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Abstract

The diploid yeast Saccharomyces cerevisiae undergoes mitosis in glucose-rich medium but enters meiosis in acetate
sporulation medium. The transition from mitosis to meiosis involves a remarkable adaptation of the metabolic machinery to
the changing environment to meet new energy and biosynthesis requirements. Biochemical studies indicate that five
metabolic pathways are active at different stages of sporulation: glutamate formation, tricarboxylic acid cycle, glyoxylate
cycle, gluconeogenesis, and glycogenolysis. A dynamic synthesis of macromolecules, including nucleotides, amino acids,
and lipids, is also observed. However, the metabolic requirements of sporulating cells are poorly understood. In this study,
we apply flux balance analyses to uncover optimal principles driving the operation of metabolic networks over the entire
period of sporulation. A meiosis-specific metabolic network is constructed, and flux distribution is simulated using ten
objective functions combined with time-course expression-based reaction constraints. By systematically evaluating the
correlation between computational and experimental fluxes on pathways and macromolecule syntheses, the metabolic
requirements of cells are determined: sporulation requires maximization of ATP production and macromolecule syntheses in
the early phase followed by maximization of carbohydrate breakdown and minimization of ATP production in the middle
and late stages. Our computational models are validated by in silico deletion of enzymes known to be essential for
sporulation. Finally, the models are used to predict novel metabolic genes required for sporulation. This study indicates that
yeast cells have distinct metabolic requirements at different phases of meiosis, which may reflect regulation that realizes the
optimal outcome of sporulation. Our meiosis-specific network models provide a framework for an in-depth understanding
of the roles of enzymes and reactions, and may open new avenues for engineering metabolic pathways to improve
sporulation efficiency.
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Introduction

Meiosis is a strongly conserved cell division program that

generates haploid gametes from a diploid parental cell. Successful

meiosis is the fundamental basis of sexual reproduction. Meiosis

has been studied extensively in multiple model systems, ranging

from the budding yeast Saccharomyces cerevisiae to the mouse.

Multiple lines of evidence suggest a tight link between meiosis and

metabolism [1]. In yeast, meiosis is promoted by nutrient

deprivation [2], while in the mouse, both male and female germ

cells enter meiosis in response to retinoic acid [3,4]. In the

nematode C. elegans and the fruit fly Drosophila melanogaster, ablation

of the germline leads to profound alternations in lipid metabolism

[5,6]. We focus on yeast meiosis in this study to elucidate the link

between reproduction and metabolism, which could improve our

understanding of metabolic control on the meiotic process.

The diploid yeast undergoes mitosis in glucose-rich medium.

When cells are transferred to acetate sporulation medium, a

developmental switch from mitosis to meiosis occurs to generate

four haploid spores [2]. This switch depends on the heterozygous

mating-type locus as well as the deprivation of a fermentable

carbon source and nitrogen [7]. The yeast metabolic machinery

has to make a remarkable adaptation to environmental signals by

sequentially activating or inhibiting a large number of enzymes in

different pathways. This adaptation ensures the cell will meet its

energy and biosynthetic requirements during sporulation. There-

fore, the metabolic network is crucial in determining the success of

yeast meiosis.

Conspicuous differences have been observed in metabolism

between mitosis and meiosis. In mitosis, glucose is consumed by

fermentation or respiration via the tricarboxylic acid (TCA) cycle.

