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Abstract

Monitoring technologies now provide real-time animal location information,

which opens up the possibility of developing forecasting systems to fuse these

data with movement models to predict future trajectories. State-space modeling

approaches are well established for retrospective location estimation and behav-

ioral inference through state and parameter estimation. Here we use a state-

space model within a comprehensive data assimilative framework for probabilis-

tic animal movement forecasting. Real-time location information is combined

with stochastic movement model predictions to provide forecasts of future ani-

mal locations and trajectories, as well as estimates of key behavioral parameters.

Implementation uses ensemble-based sequential Monte Carlo methods

(a particle filter). We first apply the framework to an idealized case using a non-

dimensional animal movement model based on a continuous-time random walk

process. A set of numerical forecasting experiments demonstrates the workflow

and key features, such as the online estimation of behavioral parameters using

state augmentation, the use of potential functions for habitat preference, and

the role of observation error and sampling frequency on forecast skill. For a real-

istic demonstration, we adapt the framework to short-term forecasting of the

endangered southern resident killer whale (SRKW) in the Salish Sea using

visual sighting information wherein the potential function reflects historical

habitat utilization of SRKW. We successfully estimate whale locations up to

2.5 h in advance with a moderate prediction error (<5 km), providing reason-

able lead-in time to mitigate vessel–whale interactions. It is argued that this

forecasting framework can be used to synthesize diverse data types and improve

animal movement models and behavioral understanding and has the potential

to lead to important advances in movement ecology.
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INTRODUCTION

Understanding ecological processes relies on our ability
to make predictions and confront them with observations
to refine hypotheses and theories. This is also the essence
of the emerging field of ecological forecasting, which has
arisen due to the many new data types becoming available.
Ecological forecasting differs from standard statistical pro-
jection methods by its iterative nature and its reliance on
dynamic models. The central idea is to generate forecasts
of a future ecological state using dynamic models of eco-
logical processes, compare the predictions to observations,
and then refine hypotheses and models to improve predic-
tive skill (Dietze et al., 2018). The focus on forecasting
shifts the emphasis to the iterative refinement of ecological
dynamic models, as well as to identifying key observa-
tional needs, thereby driving understanding and advance-
ment of the ecological sciences.

Dynamical ecological forecasting is distinct from fore-
casting via statistical prediction. The former is based on
using mechanistic or process-based models to project an
ecological system forward in time, whereas the latter
is based on using the established statistical models
together with forecasts of their key environmental predic-
tors. For instance, correlative species distributions project
future animal distributions according to forecasts of their
environmental drivers (e.g., Barlow & Torres, 2021; Breece
et al., 2021). This type of model is being used increasingly
for managing human–wildlife conflicts in real time for the
purpose of limiting the probability of encounter. However,
statistical predictions have a limited ability to incorporate
ecological processes and dynamics (Yates et al., 2018), and
they rely upon existing conditions, which may or may not
hold in the future. Hence, transitioning from empirical to
dynamical models may lead to better ecological forecasting
(Payne et al., 2017). Dynamics-based ecological forecasting
relies on accurate initial conditions and a useful mathemati-
cal description of processes that can project the ecological
system state into the future. Contrary to correlation-based
forecasts, dynamics-based forecasts are process-based and
can actively learn from real-time observations when embed-
ded in a data assimilative framework (Kitagawa, 1998).
They can thus adapt to changing environmental conditions
and structural ecological changes. Dynamics-based forecast-
ing has not been extensively applied in ecology (Dowd
et al., 2014; Payne et al., 2017), especially in the field of
animal movement; doing so constitutes the purpose of this
paper.

New technologies for animal tracking (e.g., satellite
tags, acoustic and electromagnetic detection) and commu-
nication networks (e.g., reporting apps) yield real-time
information that has improved our understanding of
movement ecology (Wall et al., 2014; Williams et al., 2020).

Retrospective analyses of such tracking data has led to the
development of sophisticated fit-for-purpose statistical
approaches, usually based on state-space models (SSMs)
(Hooten et al., 2017; Patterson et al., 2017). SSMs combine
a statistical model of observations (i.e., a measurement
model) with a dynamic process model (i.e., a movement
model). The central goal is to estimate the system state
(i.e., the unobserved animal locations) (Auger-Méthé
et al., 2020), but SSMs also can be used to determine sys-
tem parameters linked to behavioral dynamics (Dowd &
Joy, 2011; Kitagawa, 1998).

SSMs can ingest and synthesize various sources of
location information (e.g., tags, telemetry, visual or acoustic
detections) (Patterson et al., 2017) and make use of
increasingly sophisticated movement models (McClintock
et al., 2017; Michelot et al., 2021). Consequently, SSMs are
well adapted for ecological forecasting (Dietze et al., 2018;
Dowd et al., 2014). Forecasting shifts the emphasis to predic-
tive skill, which is distinct from retrospective model fitting
that focuses on location in-filling and estimation of behav-
ioral parameters and states. Forecasting strongly depends on
having good movement models, which in turn requires an
understanding of ecological processes. A prediction system
enhances this by placing an emphasis on refining the model
structure, estimating its parameters, incorporating environ-
mental features, and allowing the model to adaptively learn
from tracking data (Dietze et al., 2018; Payne et al., 2017).

