixels was subtracted to minimize background
interference. Further, a proper lower threshold was determined for each picture, which
was achieved when the greyscale picture corresponded to the original one. At the end,
the mean value was calculated, and this number was used for the final analyses (HSP60:
15.49; α2-macroglobulin: 10.36). The upper threshold was set as the highest number out of
all pictures (HSP60: 254.90; α2-macroglobulin: 246.01). Between these defined lower and
upper thresholds, the percentage of the labeled area of the staining was measured.

2.9. Statistics of Immunohistology Evaluations

Immunohistology data were shown as mean ± standard error of the mean (SEM) and
were statistically analyzed using the Statistica software (V13.3; Dell, Round Rock, TX, USA).
Values of the control groups were set to 100%. The S100B group was compared to the
controls by applying Student’s t-test with p < 0.05 considered statistically significant.
* p < 0.05, ** p < 0.01, and *** p < 0.001.

3. Results

The study compromises two study groups, the S100B and the control group, with,
in total, 18 rats per group for proteomic analysis. Respectively, nine rats from each study
group were prepared 7 days after immunization and the remaining nine rats per group
14 days after, for proteomic analysis. One sample from each group has been excluded due to
insufficient protein yield after tissue preparation. Additionally, five retinae/group/point-in
time were prepared for (immuno-)histology (Figure 1).

Figure 1. Study overview. Schematic study setup created with biorender.com (accessed on
15 October 2021).

3.1. Characteristics of Proteins in the Retina-Specific Spectral Library

For the characterization of differences within the proteome in consequence of immu-
nization with S100B, a DIA-based mass spectrometry analysis was chosen. To this end, the
before-generated retina-specific spectral library served as a consensus template [30]. It con-
sists of mass spectrometric data of the ocular sinister of six rats acquired by data-dependent
acquisition mass spectrometry. In this generated spectral library, 67,165 peptides, which
were assigned to 4689 proteins, have been identified. For a more detailed characterization of
these proteins, a pathway enrichment analysis was carried out using the Reactome pathway
database [33]. As a result, one of at least 2725 mapped proteins covered 1988 biological
pathways (Figure S1).

biorender.com
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3.2. Comparative Proteomic Analysis Revealed Complex, Time-Dependent Regulations after
S100B Immunization

Based on the spectral library, the actual retinal proteomic data analysis in the frame-
work of S100B immunization was carried out. The filtering steps during data evaluation
are displayed in Figure 2. Within all 7-day study samples (n = 8/group), 13,199 peptides,
assigned to 1744 proteins, were identified. Proteins identified with at least one unique
peptide in at least 80% of the control as well as the S100B samples were selected for further
comparative proteome analysis. These 1287 proteins are reported in Table S2. Compar-
ing the abundancies of the 7-day study groups, 43 proteins had a ratio of at least > 30%,
a p-value < 0.05, and a FDR < 0.01. Of these, 11 proteins were under-represented and
31 over-represented in the S100B study group 7 days after immunization (Figure 2).

Figure 2. Flow chart of identified and filtered proteins for study groups at 7 as well as 14 days
after S100B immunization (n = 8/group). * One protein showed both an up-regulated as well as a
down-regulated peptide, compared to the control group.

Interestingly, stress-induced-phosphoprotein 1 revealed one peptide that was over-
represented, while another peptide assigned to this protein was under-represented in the
S100B study group. The abundance of the 20 most differential proteins, when focusing on
the smallest p-value 7 days after S100B immunization, is presented in Table 1.

The results of three exemplary differential proteins, known from the glaucoma lit-
erature, are visualized in Figure 3. Serotransferrin had four, myosin-10 had one, and
microtubule-associated protein 2 (MAP-2) had two unique peptides, which were signifi-
cantly expressed based on the filtering criteria.

