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Abstract
Accurately predicting patient survival is essential for cancer treatment decision. 
However, the prognostic prediction model based on histopathological images of 
stomach cancer patients is still yet to be developed. We propose a deep learning-
based model (MultiDeepCox-SC) that predicts overall survival in patients with stom-
ach cancer by integrating histopathological images, clinical data, and gene expression 
data. The MultiDeepCox-SC not only automatedly selects patches with more infor-
mation for survival prediction, without manual labeling for histopathological images, 
but also identifies genetic and clinical risk factors associated with survival in stomach 
cancer. The prognostic accuracy of the MultiDeepCox-SC (C-index = 0.744) surpasses 
the result only based on histopathological image (C-index = 0.660). The risk score of 
our model was still an independent predictor of survival outcome after adjustment 
for potential confounders, including pathologic stage, grade, age, race, and gender on 
The Cancer Genome Atlas dataset (hazard ratio 1.555, p = 3.53e-08) and the external 
test set (hazard ratio 2.912, p = 9.42e-4). Our fully automated online prognostic tool 
based on histopathological images, clinical data, and gene expression data could be 
utilized to improve pathologists' efficiency and accuracy (https://yu.life.sjtu.edu.cn/
DeepC​oxSC).
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1  |  INTRODUC TION

As a clinical gold standard for cancer diagnosis and prognosis, histo-
pathological images guide clinicians to make more precise treatment 
decisions.1,2 Pathologists evaluate the morphological characteris-
tics of cancer cells under a microscope to grade.3 However, manual 
assessment of large-scale histopathological images is highly time-
consuming, subjective, and not repeatable, especially for patholo-
gists working in remote regions.4 Hence, fully automated prognostic 
models for survival prediction directly from pathological images have 
attracted great attention.5 This computer-assisted tool can be used 
to improve pathologists' efficiency and accuracy, and ultimately pro-
vide better patient treatment.2,6,7 The main approaches for survival 
prediction of patients can be divided into three categories: hand-
crafted feature-based survival models, deep convolutional network-
based survival models, and multimodal fusion.7

Hand-crafted feature-based survival models typically extract struc-
tured image features including cell shape, size, and texture from un-
structured pathological images. Yu et al. extracted 9879 quantitative 
image features of lung cancers and used machine-learning methods 
to predict cancer prognosis.8 However, image features had limited 
abilities in representing image information. In recent years, research-
ers have attempted to use deep learning to learn survival outcomes 
directly from histopathological images.

Deep convolutional network-based survival models often use deep 
CNN for survival analysis by replacing the traditional linear risk func-
tion of the CPH model with a nonlinear deep fully connected net-
work. According to whether the manually labeled ROIs were needed, 
a deep convolutional network-based survival model can be catego-
rized into two categories: ROI-based approaches and whole-slide 
image approaches.

Region of interest-based approaches focused on ROIs of whole-
slide images annotated by pathologists. DeepConSurv (deep convo-
lutional network for survival analysis) was a deep CNN for survival 
prediction with manually labeled discriminative patches from 
ROIs.9,10 However, ROI-based methods require ROIs to be labeled 
by pathologists and were not end-to-end analyses.

Whole-slide image approaches directly used the whole-slide his-
topathological image to predict patient outcome. The WSISA frame-
work extracted hundreds of patches from whole-slide images and 
grouped them into clusters, then made patient-level prediction from 
these clusters in lung cancer and glioblastoma.11 Kather et al. trained 
a deep neural network to identify nine tissue subclasses and used 
CNN to build a predictive score from each of these tissue subclasses 
in colorectal cancer.12 Both WSISA and Kather's method used his-
topathological images and ignored the clinical data and other omics 
data.