In meiosis, acetate serves as the sole carbon source and five

metabolic pathways are active at different stages: glutamate

formation, TCA cycle, glyoxylate cycle, gluconeogenesis, and

glycogenolysis (Figure 1) [8,9,10,11,12,13,14,15]. The slow assim-

ilation of acetate during meiosis as compared to the rapid

consumption of glucose in mitosis is believed to allow the

adaptation from glycolysis to gluconeogenesis and avoid depletion

of intracellular ATPs [14]. During meiosis, external acetate is first

converted to acetyl-CoA and metabolized by respiration via the

TCA cycle to produce energy [9,10,14]. Glutamate is first

generated from the precursor oxoglutarate, which is an interme-

diate from the TCA cycle [9]. The reaction of glutamate

PLOS ONE | www.plosone.org 1 May 2013 | Volume 8 | Issue 5 | e63707



formation removes ammonium ion, a strong inhibitor of yeast

sporulation [16]. The glyoxylate cycle is concurrently active with

the TCA cycle to replenish TCA intermediates that are exhausted

due to the production of glutamate [9]. Gluconeogenesis involves

the synthesis of carbohydrates in the form of trehalose and

glycogen, which account for two-thirds of the mass increase during

meiosis [11]. Notably, glutamate production ceases when the

gluconeogenesis pathway becomes fully functional [9]. The

glyoxylate cycle also occurs concurrently with gluconeogenesis to

supply substrates [14]. During spore maturation, acetate has been

exhausted from the medium [9,10,14]; glycogen is then consumed

through glycogenolysis to provide energy [8]. The sequential

activation of metabolic pathways and the interplay between these

pathways supply cells with the required energy and macromole-

cules, i.e., nucleotides, amino acids, and lipids [9,10,13,15].

Although the pathways are well characterized from biochemical

studies, the optimal principles responsible for the dramatic

metabolic changes accompanying meiosis are poorly understood.

The cellular objectives, i.e., the metabolic requirements of cells,

are undetermined. We construct a meiosis-specific metabolic

network in yeast and apply a constraint-based modeling

approach—flux balance analysis (FBA) [17]—to characterize the

metabolic requirements of sporulating cells. FBA predicts flux

distribution in a metabolic network using linear or nonlinear

programming with the knowledge of reaction stoichiometry,

objective functions, and reaction constraints. The advantages of

FBA are that it circumvents the need for enzyme kinetic

parameters that are difficult to measure, can be easily scaled up

for investigating genome-scale networks, and is well suited for

characterizing in silico perturbations such as gene or reaction

knockout [18]. FBA has been used with great success in studying

organism or tissue-specific metabolism with applications such as

engineering pathways [19,20,21,22,23,24,25,26,27]. Although

several genome-scale metabolic networks have been published

and FBA approaches have been applied to investigate yeast

metabolism, these studies mainly focus on unlimited mitotic

growth of cells on glucose [21,26,28,29,30]. Our study serves as

the first attempt to characterize a meiosis-specific metabolic

network in yeast by FBA. Using time-series gene expression as

reaction constraints, we identify the dynamic metabolic require-

ments of cells at different phases of meiosis. Our network models

provide a framework to predict novel enzymes essential for yeast

meiosis, some of which have been verified in the literature.

Ultimately, this study elucidates the optimal principles driving the

operation of yeast metabolic network, which ensure the successful

completion of sporulation.

Results

The dynamic profile of a yeast meiosis-specific metabolic
network

A meiosis-specific metabolic network is reconstructed based on

the literature and databases [28,29,31,32,33,34,35,36,37,38,39,

40,41,42,43,44,45,46,47,48,49,50,51,52,53,54]. This manually cu-

rated network comprises 31 metabolites and 62 reactions catalyzed

by 69 enzymes (Figure 1, Table S1, Model S1). Five pathways are

described when utilizing external acetate as the sole carbon source:

glutamate formation, TCA cycle, glyoxylate cycle, gluconeogen-

esis, and glycogenolysis. Macromolecules produced from these

pathways include nucleotides, amino acids, and lipids. This

meiosis-specific network is better suited to study yeast meiosis for

several reasons: 1) it includes reactions and enzymes specific for

acetate metabolism; 2) it incorporates reactions and enzymes that

are missing in genome-scale reconstructions; and 3) every reaction

has a known enzyme-reaction association. A detailed comparison

between the meiosis-specific network and iMM904 [28], a

genome-scale yeast metabolic network, is shown in Table S2.