The study group data for the 14-day time point were analogously evaluated and
revealed 14,627 peptides that could be assigned to 1752 proteins. A total of 1384 proteins
had at least one unique peptide and were identified in at least 80% of each study group
(Table S3). Analysis of the abundancies of the 14-day time point study groups revealed
67 proteins with a ratio of at least > 30%, a p-value < 0.05, and a FDR < 0.01. Over-
represented in the S100B study group were 27 proteins, under-represented were 39 proteins
(Figure 2). Additionally, for this time point, cytoplasmic dynein 1 heavy chain 1 was a
protein with an over-represented as well as an under-represented peptide in the S100B
study group. The 20 most differential proteins 14 days after S100B injection with the
smallest p-values are listed in Table 2.
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Table 1. The top 20 differential proteins 7 days after S100B immunization. Proteins quantified in
≥80% of the S100B and control groups are ranked based on the lowest p-value (≤0.02).

7 Days after S100B Immunization

Statistical Rank Uniprot ID Protein Name Qvalue (FDR)
≤0.01

p-Value
≤0.02

Ratio
≥30%

1 Q7TNY6 Golgi resident protein GCP60 1.38 × 10−3 0.002 48%
2 O35814 Stress-induced-phosphoprotein 1 1.15 × 10−5 0.002 48%
3 P25809 Creatine kinase U-type, mitochondrial 2.07 × 10−7 0.004 35%
4 P02770 Albumin 1.85 × 10−10 0.005 33%
5 P56574 Isocitrate dehydrogenase [NADP], mitochondrial 7.62 × 10−4 0.006 53%

6 P63004 Platelet-activating factor acetylhydrolase IB
subunit alpha 3.21 × 10−5 0.007 45%

7 P12785 Fatty acid synthase 2.00 × 10−6 0.007 57%

8 P49432 Pyruvate dehydrogenase e1 component subunit
beta, mitochondrial 3.79 × 10−6 0.010 108%

9 P12346 Serotransferrin 2.08 × 10−8 0.011 33%
10 Q63151 Long-chain-fatty-acid–CoA ligase 3 7.13 × 10−4 0.012 45%
11 P14841 Cystatin-C 3.09 × 10−4 0.012 61%
12 Q63598 Plastin-3 1.39 × 10−3 0.012 85%
13 Q9JLT0 Myosin-10 1.75 × 10−4 0.013 43 %
14 Q924S5 Lon protease homolog, mitochondrial 4.22 × 10−5 0.015 40%
15 O70351 3-hydroxyacyl-CoA dehydrogenase type-2 9.91 × 10−4 0.016 85%
16 Q8K1P7 Transcription activator BRG1 3.13 × 10−9 0.018 55%
17 P15146 Microtubule-associated protein 2 3.03 × 10−5 0.019 58%
18 Q5PPM7 Rod outer segment membrane protein 1 2.64 × 10−9 0.021 51%
19 P21531 60S ribosomal protein L3 6.73 × 10−5 0.021 31%
20 Q5XI73 Rho GDP-dissociation inhibitor 1 5.02 × 10−7 0.021 77%

Table 2. The top 20 differential proteins 14 days after S100B immunization. Proteins that are quantified
in ≥80% of the S100B and control groups are ranked based on the lowest p-value (≤0.02).

14 Days after S100B Immunization

Statistical Rank Uniprot ID Protein Name Qvalue (FDR)
≤0.01

p-Value
≤0.02

Ratio
≥30%

1 Q5XI31 GPI transamidase component PIG-S 3.05 × 10−3 0.003 36%
2 P11506 Plasma membrane calcium-transporting ATPase 2 1.37 × 10−8 0.003 54%
3 P41542 General vesicular transport factor p115 1.81 × 10−4 0.003 46%
4 P63039 60 kDa heat shock protein, mitochondrial 4.80 × 10−11 0.004 45%
5 P21670 Proteasome subunit alpha type-4 2.04 × 10−7 0.005 69%
6 Q9JK11 Reticulon-4 3.50 × 10−9 0.010 37%
7 Q62927 cGMP-gated cation channel alpha-1 5.20 × 10−6 0.011 30%
8 Q9ePH8 Polyadenylate-binding protein 1 1.99 × 10−7 0.012 59%
9 Q6IMY8 Heterogeneous nuclear ribonucleoprotein U 4.57 × 10−9 0.012 109%