Practical goals for studying the real-time location of ani-
mals and forecasting their future trajectories and locations
include management and conservation objectives, especially
for at-risk species. Forecasting systems may facilitate proac-
tive management and increase the efficiency of mitigation
measures by limiting the probability of human–wildlife
conflicts in time and space (e.g., animal–vehicle or animal–
vessel collisions, animal incursions into sensitive areas)
(Gervaise et al., 2021; Wall et al., 2014). This study proposes
a general framework for an animal forecasting system that
provides real-time fusion of location data with a movement
model to yield probabilistic forecasts of animal location and
key behavioral parameters. This iterative forecasting system
uses state-space models and ensemble methods. It follows
the data assimilation (DA) cycle, alternating between a pre-
diction step (i.e., forecast) using a process model, followed
by an observation update (i.e., nowcast) using real-time
observations (Dowd et al., 2014). An idealized non-
dimensional example highlights the major features of the
forecasting system, including the use of a stochastic move-
ment model, real-time DA, state augmentation to estimate
behavioral parameters, potential functions to incorporate
habitat preference, and the evaluation of forecast skill. A
realistic demonstration is then undertaken for short-term
prediction for the endangered population of southern resi-
dent killer whales (SRKWs), Orcinus orca, in the Salish Sea
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off southern British Columbia and northern Washington
state, with the aim of mitigating disturbance from commer-
cial shipping traffic (McWhinnie et al., 2021).

METHODS

General framework

State-space model

SSMs are a general framework that couples a process
model to a measurement model:

xt ¼ d xt�1,θt,Ztð Þþwt, ð1Þ

yt ¼ h xtð Þþ εt, ð2Þ

where xt is the state of the system (e.g., the animal loca-
tion), and yt represents observations (e.g., error-prone loca-
tion measurements) at time t. The process Equation (1)
represents the dynamics (e.g., an animal movement
model), where xt depends on its value at the previous time,
xt�1, a set of parameters, θt, and a set of covariates, Zt. Note
that parameters and covariates may or may not be time
dependent. The stochastic error or forcing, wt, is assumed
to be additive, but it could be multiplicative. The functional
form of the model is embodied in the d(�) operator and
reflects time-dependent ecological dynamics. The measure-
ment Equation (2) relates observations yt to the state xt
through the measurement operator h(�). Direct observation
of the state implies that h(�) is the identity operator. The
observation error term is given by εt. The goal of the basic
state-space model is online (real-time) estimate of the state,
xt, using observations, yt, for t = 1, … , T, with all other
quantities known or specified. Parameters of the system
can also be estimated online by the technique of state
augmentation (see State augmentation).

Data assimilation

The aim of our prediction system is to provide online
estimates of the current location of an animal
(a nowcast) and short-term predictions of future locations
(a forecast).1 Sequential state estimation follows the DA
cycle (Dowd et al., 2014). Figure 1 shows a schematic of

this procedure. It describes the transition of the system
from one time to the next (with the understanding that
this is part of a continuously operating real-time sequen-
tial estimation). We assume that the probabilistic location
nowcast is available at time t�1 and given by xt�1jy1:t�1½ �,
where [�] designates a probability density function and
y1:t�1 are the location observations from time 1 to time
t � 1 inclusive. A one-step-ahead forecast is undertaken
to transition the system from time t � 1 to time t, yielding
the animal location forecast xt j y1:t�1½ �. This is done by
applying the movement model given by Equation (1)
using the nowcast as the initial condition. Note that n-
step-ahead forecasts can also be produced to yield future
predictions of animal locations on longer time horizons
(Figure 1). Next, location observations, yt, may become
available at time t. If so, the assimilation step statistically
blends location forecasts with the new observations yield-
ing the nowcast at time t, or xt j y1:t½ �. This probabilistic
observational update is based on Bayesian principles
treating the forecast as a prior and using the likelihood of
the new observation. The procedure can continue indefi-
nitely through time, cycling between movement forecasts
and assimilation steps. It is initialized at time 0 with a loca-
tion density [x0]. In practice, prediction and observation
updates are carried out in an ensemble framework wherein
samples (or particles) are used to represent the target
nowcast and forecast densities. Specifically, forecasting
(one-step or n-steps ahead) is based on ensemble prediction
using Equation (1), and assimilation is carried out with a
particle filter (see Particle filter).

Particle filter

The particle filter is a sampling-based solution algorithm
for sequential DA. The DA cycle is divided into two steps:
(i) forecasting and (ii) observation update. Suppose we
are at time t – 1 and have a sample from the nowcast dis-
tribution, xt�1 j y1:t�1½ �. We designate this sample of size N

as x ið Þ
t�1jt�1

n oN

i¼1
, where i identifies a sample member, or

particle. The standard particle filter algorithm (sequential
importance resampling) (Gordon et al., 1993) proceeds as
follows:

1. Prediction: Apply the movement model given by
Equation (1) for one-step-ahead prediction to each

ensemble member of the nowcast x ið Þ
t�1jt�1

n oN

i¼1

x ið Þ
tjt�1 ¼ d x ið Þ

t�1jt�1,θt,Zt

� �
þw ið Þ

t , for i¼ 1,…,N , ð3Þ

1In this section, for clarity, we present state estimation but note that
time-varying parameters may also be simultaneously estimated using an
augmented state following the same procedure (see State
augmentation). In addition, we suppress the explicit dependence on
covariates and static parameters for notational simplicity.