Multimodal fusion models integrated histopathological images 
and other omics data to improve the prognostic accuracy. The 
GSCNN integrated well-known genomic biomarkers and patholog-
ical images into a unified prediction framework to predict patient 
survival with glioblastoma.13 However, GSCNN ignored the clinical 
information of patients. PAGE-Net used histopathology-specific 

CNN and genome-specific sparse deep neural networks to extract 
survival-discriminative features in glioblastoma.14 S-net integrated 
computed tomography images and clinicopathological factors to 
predict survival for patients with stomach cancer.15

Stomach cancer is characterized by a complicated and hetero-
geneous histomorphology,16 and there has not yet been a model 
using histopathological images, clinical data, and gene expression 
data of stomach cancer to predict prognosis. This study develops 
a fully automated deep CNN for survival prediction using the CPH 
model directly from histopathological images in stomach cancer 
(DeepCox-SC). Using stomach cancer data from TCGA datasets 
and the external test set, we show that the prognostic accuracy 
of the DeepCox-SC based on histopathological image has similar 
performance with the clinical benchmark model integrating grade, 
stage, and clinical data. In addition, the prediction accuracy of the 
MultiDeepCox-SC integrating histopathological images, clinical data, 
and high-dimensional gene expression data significantly surpasses 
the DeepCox-SC model (Wilcoxon signed rank p = 0.005). The main 
contributions of our model are two aspects: (i) improving the sur-
vival prediction of stomach cancer patients by integrating histo-
pathological images, clinical data, and gene expression data; and (ii) 
developing a user-friendly online tool for survival prediction using 
histopathological images, clinical data, and gene expression data in 
stomach cancer (https://yu.life.sjtu.edu.cn/DeepC​oxSC).

2  |  MATERIAL S AND METHODS

2.1  |  Patients cohorts

The H&E stained histopathological images, clinical data, and gene 
expression data of stomach cancer were obtained from the publicly 
available TCGA datasets (https://portal.gdc.cancer.gov/proje​cts/
TCGA-STAD). The clinical information of each sample is presented 
in Table  S1 and the TCGA manifest file for download data is pre-
sented in Table S2. Histopathological images from FFPE tissues were 
included because FFPE slides were the gold standard for diagnos-
tic medicine. Initially, 442 whole-slide histopathology images in .svs 
format from 416 unique patients (36 patients included two whole 
slide images) were downloaded. Among these patients, 41 patients 
with no 20× magnification (0.5 μm per pixel) whole-slide images and 
18 patients with missing survival data were excluded. Finally, a total 
of 382 whole-slide images (20× magnification) from 357 unique pa-
tients were analyzed. Figure S1 shows the flowchart of the stomach 
cancer dataset.

The external test set including 30 gastric cancer patients was 
previously collected at Ruijin Hospital Affiliated to Shanghai Jiao 
Tong University School of Medicine. This study was approved by the 
Ethics Committee of Ruijin Hospital (ID: 2021-194). We used these 
data for the secondary analysis.

The staging is based on the 7th edition of the AJCC TNM staging 
system for stomach cancer.17 The TCGA gastric cancer samples in-
cluded different versions of the AJCC TNM staging systems (AJCC 

https://yu.life.sjtu.edu.cn/DeepCoxSC
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https://portal.gdc.cancer.gov/projects/TCGA-STAD
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4th–7th editions). Clinical staging with different versions of staging 
systems was adjusted to the 7th edition.18,19 The grade by patholo-
gist depends on what the cancer cells look like under a microscope 
according to the WHO classification.20

2.2  |  Whole-slide images preprocessing

2.2.1  |  Step 1: Cropping whole-slide images 
into patches

Whole-slide images are typically gigapixels in size and so should 
not be directly used as the input of CNN. An increase in the size 
of the input image increased the parameter to be estimated and 
computational power. Taking these into account, whole-slide im-
ages with 20× magnification were cropped into small patches with 
1536 × 1536 pixels. The margin of whole-slide images contained 
white background, so some patches contained white background 
when we processed the whole slide images into patches. Patches 
containing white background space of more than 30% were fil-
tered out.