10 P14881 Beta-crystallin A3 2.14 × 10−10 0.013 298%
11 D3ZLZ7 Inosine-5’-monophosphate dehydrogenase 1 5.11 × 10−10 0.015 32%
12 O35476 Medium-wave-sensitive opsin 1 1.18 × 10−4 0.016 152%
13 P63012 Ras-related protein Rab-3A 1.34 × 10−8 0.016 41%
14 P84083 ADP-ribosylation factor 5 9.07 × 10−8 0.017 37%
15 P06761 endoplasmic reticulum chaperone BiP 8.01 × 10−9 0.018 71%
16 P02770 Albumin 3.75 × 10−11 0.018 45%
17 D3ZHV2 Microtubule-actin cross-linking factor 1 2.31 × 10−4 0.018 37%
18 P62752 60S ribosomal protein L23a 4.00 × 10−4 0.019 42%

19 Q68FX0 Isocitrate dehydrogenase [NAD] subunit beta,
mitochondrial 4.00 × 10−7 0.020 32%

20 P50475 Alanine–tRNA ligase, cytoplasmic 5.49 × 10−8 0.020 78%
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Figure 3. Mass spectrometry-based intensities of differential peptides with their assigned proteins
7 days after S100B injection. (A) Four unique peptides associated with serotransferrin and (B) one
unique myosin-10 peptide were significantly up-regulated in rat retinae, 7 days after S100B immu-
nization. (C) In contrast, two unique peptides of microtubule-associated protein 2 were significantly
down-regulated in in rat retinae, 7 days after S100B immunization (* p < 0.05, ** p ≤ 0.01, ratio > 30%).

In Figure 4, all identified peptides belonging to the protein gephyrin are shown. Re-
cently, a significantly lower inhibitory post-synapse signal was visualized by anti-gephyrin
in a later stage of retinal degeneration. Here, the intensity remained unchanged in compari-
son to the control group, confirming a recent study result - that 14 days after immunization
might be too early in the retinal degeneration process of systemically immunized S100B
animals [35].

Figure 4. Mass spectrometry-based intensities of gephyrin 14 days after S100B injection. Nine unique
peptides associated with gephyrin were differentially expressed in rat retinae 14 days after S100B
immunization compared to control retinae (no significance).
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In total, 58 proteins were over-represented and 50 proteins under-represented, in the
comparative analysis at both points in time after the S100B immunization.

3.3. Characteristics of Differential Proteins

For a more biological characterization of the identified proteins present in the rat retina
after S100B immunization, they were analyzed with the Reactome pathway database. The
results of the Reactome pathway analysis of the proteins contained in rat retinae after S100B
immunization are visualized in Figure S2. For the retina samples of the 7-day immunization,
1225 proteins were mapped to 1641 biological pathways in total. Strong pathways were, e.g.,
found in the area metabolism of carbohydrates. In comparison, 1637 biological pathways
were associated with at least one of the 1234 retinal proteins from S100B immunization
after 14 days. Thereby, a similar pathway distribution compared to the other group was
detectable. However, there seems to be a stronger over-representation of some proteins
14 days after S100B immunization.

In a next step, the STRING database provided a detailed protein–protein network of the
43 significant proteins (FDR < 0.01; p < 0.05; ratio > 30%) 7 days after S100B immunization
(Figure S3). There were mainly functional interactions related to the citric acid cycle,
confirming even more that at least some individuals with glaucoma may have an impaired
RGC energy metabolism [37]. In contrast, 14 days after S100B immunization, 67 significant
proteins (FDR < 0.01; p < 0.05; ratio > 30%) formed interaction networks that, among
others, showed an involvement in glutamate processing (Figure S4). This indicates the
controversial role of glutamate in retinal excitotoxicity and neuroprotection [38,39].

3.4. No Loss of Retinal Ganglion Cells

Exemplary retinal cross-sections were stained with H&E at 7 and 14 days after immu-
nization (Figure 5A). After S100B immunization, retinal layers appear normal in morphology,
with no signs of inflammation or infiltration, compared to the controls at both points in time.