ECOLOGY 3 of 14



with w ið Þ
t an independent realization of the system noise.

This yields the forecast ensemble x ið Þ
tjt�1

n oN

i¼1
, which is a

draw from xtjy1:t�1½ �.

2. Observation update: Carry out weighted resampling of

the forecast ensemble x ið Þ
tjt�1

n oN

i¼1
using observation yt

at time t. The weights are based on the likelihood [yt j
xt] determined from Equation (2) and computed as

W ið Þ
t / p ytjx ið Þ

tjt�1

� �
, for i¼ 1,…,N , ð4Þ

where W ið Þ
t is the weight given the ith particle. The

weights are normalized so they sum to one. A weighted
bootstrap (resampling with replacement) of x ið Þ

tjt�1

n oN

i¼1
is

carried out to yield the nowcast ensemble x ið Þ
tjt

n oN

i¼1
at

time t, which is a draw from xt j y1:t½ �.
This single-state recursive transition of the system

from time t � 1 to t is carried on sequentially through
time by predicting forward with the model and assimilat-
ing new observations. An initial condition for the state,

[x0], must be specified as an initial ensemble x ið Þ
0

n oN

i¼1
.

State augmentation

In the context of animal movement, estimation of key
parameters may be important for representing underlying
ecological processes and improving prediction. State aug-
mentation appends such parameters to the original state
vector so that the augmented state is ext ¼ xt θtð ÞT and,
therefore, includes both the geographical location and
parameters of interest. This allows for simultaneous esti-
mates of states and time-varying parameters. Specifi-
cally, following Kitagawa (1998), the original process
model given by Equation (1) is transformed to the aug-
mented one,

xt
θt

� �
¼ d xt�1,θt,Ztð Þ

θt�1

� �
þ wt

νt

� �
, ð5Þ

where the parameter θt varies as a random walk with a
disturbance term νt . The augmented measurement equa-
tion is a trivial alteration of Equation (2) to reflect the
fact that the state, but not the parameters, is observable.
Most importantly, since the augmented state-space model
is the same general form as the usual state model given
by Equation (1) and (2), it can be estimated using stan-
dard sequential Monte Carlo methods, such as
the particle filter. More sophisticated algorithms based

F I GURE 1 Schematic of DA cycle used for animal prediction system. It shows a single-stage transition of this probabilistic system from

time t � 1 to t and how it toggles between movement model forecasts and particle-filter-based assimilation of incoming observations (see

Data assimilation for further details). Light and dark blue dots represent ensemble members (particles) at the nowcast and forecast steps,

respectively. Red dots are the location observations, and red circles correspond to measurement errors. Assimilation and forward model

prediction are symbolized by A and M, respectively.
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on state augmentation are available if static parameter
estimation is the goal (Ionides et al., 2011).

Idealized case

The aim of the idealized simulation experiments is two-
fold: (i) to demonstrate the general workflow and
implementation of real-time DA in the context of ani-
mal movement forecasting and (ii) to provide a con-
crete illustration of key features such as state
augmentation (for estimating behavioral parameters)
and potential functions (for incorporating the environ-
ment through habitat preference), as well as forecast
skill assessment.

Movement model

We choose a specific animal movement model
corresponding to the general process model given by
Equation (1). This takes the form of a continuous-time cor-
related random walk, a reasonably sophisticated and well-
used stochastic model in the random walk family (Johnson
et al., 2008). This movement model also forms the basis for
the application found in the section Application: southern
resident killer whales, and so it additionally serves to intro-
duce its major features. At its core is an Orstein–Ulhenbeck
process for animal velocity (Russell et al., 2018):

dVt ¼ 1
τ
μt�Vtð ÞdtþσdWt, ð6Þ

where Vt is the velocity at time t, τ is a memory time scale
parameter, μt is a time-dependent drift term, and σ is the
scale factor for the Wiener process Wt. The application is
two-dimensional (2D) and defined in the horizontal
plane. For implementation, we numerically integrate
Equation (6) using the Euler–Maruyama approximation
method (Kloeden & Platen, 2013), which yields the sto-
chastic difference equation

Vt ¼ 1�ϕtð ÞμtþϕtV t�Δþwt, ð7Þ

where Δ is the time step, ϕt ¼ 1�Δ=τ is a time-varying
velocity persistence, and wt �N 0,σ2wI

� �
is bivariate white

noise forcing, with σw ¼ σΔ and I the identity matrix. It is
straightforward to use this discrete-time model to generate
realizations vt from the probabilistic velocity process Vt

for any arbitrarily small Δ. As a general rule, with shorter
time steps, the approximation Equation (7) of Equation (6)
is more accurate and the trajectory smoother and more

continuous. To obtain the horizontal animal position xt, we
integrate the velocity νt by summing its increments:

xt ¼ xt�nΔþΔ
Xn
i¼1

Vt�iΔ, ð8Þ

where xt�nΔ is the animal position at a time nΔ before
the present time t. The time history of νt is obtained from
Equation (7).