2.2.2  |  Step 2: Color normalization

Many factors, such as staining and the slide digitization process,21 
resulted in drastically different appearances between two histo-
pathological images (Figure S2). This difference significantly affected 
the performance of the CNN model.22 Patches were normalized to 
a gold standard H&E histopathological image using the Macenko 
method.23

2.2.3  |  Step 3: Nuclei segmentation

After patch filtration, an average of 2937 patches for each case 
remained. Thousands of patches of each case cannot be directly 
used for the CNN model. Cellular features such as nuclear size 
and texture played an important role in diagnosis and grading. 
We segmented cell nuclei of each patch with hierarchical multi-
level thresholding24 and then selected the patch with the larg-
est frequency of cell nuclei for each case. The selected patches 
(1536 × 1536 pixels) consisted of nine patches of 512 × 512 pixels 
and we used CellProfiler to extract the 1100 features of patches 
(512 × 512 pixels). The results of the univariate Cox regression 
showed that the p value of the feature (Median_PrimaryObject_
AreaShape_Zernike_7_7) was smallest and the absolute value of 
the coefficient was largest. We selected the patch of 512 × 512 
pixels with the smallest “Median_PrimaryObject_AreaShape_
Zernike_7_7” among nine patches, because the coefficient of this 
feature was negative. The selected patches of 512 × 512 pixels 
contained more histopathological information and were used to 
train the DeepCox-SC model to predict patient risk.

2.3  |  DeepCox-SC model architecture

Figure 1 shows the DeepCox-SC model architecture. We combined 
the InceptionResNetV2 convolutional network with CPH model to 
predict the survival risk of stomach cancer from selected patches. 
The DeepCox-SC model takes selected patches as the input and 
outputs the predicted patient's risk of death (DeepCox-SC risk 
score). The higher DeepCox-SC risk score means the higher risk 
of death.

One standard survival model is the CPH model that calculates 
the effects of structured covariates, such as age, gender, and stage, 
on the risk of death. The DeepCox-SC model combines CNN with 
the CPH model to predict the risk of death from histopathological 
images (unstructured data). The DeepCox-SC risk score is the es-
timated risk function (ĥ�(x) in Equation 1) based on histopatholog-
ical images. Convolutional layers of InceptionResNetV2 pretrained 
on ImageNet first extract the spatial features of histopathological 
images using convolutional kernels and pooling operations.25 These 
features are then connected to fully connected layers. The output 
of the network was a single node, which estimates the risk function 
ĥ�(x). The weights of the network are trained with the time-to-event 
(death) outcomes to optimize the Cox likelihood function. The Cox 
partial likelihood was defined as:

When we minimized negative log partial likelihood, the loss func-
tion was:

 �i was an indicator of whether the survival time was censored (�i = 0) 
or observed (�i = 1). � was the weight of the CNN. ℛ

(
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)
 denoted the 

set of individuals who were at risk for failure time of individual i .
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ĥ�
�
xi
�
− log

�
j∈ℛ(Xi)

exp
�
ĥ�
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DeepCox-SC risk score is calculated by averaging the scores of 
all histopathological images of a patient that has more than one 
whole-slide image.

2.4.2  |  Data augmentation

Data augmentation was adopted to prevent overfitting from insuf-
ficient training data and improve generalization performance. We 
applied random rotations by 40° and random horizontal and vertical 
flips to the training data. The pixel value of training and validation 
data was rescaled to 0–1.

2.4.3  |  Hyperparameters

The Adam optimization algorithm was used to minimize the loss 
function (Equation 1). The initial learning rate was set to 0.002 and 
the decay was 0.05. Models were trained for 100 epochs using the 
mini-batch size of 32. To avoid overfitting, we adopted early stop-
ping based on the performance of validation data. The training pro-
cess would break when the validation loss did not reduce after 10 
epochs.