Figure 5. Intact retinal morphology and no retinal ganglion cell loss. (A) At 7 and 14 days after S100B
immunization, the retinae showed no signs of inflammation or damage of the retinal layers. The
morphology was comparable to those of the control group. (B) At 7 and 14 days after immunization,
retinal cross-sections were labeled with an antibody against RBPMS (red; retinal ganglion cells). DAPI
was used for counterstaining cell nuclei (blue). (C) The number of RBPMS+ cells remained comparable
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between S100B and control animals at 7 and 14 days after immunization. Values are mean ± SEM
and control values were set to 100%. GCL = ganglion cell layer; IPL = inner plexiform layer;
INL = inner nuclear layer; OPL = outer plexiform layer; ONL = outer nuclear layer; OS = outer
segment. Scale bars: 20 µm.

At 7 and 14 days after immunization, the number of RGCs was assessed by labeling
retinal cross-sections with an antibody against RBPMS (Figure 5B). At 7 days, the number
of RGCs was comparable in S100B (107.26 ± 2.57%) and control retinae (100.00 ± 5.89%;
p = 0.292; Figure 5C). The number of RBPMS+ RGCs was still not altered between the
S100B (103.80 ± 4.77%) and control animals (100.00 ± 3.33%; p = 0.532; Figure 5C) after
14 days. A previous study revealed a RGC loss later on in this model, 28 days after S100B
immunization [27].

3.5. Altered Expression of Calretinin+ Amacrine Cells

Mass spectrometry-based intensities of calretinin (peptide sequence: GFLSDLLK)
revealed a significant up-regulation in S100B retinae 14 days after immunization (p = 0.023;
Figure 6A). Then, possible changes in the number of amacrine cells were elaborated through
an anti-calretinin staining 7 and 14 days after immunization (Figure 6B). At 7 days, the
number of calretinin+ cells was comparable in the S100B (97.04± 6.47%) and control retinae
(100.00 ± 4.93%; p = 0.364; Figure 6C). Further, no alterations were noted in the number
of calretinin+ amacrine cells in the S100B retinae (102.06 ± 4.20) compared to the controls
(100.00 ± 5.98%; p = 0.785) 14 days after immunization (Figure 6C).

Figure 6. Altered calretinin expression. (A) Mass spectrometry analyses showed a significant up-
regulation of the calretinin intensity (peptide sequence: GFLSDLLK) 14 days after immunization
(p = 0.023). (B) Retinal cross-sections were stained with an anti-calretinin antibody (green) 7 and
14 days after immunization. DAPI was applied to visualize cell nuclei (blue). (C) The number of
calretinin+ cells was not altered at either point in time. Values for immunohistology are mean ± SEM
and control values were set to 100%. IPL = inner plexiform layer; INL = inner nuclear layer. Scale bar:
20 µm. * p < 0.05.

3.6. Different HSP60 Expression after Immunization

Retina samples, which were analyzed using mass spectrometry, showed that the
intensity of two peptide sequences of HSP60 (peptide sequences: KPLVIIAEDVDGEAL-
STLVLNR: p = 0.033; DMAIATGGAVFGEEGLNLNLEDV-QAH-DLGK: p = 0.004) were
significantly down-regulated in S100B animals compared to controls (Figure 7A). The stain-
ing area of HSP60 was evaluated by immunohistology 7 and 14 days after immunization
(Figure 7B). After 7 days, a significant increase of the HSP60+ staining area was revealed in
S100B rats (124.76 ± 6.57%) compared to controls (100.00 ± 7.89%; p = 0.042; Figure 7C).
The percentage of the HSP60+ area in S100B animals (95.32 ± 6.71%) went back to control
level (100.00 ± 4.73%; p = 0.584) after 14 days (Figure 7C).
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Figure 7. Altered HSP60 expression. (A) At 14 days after S100B immunization, the intensity of two
peptide sequences of HSP60 was significantly down-regulated (peptide sequences: KPLVIIAED-
VDGEALSTLVLNR: p = 0.033; DMAIATGGAVFGEEGLNLNLEDVQAHDLGK: p = 0.004). (B) An
anti-HSP60 antibody (red) was applied on retinal cross-sections 7 and 14 days after immunization.
DAPI was used to stain cell nuclei (blue). (C) At 7 days, the HSP60+ staining area was significantly
increased in S100B animals (p = 0.042). No alterations were revealed between S100B and control
retinae after 14 days. Values for immunohistology are mean ± SEM and control values were set to
100%. GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner nuclear layer. Scale bar:
20 µm. * p < 0.05; ** p < 0.01.