The time-dependent drift term μt in Equation (7) is an
externally imposed velocity perturbation, or forcing,
due to exogenous environmental conditions. The drift
term, μt, is determined using a potential field approach
(Brillinger et al., 2012). Its value depends on an animal’s
current location such that the local gradient of the poten-
tial function influences the magnitude and directional
tendency of the animal’s movement (Russell et al., 2018).
This potential function is a mixture of a Gaussian and a
parabola (Figure 2a,e). It is isotropic, resembles a Gauss-
ian near the origin, and decreases as a parabola far from
the origin. The drift term, μt, is proportional to its local
gradient at the animal’s current location, and thus move-
ment is steered toward higher values of the potential
function. Here, we interpret the potential function as a
habitat preference, or resource selection.

The term ϕt in Equation (7) is a behavioral parameter
that encapsulates the tendency of an animal to move
in the same direction, in other words, its autocorrelation
properties (Russell et al., 2018). Note that ϕt in Equation (7)
also acts as a weighting factor and so ranges from 0 to
1. As ϕt ! 0, the drift term μt dominates, with animal
behavior resembling foraging (tortuous paths); when
ϕt ! 1, the velocity process tends to a first-order auto-
regressive process, and the behavior resembles transiting
(directed paths). This behavioral parameter has two nota-
ble features: (i) ϕt is a time-dependent parameter, so it
allows for a continuum of behavioral states ranging from,
say, foraging to transiting, and (ii) it is estimated, along
with the animal position, using a state augmented particle
filter (sections “State augmentation” and “Particle filter”).
Hence, online parameter estimation uses information con-
tained in the recent history of observed location data.

The idealized movement model is further transformed
to be scale independent. To do this, the model given by
Equations (7) and (8) is rendered nondimensional using
the following quantities. The characteristic length scale is
assumed to be 2L, or two standard deviations of the
Gaussian that (partly) defines the potential function. The
velocity scale used is, σw, or the standard deviation of the
velocity forcing. These together imply a characteristic
time scale of 2σw/L, which can roughly be interpreted as
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the time it takes an animal to transverse the Gaussian
part of the potential field. Using nondimensional quanti-
ties makes the application scale-free and, thus, applicable
to organisms from viruses to whales.

Numerical experiments

In this section, idealized scenarios are presented to illustrate
the implementation, features, and properties of the

forecasting system. The idea is to vary the accuracy (obser-
vation error) and availability (sampling rate) of the animal
location data, as well as to illustrate the use of habitat pref-
erence through potential functions. These simulation exper-
iments are based on realizations of the movement model,
described in the previous section titled Movement model,
which provides the known true positions xt. The true time-
varying velocity persistence behavioral parameter, ϕt,
followed a sinusoid (Figure 2b,d,f,h). Synthetic observations
yt are created by adding an observation error, εt �N 0,σεIð Þ,

−
10

−
5

0
5

10

(a)

y

F
ie

ld

2

300

598

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

�
t

S
im

u
la

ti
o

n
 1

�
�
�

0.
1

−
10

−
5

0
5

10

y

(c)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(d)

�
t

S
im

u
la

ti
o

n
 2

�
�
�

0.
1

−
10

−
5

0
5

10

(e)

y

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(f)

�
t

S
im

u
la

ti
o

n
 3

�
�
�

0.
2

−10 −5 0 5 10

−
10

−
5

0
5

10

x

y

(g)

0 5 10 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time

�
t

(h)

S
im

u
la

ti
o

n
 4

�
�
�

0.
2

F I GURE 2 Idealized example. (a, c, e, g) Observed (red dots) and predicted animal locations (blue dots are the ensemble median; light

blue dots show full ensemble). The true animal track is shown (black line) along with initial position (black cross). In panels (a) and (e), the

gray scale represents potential field reflecting animal’s preferred habitat. Panels (a) and (c) present high-quality location data (σε ¼ 0:1,

observations every time step), as opposed to panels (e) and (g), which present lower-quality location data (σε ¼ 0:2, observations every

second time step). (b, d, f, h) Time-varying estimates of velocity persistence parameter ϕt. The black lines show the true persistence velocity

used for computing the true track (a sine wave) and estimation results (ensemble, light blue dots; ensemble median, blue dots; fitted smooth

curve, blue lines). Note that spatial coordinates and time vectors are nondimensional.
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to the estimated true positions xt following Equation (2),
with h(�) being the identity operator. Simulated tracks are
selected that show a clear overlap between the foraging
behavior (i.e., small velocity persistence) and the highest
values of the potential field to mimic a habitat preference
corresponding to a foraging or resting area.