2.4.4  |  Hardware and software

Models were trained using TensorFlow (version 2.2.0) framework 
on a cluster (Pi 2.0 High Performance Computing of Shanghai 
Jiao Tong University) equipped with NVIDIA Tesla V100  32 GB 
Graphics Card. HistomicsTK (https://digit​alsli​dearc​hive.github.io/
Histo​micsT​K/) was used for fundamental histopathological image 
analysis.

2.5  |  Variable selection

2.5.1  |  Genes

The number of genes is much larger than the sample size, so we 
conducted two-step variable selection (Figure  S3). First, we re-
duced the high-dimensional gene expression data to moderate 
(n∕ log(n), where n is the number of patients) using the SIS variable 
selection method in all samples26. Second, the CPH model with the 
LASSO variable selection was conducted in each fold only using 
the training data. The Bayesian information criterion was used for 
LASSO penalty selection. The samples in each fold were the same 
as DeepCox-SC. The intersection of genes non-zero coefficients in 

ten folds were finally added in the MultiDeepCox-SC multimodal 
fusion model. There were 10 genes (CHAF1A, REPIN1, SERPINE1, 
HTRA3, PWP2, GPR173, NCLN, NT5E, MYL4, and YWHABP2) associ-
ated with survival.

2.5.2  |  Features of image patches

We used CellProfiler to extract features from each patch.27 
Using the “UnmixColor” module, each histopathological image 
was separated into a hematoxylin staining grayscale image and 
an eosin staining grayscale image. For each patch, 1100 fea-
tures were obtained using “Measure Texture”, “Measure Object 
Intensity”, “Measure Object Size Shape”, “Measure Granularity”, 
and “Measure Object Intensity Distribution” modules. The mean 
and SD values of each feature were calculated for each patch. The 
variable selection of the features of image patches was similar to 
gene expression data by using SIS for preliminary screening and 
then LASSO in each fold.

2.6  |  MultiDeepCox-SC model

The MultiDeepCox-SC integrates the DeepCox-SC risk score, 
age, and expression of 10 genes through the CPH model. The 
DeepCox-SC model was first trained using histopathological images, 
and then the output of this model (DeepCox-SC risk score) was com-
bined with clinical data (age) and gene expression (10 genes) using 
the Cox model.

2.7  |  Statistical analysis

Prediction accuracy was assessed using Harrell's C-index and the 
AUC of time-dependent receiver operating characteristic on the 
validation set. C-index (ranges from 0–1) was used to measure the 
concordance between the predicted risk and actual survival on vali-
dation sets. The higher C-index means more accurate prediction. 
The mean and SD of C-index and AUC values for 10 validation sets 
were calculated. The Wilcoxon signed rank test was used to com-
pare the improvements of performance metrics (C-index and AUC 
value) among compared models. The univariate and multivariate 
Cox regression analyses were undertaken and the likelihood ratio 
test was used to calculate the p value of the multivariate Cox model. 
The Kaplan–Meier survival curves were plotted, and the survival 
differences between groups were compared by the log–rank test. 
All statistical analyses were performed in R, version 3.6.1. The p 
value < 0.05 was regarded as a significant level.

F I G U R E  1  Overview of DeepCox-SC workflow. (A) DeepCox-SC preprocessing. (B) The DeepCox-SC online tool (https://yu.life.sjtu.edu.
cn/DeepC​oxSC) takes whole-slide image as an input, and outputs the predicted risk score. Online tools include introduction page, analysis 
page, and results page. The user needs to input the histopathological image and email (age and gene expression are optional). An email 
containing the results page is sent to user when the job is finished

https://digitalslidearchive.github.io/HistomicsTK/
https://digitalslidearchive.github.io/HistomicsTK/
https://yu.life.sjtu.edu.cn/DeepCoxSC
https://yu.life.sjtu.edu.cn/DeepCoxSC
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3  |  RESULTS

3.1  |  Patient characteristics

Table 1 presents the clinical characteristics of 357 stomach cancer 
patients from the TCGA dataset and 30 stomach cancer patients 
in Ruijin Hospital (the external test set). The censoring rate is 60% 

(40% patients died) for the TCGA dataset and 53% (47% patients 
died) for the external test set.