3.7. Increased Levels of α2-Macroglobulin in S100B Retinae

Mass spectrometric analysis of α2-macroglobulin revealed an up-regulation of two
different peptide sequences (peptide sequences: KPLVIIAEDVDGEALSTLVLNR and DMA-
IATGGAVFGEEGLNLNLEDVQAHDLGK) in S100B animals compared to controls 7 days
after immunization (both: p = 0.006; Figure 8A). At 7 and 14 days after immunization, reti-
nal cross-sections were labelled against anti-α2-macroglobulin (Figure 8B). A significantly
larger α2-macroglobulin+ staining area could be noted in S100B retinae (137.95 ± 15.31%)
compared to control ones (100.00± 4.19%; p = 0.044) after 7 days (Figure 8C). Further, the α2-
macroglobulin+ staining area was significantly increased in S100B animals (125.53 ± 3.16%)
when compared to control retinae (100.00 ± 8.21%; p = 0.020) 14 days after immunization
(Figure 8C).

Figure 8. More α2-macroglobulin expression after immunization. (A) At 7 days after S100B immu-
nization, the intensities of two peptide sequences of α2-macroglobulin were significantly up-regulated
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(both: p = 0.006). (B) Retinal cross-sections were labelled with an antibody against α2-macroglobulin
(red), while DAPI counterstained cell nuclei (blue). (C) The staining area of α2-macroglobulin
was significantly increased 7 (p = 0.044) and 14 days after immunization (p = 0.020). Values for
immunohistology are mean ± SEM and control values were set to 100%. GCL = ganglion cell layer;
IPL = inner plexiform layer; INL = inner nuclear layer. Scale bar: 20 µm. * p < 0.05; *** p < 0.001.

3.8. Up-Regulation of Interphotoreceptor Matrix Proteoglycans and Plastin 3

Further interesting proteins were found up-regulated by mass spectrometric analysis.
The photoreceptor-specific extracellular matrix protein (ECM) interphotoreceptor matrix
proteoglycan (IMPG) 1, for example, was significantly increased in S100B retinae 7 days after
immunization (p = 0.042; Figure 9A). Immunohistological staining showed a distribution in
control animals predominantly in the outer segment, while in S100B rats, IMPG1+ staining
could also be revealed in the ganglion cell layer (GCL; Figure 9B).

Figure 9. Up-regulated expression of various matrix proteins. (A) Mass spectrometry revealed an
up-regulation of IMPG1 in S100B rats 7 days after immunization (p = 0.042). (B) Representative staining
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of anti-IMPG1 (red) on retinal cross-sections at 7 days. DAPI (blue) counterstained cell nuclei. IMPG1
staining was more distinct in S100B animals with the signal predominantly in the ganglion cell layer
(GCL; detail image), the inner nuclear layer, and the outer segment. (C) A significant up-regulation of
IMPG2 was observed in S100B animals 14 days after immunization (p = 0.031). (D) At 14 days, retinal
cross-sections were labeled with an antibody against IMPG2 (red) and anti-GFAP (astrocytes; green),
while DAPI stained cell nuclei (blue). In S100B retinae, IMPG2 signal was predominantly located
in the GCL (detail image) and often co-localized with GFAP. (E) Analysis using mass spectrometry
showed a significant up-regulation of PLS3 in S100B rats 7 days after immunization (p = 0.012). (F) At
7 days, retinae were labeled with antibodies against PLS3 (red) and GFAP (green). Cell nuclei were
counterstained with DAPI (blue). PLS3 staining was more distinct in S100B animals. PLS3+ signal
was localized in the GCL (detail image), inner nuclear layer, and outer segment. In the GCL, PLS3
was often co-localized with GFAP. GCL = ganglion cell layer; IPL = inner plexiform layer; INL = inner
nuclear layer; OPL = outer plexiform layer; ONL = outer nuclear layer; OS = outer segment. Scale
bars: 20 µm, scale bars detail: 10 µm. * p < 0.05.