Four simulation experiments, or scenarios, are consid-
ered: (1) low observation error, high sampling rate, drift;
(2) low observation error, high sampling rate, no drift;
(3) high observation error, low sampling rate, drift; and
(4) high observation error, low sampling rate, no drift. Two
realizations are used to generate the true positions: one for
the drift case (i.e., using a potential function), and one for
the no-drift case. We run nowcast and forecast scenarios for
each experiment and estimate the location state, along with
time-varying parameter ϕt. Our particle filter algorithm uses
ensembles to yield probabilistic estimates of locations and
time-varying parameters. For our idealized case, we use
N = 100 particles, or ensemble members. A prototype R
code (R version 4.0.3) of the forecasting system is available
from Figshare: https://doi.org/10.6084/m9.figshare.
17046026.v2.

The central metric for nowcast and forecast skill is the
root mean square error (RMSE). It measures the discrep-
ancy between the observed and predicted animal position
as et ¼ yt�bxt, where yt represents the observed location
at time t and bxt is the predicted position taken to be the
median of the nowcast or forecast ensembles for time t.
Then RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=q

Pq
i¼1 k eik2

p
, with k � k the vector

norm and q the number of observations. For each of the
scenarios, we computed the RMSE for the nowcast
location estimate and for different forecast horizons, or
n-step-ahead forecasts, with n = 1, …, 30 time units.
Furthermore, to understand whether forecast skill
depends on the behavioral mode of an animal
(i.e., foraging implied as ϕt! 0, or transiting as ϕt! 1),
we assess the relationship between the behavioral
parameter ϕt, estimated via state augmentation, and the
n-step-ahead forecast RMSE using Simulation 1 (i.e., low
observation error, high sampling rate, drift).

Application: southern resident killer
whales

We illustrate and adapt the general framework to the
specific problem of nowcasting and forecasting endan-
gered SRKW pod trajectories in the Salish Sea. This popu-
lation (clan) is composed of three stable matriarchal
social groups, termed J, K, and L pods, each having a
tendency to move as a coherent group. Hence, our appli-
cation is designed to track pods, not individuals. We
focus on J pod, the most observed pod in the Salish Sea

during summer (Olson et al., 2018). The idealized move-
ment model and DA systems outlined in the previous
section provides the basis for the SRKW application, and
we outline the specific implementation details in what
follows.

Movement model

The whale movement model follows the model formula-
tion described previously in Idealized case: Movement
model, but it is dimensional. For our particular applica-
tion, we fix the model time step Δ = 5 min to provide for
accurate numerical implementation. This is also taken to
be the time scale for the DA cycle, meaning model output
can match the times of available SRKW observations.
The movement model is implemented for the spatial
domain associated with the Salish Sea (a portion of which
is shown in Figure 4). The main modification is to incor-
porate SRKW avoidance of land and shallow waters
<5 m. This is done in the movement model forecast step
wherein ensemble members that fall on land or shallow
water are removed.

The two main control parameters in the movement
model, the persistence, ϕt, and the drift term, μt, allow
whale trajectories to mimic different movement behav-
iors (e.g., transiting, resting, foraging, attraction to pre-
ferred habitat). To specify the value of ϕt, we make it part
of the online estimation procedure for whale location by
using a state augmented particle filter (sections “Particle
filter” and “State augmentation”). The drift term, μt, on
the other hand, is designed to take account of SRKW his-
torical habitat usage in the Salish Sea. Watson et al. (2019)
developed the framework of a spatiotemporal point pro-
cess model to create time-indexed spatial whale intensity
fields (maps) for each of pods J, K, and L. In this study,
these whale intensity maps are created at a monthly reso-
lution and define the potential functions for each month
of sighting data, e.g., Um(x), m = 1, …, M. The drift term
is then defined for month m as the gradient of Um at the
current whale location, that is, μt ¼rUm. This gradient
acts as a force that determines the drift direction and
magnitude, attracting trajectories toward areas of highest
historical whale intensity. The drift term thus adds real-
ism to simulated whale trajectories in the absence of
direct location observations.

Observations

Observations of SRKW locations for this application are
based on visual sighting data from the OrcaMaster data-
base (Olson et al., 2018). These are available at
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irregular time intervals when SRKWs are present in
the Salish Sea and take the form of real-time opportu-
nistic SRKW locations (to pod level, from a reporting
app) during daylight hours. Like the idealized exam-
ple, SRKW observations yt are assumed to have an
additive error εt �N 0,σ2εI

� �
. For simplicity, we fix σε ¼

1 km for SRKW observations. In reality, the error may be
considerably more complex due to, for example, mis-
matches between the sighting and reporting times lead-
ing to location and timing errors, weather conditions,
and observer effects. Another important issue is that
SRKW pods may split or disperse, meaning our visual
detections may not necessarily reflect the core distribu-
tion of the pod. For our demonstration of real-time DA
and probabilistic prediction, we selected a single 5.5 h
track of J pod from 18 August 2016. The track consists of
14 observations between 10:34 AM and 4:00 PM (Pacific
Daylight Time), going southward (Figure 4a). Time inter-
vals between observations are irregular and range from
5 to 90min.