3.2  |  Univariate and multivariate Cox regression

The output of the model was the predicted risk score (DeepCox-SC 
risk score) reflecting the risk of death. We applied a univariate and 
multivariate Cox regression model to evaluate the predictive power 
of the DeepCox-SC risk score. The DeepCox-SC risk score and clini-
cal data (age, gender, race, stage, and grade) were coded as categori-
cal variables (Figure  2A) and continuous variables (Figure  2B) for 
univariate analysis. We divided the patients into high- and low-risk 
groups according to the median value of DeepCox-SC risk scores.

The stage and grade were prognostic factors in the clinical set-
ting, and higher stage and grade indicated a higher risk. This was 
also demonstrated by HRs of pathologic grade and stage, where the 
higher stage and grade had the higher HR (Figure 2A). The HRs for 
stage II, III, and IV were 1.894, 3.166, and 6.353 (stage I as refer-
ence), respectively. The HR for grade II and grade III were 1.254 and 
1.719 (grade I as reference), respectively. We coded stage and grade 
as continuous variables to consider this correlation for multivariate 
analysis (Figure 2B). The grade was a significant predictor only when 
it was coded as a continuous variable. The stages coding as either 
categorical or continuous variables were both significant predictors 
of OS. However, the p value was smaller for the continuous variables 
(likelihood ratio test, 2e-05 vs. 6e-07).

To evaluate the independent predictive power of the 
DeepCox-SC risk score, we performed a multivariate analysis includ-
ing the DeepCox-SC risk score, age, gender, stage, and grade on the 
TCGA dataset (Figure 2C) and the external test set (Figure 2D). After 
adjustment for age, sex, stage, and grade, the DeepCox-SC risk score 
was still a significant predictor of OS in the multivariate model on 
the TCGA dataset (HR 1.555; 95% CI, 1.329–1.820; p = 3.53e-08) 
and the external test set (HR 2.912; 95% CI, 1.546–5.487; p = 9.42e-
4). The higher DeepCox-SC risk score means the higher risk of 
death. This was also demonstrated by HR of DeepCox-SC risk score 
(Figure 2A,C,D).

3.3  |  Prediction accuracy of DeepCox-SC and 
MultiDeepCox-SC

We assessed the prediction accuracy by comparing our model 
(DeepCox-SC and MultiDeepCox-SC) with other methods. According 
to the input data, models can be divided into three categories: 
image-based, image and age-based, and image, age, and gene-based. 
Ten-fold cross-validation was used to compare the C-index, 1-year 

TA B L E  1  Clinical characteristics of stomach cancer patients

Characteristics
TCGA cohort (357 
samples)

Independent test 
set (30 samples)

Age (years)

NA 3

Mean ± SD 64.76 ± 10.40 65.40 ± 12.48

Gender

Male 234 24

Female 123 6

7th TNM stage (AJCC)

I 38 8

II 116 6

III 175 13

IV 21 1

NA 7 2

Grade

I 7 4

II 125 11

III 216 14

X 9 1

Race

White 251 /

Asian 81 /

Black or African 
American

12 /

Native Hawaiian 
or other 
Pacific islander

1 /

NA 37 /

Status

Dead 142 14

Alive 215 16

Censoring rate 0.6 0.53

Survival time (days): mean ± SD

Dead 430.26 ± 358.31 791.29 ± 635.80

Alive 743.15 ± 589.33 2257.7 ± 61.48

Abbreviations: AJCC, American Joint Committee on Cancer; NA, 
missing data; TCGA, The Cancer Genome Atlas.