In addition, IMPG2 was found up-regulated in S100B rats compared to controls 14 days
after immunization (p = 0.031; Figure 9C). Here, the distribution of the IMPG2 staining was
not that evident in controls. In S00B retinae, IMPG2 staining was especially observed in the
GCL, often co-localized with the astrocyte marker GFAP (Figure 9D).

At 7 days after S100B immunization, the actin-binding and bundling protein plastin
3 (PLS3) was found up-regulated (p = 0.012; Figure 9E). Immunohistological staining
showed a weak distribution throughout the whole retina, with more intense signal in the
outer segment in control rats. In S100B retinae, a stronger PLS3 staining, especially in the
GCL and inner plexiform layers, could be revealed. In the GCL, the PLS3 staining was
often co-localized with GFAP (Figure 9F).

4. Discussion

To identify key proteins which might play a role in the pathogenesis of glaucoma
independent from elevated IOP, an established autoimmune glaucoma model was used for
a proteomic analysis of retinae in this study. We previously demonstrated that an immu-
nization with S100B leads to loss of RGCs and optic nerve degeneration after 28 days [27].
Nonetheless, (immunological) factors contributing to cell death are often found before a
significant degeneration occurs. For example, a higher number of complement factors and
more NFκB+ cells were revealed 7 and/or 14 days after S100B immunization [40]. Hence,
to determine possible early disease markers for glaucoma, we analyzed rat retinae 7 and
14 days after immunization. At these points in time, the number of RGCs was not altered
between S100B and control animals, which is in accordance with previous findings [41].
This slow progression of cell loss mimics the damage course in glaucoma-like events [42].

We identified several altered proteins after S100B immunization in the current study.
We chose to take a closer look at different proteins that are either already connected
to glaucomatous neurodegeneration, e.g., HSP60, or that were of interest but were not
previously linked to glaucoma, e.g., IMPG1.

In the brain, MAP-2 is the most abundant MAP. Microtubules are one of the major
components of the neuronal cytoskeleton [43]. In our study, we found a down-regulation
of two unique peptides of MAP-2 7 days after immunization. In the mammalian retina,
MAP-2 expression is reported especially in RGCs, amacrine cells, and the inner segments
of photoreceptors [44–46]. An up-regulation of MAP-2 is associated with stabilizing den-
drites [47]. Hence, a down-regulation could hint towards a destabilization and could be a
first sign of dendrite and cell loss. In R28 neuroretinal cells, an internalization of the amy-
loid beta peptide led to a transient disruption of MAP-2 [48]. In donor retinae of patients
with age-related macular degeneration, MAP-2 labelling was noted in the inner segments of
abnormal photoreceptors with abnormally located nuclei. Since not all abnormal neurons
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were MAP-2 positive, Pow and Sullivan assumed that MAP-2 expression might be transient
and only occur during neuro-morphogenesis [49].

In the mammalian retina, amacrine cells are the largest cohort of neurons [50–52].
Amacrine cells are interneurons, which provide the integration of signals that are essential
to the construction of the RGC visual message sent to the brain [53]. Further, they are
highly diverse and use several neurotransmitters. Based on their ramification in the inner
plexiform layer, amacrine cells can be classified into different subtypes. Those who use
glycine are so-called small-field amacrine cells and the most common ones are class AII cells.
Calretinin is localized in different neurons in the retinae of vertebrates [54]. Specifically,
in the rat retina, direction-selective cholinergic cells contain calretinin [55]. The mass
spectrometric analysis in our study showed an up-regulation of calretinin 14 days after
S100B immunization. In contrast, the number of calretinin+ cells in the inner nuclear layer
counted after immunofluorescence staining remained unaltered. The discrepancy between
those data can be explained by the different methods used. While, for immunohistology,
only calretinin+ cells in the inner nuclear layer were counted, for mass spectrometry, the
whole retina was processed and analyzed. Further, amacrine cells project presynaptic
dendrites to the inner plexiform layer where they connect by synapses with RGCs [56].
Possibly, the increase of calretinin protein points towards early compensatory mechanisms,
which were similarly described in Alzheimer’s disease. Here, at first, the dysfunction of
synapses and neurons triggers a compensatory response to maintain synaptic connectivity.
Therefore, new synapses are formed and, in addition, the remaining ones increase their
size [57–59].