Numerical experiments

A primary goal of this particular application is to pro-
duce a short-term SRKW location forecast on a time
scale of hours to aid in the mitigation of ship collision
risk or acoustic disturbance. This time scale is consid-
ered useful by marine operations because pilots have
sufficient warning to alter the pathways and speed of
incoming vessels. We carry out two experiments: an
assimilation experiment and a forecast experiment.
For the assimilation experiment, we used all location
observations from 10:34 AM to 4:00 PM (n = 14) in
the DA cycle to sequentially provide online probabilis-
tic location estimates. The forecast experiment aimed
at assessing the capability of the prediction system
over time horizons of interest (a few hours). We
assimilated the visual observations from 10:34 AM to
12:25 PM, that is, the first n = 6 observations. We
then forecast the pod locations up to 3.5 h ahead
starting from 12:30 PM (corresponding to the current
time) out to 4:00 PM (i.e., future times). These were
then compared to the observations from 12:55 to
4:00 PM that were artificially removed from the sys-
tem (not assimilated) for the purposes of validation.
We computed the direct position errors (DPEs) as the
discrepancy between the observations and predicted
locations et ¼ yt�bxt . We represented the forecast proba-
bility density function using a kernel density estimate
(KDE) of the ensemble.

RESULTS

Idealized example

Simulation experiments

The four simulation experiments that made use of DA for
nowcasting are presented in Figure 2, as detailed in
Methods: Idealized case: Numerical experiments. The true
animal reference track starts at the top right of the 2D
domain (the “X” in Figure 2a,c,e,g). The animal first
moves towards the origin, consistent with the potential
field and its velocity persistence. When near the origin,
this section of the track corresponds to low values of ϕt

where the gradient of the potential field is small, and
mimics a foraging behavior (Figure 2b,d,f,h). Finally, the
animal moves toward the bottom left of the plane as ϕt

increases toward 1 and velocity persistence dominates,
that is, a transiting mode. At the end of the track, the ani-
mal then loops back toward the origin as ϕt decreases
and habitat preference asserts itself.

The first two simulation experiments assimilated
accurate and regular location data close to the true track
(Figure 2a,c). These highly informative data led to
predicted nowcast animal positions very close to the
observations, and the spread of the ensemble was quite
limited. No major difference was found in terms of
predicted positions between the first two simulations and
the predicted positions were very similar to the true
track. The last two simulation experiments ingested less
accurate and more irregular data spread around the true
track (Figure 2e,g). These less informative data led to
predicted positions that deviated noticeably from the
observations, especially around the origin. There are
small differences in the two cases since the movement
model only used habitat preference in one case. Ensem-
bles generally spread more widely around the median
owing to the less informative location data.

The behavioral parameter, velocity persistence ϕt,
was estimated along with the location via the state aug-
mentation procedure (Figure 2b,d,f,h). In Simulation
1, accurate and regular location data and the use of habi-
tat preference allow for reliable estimation of the tempo-
ral pattern of the true ϕt (Figure 2b). The ensemble
spread was generally large and bigger when ϕt decreased.
The time lag between the true and estimated ϕt was
small, meaning that the DA was able to quickly learn the
proper value for the behavioral parameter from the accu-
rate and frequently available location data. In Simulation
2, despite the location data being the same, the lag
was much larger. This suggests that the use of habitat
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preference in Simulation 1 improved online behavioral
parameter estimates (this makes sense since the data
were generated assuming habitat preference). In Simula-
tions 3 and 4, recovery of ϕt also indicated that the accu-
racy and regularity of location data, as well as the use of
habitat preference, influenced the quality of the online
behavioral parameter that could be estimated.

Forecast skill

For all simulation experiments, RMSE increased with
forecast horizon, as expected (Figure 3a). Forecast models
with regular, lower error observations (Simulations 1 and
2) performed better than irregular, higher error observa-
tions (Simulations 3 and 4) up to forecast time horizons
of 12 time units. Therefore, accurate and regular location
data provided better short-term forecasts of animal loca-
tions. However, beyond a forecast horizon of 12 units,
simulations with a potential field (intensity map)
increased error forecasts rapidly and exceeded the error
forecasts of Simulations 2 and 4 without a potential field.
The use of habitat preference in the movement model ste-
ered the animal toward the origin (toward the higher
potential function intensity). However, the second part of
the observed track corresponded to the animal moving
away from the center (i.e., going against the potential
function). This contradictory feature of this particular
realization of the observations thus produced higher
long-term forecast error. Finally, the forecast error was

higher when the animal was in a transiting mode
(ϕt ! 1) (Figure 3b), particularly when the forecast time
horizon increased.

Southern resident killer whale application

Assimilation experiment

Figure 4 shows the results for the online estimation of J
pod location nowcasts. The visual observations occurred
at irregular time intervals over the course of the day and
were, on occasion, clustered closely together in space and
time, consistent with the observation error. The move-
ment of J pod was generally to the south and veering
eastward and covered about 50 km. There were variations
in both speed and directional persistence, including a
brief doubling back to the north off the west coast of San
Juan Island between 12:25 and 12:55 PM (Figure 4a). The
historical whale occupancy for August, which acted as
the potential function, was highest off the southwest
coast of San Juan Island indicating preferred habitat.
Predicted whale locations conformed well to the observed
locations at the observation times, as expected given that
these nowcast estimates were sequentially corrected to be
near the visual sightings as they became available.