F I G U R E  2  Forest plot for univariate and multivariate Cox regression analysis of patients with stomach cancer. (A) Univariate Cox 
regression on The Cancer Genome Atlas (TCGA) dataset and variables are coded by category. (B) Univariate Cox regression on the TCGA 
dataset and variables are coded continuously. (C) Multivariate Cox regression on the TCGA dataset. (D) Multivariate Cox regression on the 
external test set. CI, confidence interval; HR, hazard ratio
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AUC, 2-year AUC, and 3-year AUC of the different models on the 
TCGA dataset. We further assessed the model performance on the 
external test set.

3.3.1  |  Image-based models

We assess the performance by comparing DeepCox-SC with other 
two models: randomly selecting the patch-based model and struc-
tured features-based model (Figure  3A, green violin plots). The 
randomly selecting patch-based model used randomly selected 
patches (512 × 512 pixels) from cropped images as the input of the 
deep neural Cox model, and model training was the same as the 
DeepCox-SC.11,13 The DeepCox-SC model selected patches accord-
ing to the cellularity and CellProfiler software (see Materials and 
Methods). The structured features-based model used CellProfiler to 
extract 1100 features from each patch, and then used SIS and LASSO 
for variable selection. The structured features-based model was fit-
ted by the traditional CPH model (see Materials and Methods).27

For TCGA stomach cancer patients, the DeepCox-SC model 
predicted overall survival with C-index, 1-year AUC, 2-year AUC, 
and 3-year AUC of 0.660 ± 0.057, 0.701 ± 0.146, 0.766 ± 0.081, 
and 0.699 ± 0.123, respectively (mean ± SD) (Figures  3A and S4, 
green violin plots). The DeepCox-SC risk score had the better per-
formance than the randomly selecting patch-based model (C-index 
0.609 ± 0.078). These selected patches improved the performance 
by over 8.37% on average compared with the randomly selected 
patches (Wilcoxon signed rank p  =  0.049). This indicated that se-
lected patches (according to the cellularity and CellProfiler software) 
were more predictive for OS than the randomly selected patches. 
The performance for the structured features-based model was worse 
(C-index 0.601 ± 0.065). The C-index of the DeepCox-SC model was 
0.657 on the external test set (Figure 3B). Figure 3C shows repre-
sentative histopathological images of DeepCox-SC selected patches 
and the randomly selected patches of the DeepCox-SC high-risk 
group and DeepCox-SC low-risk group.

3.3.2  |  Image and age-based model

According to the results of univariate and multivariate Cox regression 
models, age was a significant predictor of OS. As shown in the yellow 
violin plots of Figure 3A, we further integrated the DeepCox-SC risk 
score and clinical data (age). For comparison, we built the bench-
mark model based on manual pathologic grade, stage, and age using 
a linear Cox model. Integrating the DeepCox-SC risk score and 
age achieved a C-index of 0.667 on the TCGA dataset (Figure 3A, 
yellow violin plots) and 0.702 on the external test set (Figure 3B). 
The C-index of the three benchmark models were 0.566 ± 0.080, 
0.634 ± 0.095, and 0.645 ± 0.092 for “grade + age” model, “stage 
+ age” model, and “grade + stage + age” model, respectively. The 
C-index of “DeepCox-SC risk score + age” model (0.667) is higher 
than the clinical benchmark model integrating grade, stage, and age 

(0.649), although the p-value between these two models was not 
significant (Wilcoxon signed rank p = 0.188).

3.3.3  |  Image, age, and gene-based model

The MultiDeepCox-SC integrated histopathological images, clinical 
data (age), and gene expression data (Figure 3A, blue violin plots). 
The preprocessing of high-dimensional gene expression data used 
SIS and LASSO for variable selection (see Materials and Methods). 
Finally, we obtained 10 genes (CHAF1A, REPIN1, SERPINE1, HTRA3, 
PWP2, GPR173, NCLN, NT5E, MYL4, and YWHABP2) associated with 
survival.