We could previously show, that 14 days after S100B immunization, more GABA-A
receptor α3 and NMDA receptor 1 synapses could be detected, this is before a significant
cell loss occurred. In contrast, gephyrin, as a marker for inhibitory post-synapses, was
not altered [35]. As our analyses showed, gephyrin is also not affected after 28 days.
Gephyrin itself acts as an anchor protein by binding GABA-A receptors and glycine to
the post-synaptic skeleton [60,61]. In the brain tissue of patients with Alzheimer’s disease,
an accumulation of gephyrin in co-localization with β-amyloid plaques was detected.
Since gephyrin is involved in synaptic organization, the authors concluded that synaptic
dysfunction is an early event in Alzheimer’s disease [62]. In the EAG model, gephyrin
itself could not be found to be altered at different points in time, suggesting a minor
role in the pathogenesis. However, the precise function of synaptic alterations should be
investigated further.

Over the last years, the contribution of HSPs to glaucomatous damage has been widely
discussed [63]. HSPs can serve as antigen-presenters, but they can also be recognized
as antigens, and they are, therefore, connected to the immune response [64,65]. With
our mass spectrometric analyses, we could observe a down-regulation of two peptide
sequences of HSP60 in retinae 14 days after immunization. Previously, a study by Wax et al.
revealed elevated serum levels of HSP60 in NTG patients [66]. Further, post-mortem
immunostaining in retinae and optic nerve heads in patients with and without elevated
IOP showed a higher intensity of HSP60. HSP60 was observed predominantly in RGCs and
photoreceptors [67]. In the aqueous humor of patients with primary open-angle glaucoma
(POAG), elevated levels of HSP60 and HSP90 were found [68]. Guo et al. compared POAG
and NTG patients and noted higher serum antibody titers only in NTG subjects [69]. In
contrast, a case-control study conducted in Poland could not determine an increase of
serum HSP60 levels in NTG and POAG patients compared to control subjects [70].

As mentioned in the introduction, the EAG model is based on the finding of autoanti-
bodies in glaucoma patients. When applying HSP60 systemically in rats, a loss of RGCs,
predominantly in the central part of the retina, was observed after 28 days [71]. Contrarily,
in rats from our study, that were immunized with the glial protein S100B, a down-regulation
of HSP60 was detected by mass spectrometry. Similar results were noted after an intrav-
itreal S100B injection. Here, mass spectrometry data also revealed a down-regulation of
HSP60 when comparing S100B to PBS-injected eyes [72]. It is possible that S100B itself is
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responsible for the observed down-regulation. For instance, S100B can bind to RAGE. In
a diabetic mouse model, the advanced glycation end product (AGE)/RAGE axis causes
mitochondrial dysfunction in pancreatic islet cells and a down-regulation of HSP60 [73].
It is known that HSP60 down-regulation can lead to morphological changes, deficient
ATP syntheses, inhibitions in cell proliferation, and decreases in mitochondrial membrane
potential [74,75]. The results of the different studies indicate that both too much and too
little HSP60 could contribute to cell damage.

A further interesting protein we found up-regulated after S100B immunization is
α2-macroglobulin, a plasma acute-phase protein. It can bind to various ligands including
cytokines [76,77], growth factors [78–81], and misfolded proteins [82–85]. For instance,
α2-macroglobulin can bind to pro-inflammatory mediators, such as tumor necrosis factor
α (TNFα), interleukin (IL)-1β, or IL-6 [86–88], leading to the assumption that it has an
important role in controlling inflammatory mechanisms. Soluble α2-macroglobulin was
noted in the aqueous humor of glaucoma patients as well as in a rat ocular hypertension
(OHT) model [89]. Further, in OHT models (cauterization and saline injection), an up-
regulation of α2-macroglobulin in retinae could be detected. These changes were long-
lasting and continued even after pharmacological normalization of the IOP. In addition,
the up-regulation occurred mainly in glia cells [90]. In our study, α2-macroglobulin was
up-regulated in evaluations using mass spectrometry and immunohistology 7 and 14 days
after S100B immunization. Hence, this protein might also play a role in RGC death, as
proposed by Shi et al. [90]. In line with this, the neutralization of α2-macroglobulin in the
vitreous and the inhibition of its function in the retina protected RGCs from glaucomatous
damage [90–92].