Figure 4b,c provides a detailed view of how the DA
cycle operates and performs by showing the individual
components of the nowcast location state in terms of the
easting (longitudinal) and northing (latitudinal)
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coordinates. The full ensemble that represents the esti-
mated whale location is shown along with its median
value, that is, the most likely whale location. The
prediction–correction aspect of the DA procedure is evi-
dent. To specifically illustrate this key feature, consider
how the system reacts to the observed temporary north-
ward reversal in whale direction seen at 12:55 PM (G).
Immediately prior to this, a forecast was made after
assimilating the last observation at 12:25 PM (F). The
increasing uncertainty, or spread, in the forecast ensem-
ble is clear, reaching its maximum at 12:50 PM, just prior
to the next observation. With the DA system then receiv-
ing the observation at 12:55 PM (G), the particles nearest
the observation were resampled, leading to a reduction in
the ensemble spread and a median estimate closer to the
observation.

Overall, the movement was biased eastward and south-
ward owing to the drift term μt that remained mostly posi-
tive in both the longitudinal and latitudinal directions
(Appendix S1: Figure S1c). More precisely, from C to K,
the movement was forced eastward with a higher drift
term in the longitudinal direction (Appendix S1:
Figure S1c). After K, the movement was slightly biased

southward and eastward corresponding to the pod enter-
ing an area of high whale intensity southwest of San Juan
Island (Figure 4a; Appendix S1: Figure S1a).

Along with the whale location, the velocity persis-
tence parameter, ϕt, was also estimated online using state
augmentation. Its value remained <0.5 for most of the
time series (Appendix S1: Figure S1b), which indicated
an intermediate behavior state between transiting (ϕt ten-
ding toward 1) and resting (ϕt tending toward 0), consis-
tent with the general features of observed trajectory
showing systematic north–south movement with some
reversals. Two periods do show ϕt > 0.5, which may
correspond to exploratory behaviors (e.g., the northward
reversal from F to G, Figure 4c).

Forecast experiment

The forecast experiment demonstrated short-term predic-
tions on the time scale of hours. Here, the first six obser-
vations (A–F) until 12:25 PM were assimilated, with the
associated whale location nowcasts mimicking the assim-
ilation experiment (Figures 4a and 5a). After the final
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observation F was assimilated, the longitudinal drift
decreased 68%, whereas the latitudinal drift increased
77% until observation N (Appendix S1: Figure S1a,f).
Both drift components remained positive throughout the
time series, which indicated slow directional movement
toward the south and east, with J pod predicted to remain
southwest of San Juan Island. The directed movement
was in general smaller than in the assimilation experi-
ment, and largely due to the whale intensity field
(Appendix S1: Figure S1f) since no observations were
assimilated to draw the whales southward. Therefore, in
the absence of new observations, the pod had weak
movement directionality. This might have contributed to
an increase in the forecast error over the experiment’s
time horizon.

Forecast errors were quantified with the DPE metric
(Figure 5b). The main noteworthy feature is the growing
error as the forecast time horizon increases. The median
DPE remained <5 km for a forecast out to 2.5 h and
exceeded 10 km for the final 3.5-h forecast in comparison
to observations at these time horizons. The other key
metric of forecast skill is the forecast uncertainty, here

quantified by the range associated with each DPE. This
range is the spread of the forecast ensemble about the
future observation, or the 90% outer credible interval
(i.e., the most likely region for whales). This interval
increases with the forecast time horizon and shows a
forecast uncertainty of about 10 km for 1-h forecasts,
15 km for 1.5- to 2.5-h forecasts, and 30 km for a 3.5-h
forecast. Figure 5c–f shows the kernel-density estimated
forecast probability density functions (PDFs) for selected
observations. In general, the forecast PDF increases its
spatial extent with larger forecast time horizons. It is also
clear that the forecast PDF has a shape that is distinctly
non-Gaussian. For forecast horizons of 0.5, 1.5, and 2.5 h,
the forecast PDF overlaps with the corresponding obser-
vations (G, J, M), but for the 3.5-h forecast it does not
overlap with the final observation N.

DISCUSSION

In this paper, we developed a statistical framework for a
real-time forecasting system for animal movement for the
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purpose of advancing understanding of movement ecol-
ogy through adaptive learning and providing a flexible
framework that could potentially be operationalized to
facilitate management and conservation of animal
populations. A nondimensional idealized case for generic
animal movement demonstrated the key features of the
system. We then presented a prototypical, but realistic,
prediction system for endangered SRKWs.