As showed in the blue violin plots of Figure  3A, the 
MultiDeepCox-SC integrating histopathological image, age, and 
gene expression data improved the C-index by over 13% on average 
(C-index 0.744 ± 0.070, Wilcoxon signed rank p = 0.005) compared 
with the DeepCox-SC model (C-index 0.660 ± 0.057). The C-index 
of the MultiDeepCox-SC was almost the same as the benchmark 
model integrating stage, grade, age, and gene expression (C-index 
0.751 ± 0.055, Wilcoxon signed rank p = 0.652). The 1-year AUC and 
2-year AUC of the MultiDeepCox-SC multimodal fusion model were 
0.800 ± 0.091 and 0.833 ± 0.055, respectively.

Six of 10 genes used in the multimodal fusion model are rele-
vant to survival. Histone chaperone CHAF1A promotes cell aggres-
sive and inhibits apoptosis in many cancers.28 Replication initiator 
REPIN1 is associated with clinical outcome of survival.29 SERPINE1 is 
a cancer-promoting factor in stomach cancer.30 HTRA3 contributes 
to tumor metastasis.31 PWP2 is prognosis-related gene in stomach 
cancer.32 NT5E is a correlative factor of patient survival in many 
kinds of cancers.33 The other three genes have abnormal expression 
in tumor. NCLN, MYL4, and GPR173 are overexpressed in human can-
cer.34–36 YWHABP2 is a tyrosine hydroxylase pseudogene, and tyro-
sine hydroxylase is essential for animal development and survival.37

3.4  |  Subgroup analyses

There were 113, 163, 125, and 216 patients in stage II, stage III, 
grade II, and grade III, respectively. More than 100 patients were 
in the same group; however, the survival risk of these patients was 
different. It was meaningful to stratify these patients into subgroups 
with significant survival differences. According to the DeepCox-SC 
risk score median, 113 patients of stage II were stratified into two 
subgroups (high- and low-risk groups), showing statistically signifi-
cant survival differences (Figure  4A). The Kaplan–Meier survival 
curves of the two subgroups were well separated, and the log–rank 
p values of the survival difference were 5.66e-4, 1.97e-4, 8.79e-4, 
and 4.48e-3 for grade II, grade III, stage II, and stage III, respectively 
(Figure 4). There were small a number of patients in grade I (7 pa-
tients), stage I (38 patients), and stage IV (21 patients). The survival 
differences between two subgroups were 0.19, 0.14, and 0.21 for 
grade I, stage I, and stage IV, respectively (Figure S5).
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3.5  |  Web server for survival prediction

As shown in Figure 1B, we also developed a user-friendly online tool 
for the DeepCox-SC and MultiDeepCox-SC model (https://yu.life.
sjtu.edu.cn/DeepC​oxSC). This online tool needs the URL of the his-
topathological image and email as the input. The age and gene ex-
pression data of the patient are optional. The results including the 
predicted risk score, subgroups (high- and low-risk groups), and the 
patch with more information for survival prediction is automatically 

displayed. An email containing the result link is sent to the user when 
the job is complete.

4  |  DISCUSSION

This study devised a fully automated prognostic model for pre-
dicting survival outcome for patient with stomach cancer based 
on histopathological images, clinical data, and gene expression 

F I G U R E  3  Comparison of C-indexes for different models in stomach cancer. (A) Comparison of the C-index of the different models 
using 10-fold cross-validation. Green violin plots represent image-based models: DeepCox-SC model, randomly selecting the patch from 
whole-slide image (randomly selecting patch-based model), and extracting the features of the image (structured features-based model). 
Our DeepCox-SC model outperformed the other two models. Yellow violin plots represent models integrating histopathological images and 
clinical data (age). Blue violin plots represent models integrating histopathological images, clinical data (age), and gene expression data. (B) C-
indexes of different models on the external test set. (C) Representative histopathological images (patches). TCGA, The Cancer Genome Atlas

https://yu.life.sjtu.edu.cn/DeepCoxSC
https://yu.life.sjtu.edu.cn/DeepCoxSC
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data. The prognostic accuracy of the proposed model surpassed 
the current clinical benchmark model based on pathologic grade, 
stage, and clinical data in stomach cancer. Our model could be 
utilized as a computer-assisted tool to improve pathologists' ef-
ficiency and accuracy and ultimately allow clinicians to select ap-
propriate therapies.