Another acute-phase protein we found up-regulated after S100B immunization is
serotransferrin. It is an iron-binding blood plasma protein that controls the levels of free
iron in biological fluids [93]. Iron disbalance is known to increase oxidative stress and
can, therefore, play a role in the pathogenesis of neurodegenerative diseases. For example,
an increase of transferrin mRNA levels was observed in the temporal and frontal cortices
of patients with Alzheimer’s disease [94]. Studies also located a link between elevated
serotransferrin levels and glaucoma. In a proteomic analyses of human donor retinae
from glaucoma patients, the authors revealed an up-regulation of serotransferrin [95].
Further, in serum samples of POAG patients, a higher concentration of serotransferrin was
measured [96]. Hence, in combination with the results of elevated α2-macroglobulin levels,
acute-phase proteins appear to play a crucial role in the pathogenesis of glaucoma and
should be explored in more detail in further studies.

Interestingly, mass spectrometry of the probes revealed a regulation of certain proteins
after S100B immunization, which are not directly linked to glaucoma or RGCs, such as
IMPG1 and IMPG2. IMPGs belong to the ECM, which is the non-cellular component of
all organs and tissues. The ECM in the retina can be divided into two entities: the inter-
photoreceptor matrix surrounding the inner and outer segments of the photoreceptors and
the retinal ECM that surrounds the other cells [97]. IMPG1 and IMPG2 are involved in the
development and maintenance of photoreceptors [98–101]. In the current study, IMPG1 was
up-regulated in retinae at 7 and IMPG2 at 14 days after S100B immunization. Previously,
an enhanced immunostaining of the ECM proteins Tenascin-C and phosphacan/RPTPβ/ζ
was identified in S100B optic nerves after 7 days [41]. Tenascin-C showed enhanced im-
munoreactivity in the optic nerve after ischemia-reperfusion injury [102], while a knockout
of Tenascin-C could protect the retinal function and rod-photoreceptor cells from ischemic
damage [103].

Another protein found up-regulated 7 days after S100B immunization is myosin-10. It
is an actin-based motor protein that participates in many essential intracellular processes,
such as phagocytosis, cell migration, or filopodia formation [104]. In glaucomatous trabec-
ular meshwork cells, myosin-10 distribution was disrupted [105]. In addition, myosin-10
might also play a role in focal ECM degradation in trabecular meshwork cells [106]. It
is also known that myosin-10 binds to the NPxY motifs in the β-integrin cytoplasmic
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tail [107]. As a result of different integrin compositions, the ECM environment influences
the regeneration and survival of adult RGC subtypes [108]. Hence, the remodeling of ECM
proteins seems to contribute to retinal damage and a better understanding can provide new
tools for diagnostic or therapeutic approaches in the future.

The observed results underline the multifactorial entity of the glaucoma disease.
Immunological factors, especially, might serve as objective markers for diagnosis as well as
disease progression in the future. Of course, these markers need to be further explored and
validated in subsequent studies. Further, new therapeutic strategies could be developed
based on the modulation and/or inhibition of immune system components. This could be
used as adjuvant treatments in patients in addition to IOP-lowering drugs. However, new
targets need to be explored first in (animal) models.

A limitation of our study is the fact that we performed proteomic analyses only at
points in time where no RGC loss occurred. Although we specifically aimed to identify
proteins early on in glaucoma, which might lead to cell death, it would also be interesting
to perform those experiments at subsequent points in time after immunization. This would
provide additional information about the changes of the retinal proteome in more chronic
and advanced stages of glaucoma disease.

5. Conclusions

In our study, we identified 43 proteins which were significantly altered in S100B retinae
after 7 days, and 67 altered proteins at 14 days. These shifts precede the loss of RGCs in
S100B-immunized rats. Interestingly, serval regulated proteins were associated with the
immune system, including beta-crystallin B1 and B3 or HSP60. Our observations provide
comprehensive proteomic data to strengthen the pathophysiological impact of S100B and
the involvement of the immune system in glaucoma. They can hopefully provide new hints
towards disease markers or novel therapeutic approaches in the future.
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