Improving animal movement models is key for eco-
logical forecasting, since forecast skill rests on a dynamic
model’s efficacy (Dietze et al., 2018; Payne et al., 2017).
We used a stochastic movement model that is extremely
flexible with respect to the animal trajectories it can gen-
erate, a salient feature of most stochastic movement
models. Hence, we further constrained the movement
model by integrating preferred habitat through a drift
term computed as the local gradient of a potential func-
tion. The behavioral persistence parameter ϕt acts as a
weighting factor for the past velocity and the current drift
component. Adaptive online learning of the persistence
parameter was implemented as part of a forecasting sys-
tem using state augmentation (Kitagawa, 4,191,998). The
dynamical interplay between the drift and velocity meant
that high values of the persistence parameter (ϕt ! 1)
could reduce the influence of the drift term, which in the
absence of location observations can lead to weak direc-
tionality and, in some cases, low predictive skill. The ide-
alized example showed that the forecast error was
typically higher when the persistence was larger, that is,
when an animal was transiting. Low predictive skills also
arose when the observations were inconsistent with the
underlying preferred habitat. Improvement will rely on
better estimates of the positions and persistence parame-
ter through the refinement of the movement model struc-
ture and the integration of high-quality (small
observation error and high sampling rate) location obser-
vations along with animal pathway information and
environmental drivers.

Ecological understanding comes from a forecasting
system as a byproduct of online learning, both in terms
of adaptively estimating informative movement model
parameters and ultimately in the iterative refinement of
the movement models themselves. Forecasting empha-
sizes optimizing predictive skill, rather than the tradi-
tional metrics for retrospective studies (goodness of fit,
cross-validation skill). Forecasting skill is the key metric
that underlies location estimates and parameter and
model refinement. It depends on both the accuracy of the
initial condition (nowcast) and how well the movement
model represents the actual ecological dynamics. We
used a basic RMSE skill metric and the DPE but recog-
nize that other skill metrics are possible (e.g., bias, mean
absolute error, threat score, Brier skill score) (Hamill &

Juras, 2006), as well as comparison to basic persistence
forecasts. Many of these metrics would, however, need to
be adapted for probabilistic cases.

Our SRKW demonstration system shows clearly how
general ecological forecasting framework can be adapted
to particular setting with aim of achieving conservation
goals through the fusion of movement models and obser-
vations. We made use of 1 day of visual sightings com-
piled to pod level, which would be, in practice, available
at irregular intervals in real-time. These opportunistic
data are limited by viewing conditions (e.g., daylight, sea
state), and in the near future we plan to integrate SRKW
detections from passive acoustic monitoring. The statisti-
cal character of this data type is very different from the
visual detection data. However, our system is flexible and
can assimilate multiple complex data types through suit-
able specification of the measurement model. Future
challenges to be addressed with respect to the SRKW
measurement model includes: recording errors, the con-
sequences of pod splitting, and detection false positives.

The use of habitat preference and the avoidance of
shallow waters in our SRKW application allowed the
model to bias the whale movement in the correct direc-
tion and provide moderate forecast error (5 km) up to
2.5 h. Considering that a container vessel transiting the
Salish Sea moves at a median speed of 18 knots (Joy
et al., 2019), the vessel would be 83 km from the median
position of the whale pod, a distance well outside the
envelope of error—hence our forecasting system provides
reasonable lead-in time to mitigate vessel-whale interac-
tions. With additional efforts to incorporate real-time
location observations along with model refinements to
improve directionality, this could become an operational
tool for managing SRKW in the Salish Sea. Towards this
end, future information that we are considering for our
target SRKW system includes: pathway information
derived from visual sightings (Olson et al., 2018), prey
fields (Kent et al., 2020), and habitat use models
(Abrahms et al., 2019). Another promising direction is to
couple the system to other environmental or biological
forecasts (Payne et al., 2017), such as, for the Salish Sea,
an already existing oceanographic forecasting system
(e.g., Olson et al., 2020). While our proof-of-concept sys-
tem provides the basis for an SKRW forecasting system,
operationalizing it is not trivial: quality controlled, real-
time data feeds are required; ensemble DA must be
robust (e.g., particle collapse); and movement models
need to be further refined to incorporate environmental
information.

In summary, our forecasting system for animal track-
ing provides a synthesis tool for assimilation of the real-
time location information into a movement model, and
makes use of potential functions and online parameter
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learning. It can assimilate any direct (e.g., visual) or indi-
rect (e.g., passive acoustic detections) location observa-
tions and can handle multiple location observations at
the same time (i.e., within the DA window), or data avail-
able irregularly in time. We have extended the ensemble
approach to a coherent group (whale pod) but it could
integrate any level of aggregation, that is, multiple indi-
viduals each represented by ensembles and interacting
with one another (Russell et al., 2017). Our system is thus
flexible enough to be adapted to any data types, move-
ment models, animal species and environmental condi-
tions. Importantly, the forecasting framework provides a
step towards making more effective use of data streams
on animal movement with a goal of forecasting and pro-
active management of animal populations, especially in
the context of human–wildlife conflicts. Pursuing real-
time animal movement prediction will drive advances in
ecology by encouraging practitioners to confront their
bio-logging data with model predictions and so drive the
iterative refinement of movement models, ultimately
leading to improved understanding of ecological pro-
cesses. The approach could even be used for retrospective
studies and so provides a complementary way to better
interpret and understand the ecological implications of
movement data. We anticipate that the continued
improvement of such a system will provide for ecological
hypothesis testing and the refinement of predictive move-
ment models to drive future insights into animal ecology.
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