We systematically examined the performance of the DeepCox-SC 
model in stomach cancer, one of the leading causes of cancer-related 
death worldwide.38 The DeepCox-SC risk score remained an inde-
pendent predictor after adjustment for all other variables, including 
pathologic grade, stage, age, race, and gender on the TCGA data-
set (HR 1.555, p  =  3.53e-08) and the external dataset (HR 2.912, 
p = 9.42e-4). The DeepCox-SC risk score might have the potential to 
complement the future staging system.

We used 10-fold cross-validation, a common solution effectively 
improving model robustness, to access model performance. The 
DeepCox-SC model showed predictive power, achieving a mean C-
index, 1-year AUC, 2-year AUC, and 3-year AUC of 0.660, 0.701, 
0.766, and 0.699, respectively, on the TCGA dataset. The model 
performance was further validated on the external test set (C-index 

0.657). According to the results of the multivariate Cox regression 
model, age was a significant predictor of survival. The C-index of 
the “DeepCox-SC risk score + age” model (0.667) is higher than the 
clinical benchmark model integrating grade, stage, and age (0.649), 
although the p value between these two models was no significant 
(Wilcoxon signed rank p = 0.188).

Many studies have investigated possible gene biomarkers to 
determine prognosis and customize treatment in stomach can-
cer.39 The MultiDeepCox-SC multimodal fusion model including 
DeepCox-SC risk score, age, and gene expression achieved a mean 
C-index, 1-year AUC, 2-year AUC, and 3-year AUC of 0.744, 0.800, 
0.833, and 0.778, respectively. The MultiDeepCox-SC multimodal 
fusion model significantly outperformed the DeepCox-SC model 
(C-index 0.660, Wilcoxon signed rank p = 0.010). The deep learn-
ing could discover additional information relevant to prognosis and 
consider these large numbers of features together.2,40 In addition, 
the multimodal fusion model incorporating more information (his-
topathological image, clinical data, and gene expression data) sig-
nificantly improves the model performance and could be an area of 
future research.13

F I G U R E  4  Survival differences 
between high- and low-risk groups of 
patients with stomach cancer. (A) Kaplan–
Meier plots for the DeepCox-SC risk 
scores in patients with grade II disease. 
(B) Kaplan–Meier plots for patients with 
grade III disease. (C) Kaplan–Meier plots 
for patients with stage II disease. (D) 
Kaplan–Meier plots for patients with 
stage III disease



700  |    WEI et al.

Although we developed a fully automated assistance method to 
predict patient survival, it has some limitations. First, we selected 
patches using cellularity and CellProfiler software for training, but 
this is only a small fraction of a whole-slide image. We should in-
corporate more patches to better account for intratumoral hetero-
geneity. Second, we should input both high and low magnification 
images. Because cell shape is well captured in high-power field mi-
croscopic images, structural information made of many cells is bet-
ter captured in lower-power field images.41,42 Finally, although the 
stomach cancer patients in the TCGA dataset came from 22 centers, 
the robust performance of DeepCox-SC needs to be further tested 
in a large cohort.

In conclusion, we developed a fully automated deep CNN for 
survival prediction from histopathological images, clinical data, and 
gene expression data in stomach cancer. The DeepCox-SC model 
and MultiDeepCox-SC multimodal fusion model showed prognostic 
accuracy on the TCGA dataset and the external dataset. Our online 
tool (https://yu.life.sjtu.edu.cn/DeepC​oxSC) could be used as an as-
sisted tool to improve pathologists' efficiency and accuracy.
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