However, metabolic pathways and macromolecule syntheses are

not constitutively active throughout meiosis. Instead, each has a

unique dynamic profile based on experimental studies [8,9,10,11,

12,13,14,15,55]. We analyze in parallel several biochemical

datasets (Table S3). Because experimental methods used for

measuring pathways and macromolecules are different, it is not

possible to directly compare their activities. For example, the

activity of the TCA cycle is estimated based on oxygen

consumption, whereas glycogenolysis activity is determined by

enzyme kinetics [8,13]. Therefore, each pathway activity is scaled

to the range of 0 and 1 to observe the dynamics throughout

meiosis. In addition, different yeast strains are used in these

biochemical experiments. Thus, data obtained using other strains

are calibrated to the time scale of SK1, a strain commonly used for

studying meiosis, according to the duration when ascus formation

reaches a steady state. The scaled pathway activity and the scaled

sporulation time are shown in Figure 2; we find a sequential

activation of pathways and macromolecule syntheses. Glutamate is

the major metabolite produced during the first four hours of

sporulation [9,10]. The activity of the TCA cycle peaks at two

hours and subsequently declines [13,14]. Gluconeogenesis,

including the syntheses of glycogen and trehalose, rises later and

reaches the highest level at four hours of sporulation

[8,9,11,12,13]. In contrast, glycogenolysis does not initiate until

four hours and is the only active pathway during the late stage of

meiosis [8,13]. Although no experimental data is available for the

glyoxylate cycle, its activity can be estimated from glutamate

formation and gluconeogenesis. The glyoxylate cycle supplies

TCA cycle intermediates for glutamate formation and gluconeo-

genesis during early and mid-phase of meiosis, showing correlated

activity with these two pathways [9,14]. DNA, RNA, and proteins

are synthesized early during the first four hours of sporulation

[10,13], whereas lipid production peaks at four and ten hours,

respectively [10,15].

Metabolic requirements of yeast cells during sporulation
To determine the metabolic requirements of sporulating yeast,

we systematically evaluate ten objective functions relevant to

meiosis: ATP production, ATP consumption, net ATP production

(production minus consumption), acetate uptake, glutamate

synthesis, carbohydrate synthesis, carbohydrate breakdown, nu-

cleotide synthesis, amino acid synthesis, and lipid synthesis. Not all

enzymes are expressed at any given time during meiosis. To reflect

the dynamic profile of the metabolic network, we constrain the

upper bound of reactions using time-course ribosome profiling

data on SK1 sporulating cells [56]. Ribosome profiling measures

ribosome-protected mRNA levels by deep sequencing, which

approximate to enzyme activities. The absolute gene expression

data are used to create continuous, rather than discrete reaction

bounds. A total of 18 time points spanning 12 hours of sporulation

are considered.

The ten objective functions are individually maximized or

minimized at each of the 18 time points; this is equivalent to

evaluating 360 FBA models. The optimal solution of network

fluxes is determined for each model. We calculate the Pearson

correlation between predicted fluxes and biochemical data (Table

S4) on eight pathways and macromolecule syntheses: glutamate

formation, TCA cycle, glyoxylate cycle, gluconeogenesis, glyco-

genolysis, nucleotides, amino acids, and lipids (Table S1,

abbreviated as eight pathways in the rest of the paper). The

Pearson correlation measures a linear relationship between
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computational and biochemical data when simultaneously con-

sidering multiple pathways. It allows the identification of the most

relevant objective function based on quantitative metrics. Because

pathway activity and macromolecule synthesis exhibit distinct

dynamic patterns, the metabolic requirements of cells must

change. Indeed, different best objective functions, i.e., the

objective with the maximum correlation coefficient at each time

point, are identified throughout the period of sporulation

(Figure 3).

At 0.033 hour immediately after yeast cells are transferred to

the acetate medium, net ATP production maximization is the best

objective function. When using expression data at 0.5, 1, and

1.5 hours as reaction constraints, the metabolic requirement is best

described by glutamate synthesis maximization. This is in

accordance with the report that glutamate is the major metabolite

produced early from acetate utilization [9]. At 2 and 3 hours,

nucleotide synthesis maximization becomes the most suitable

objective function, consistent with the experimental observation

that DNA and RNA syntheses reach the maximum at that time

[10,13]. From 6.5 to 8 hours as well as at 11 hours, carbohydrate

breakdown maximization best describes the cellular objective;

biochemical data show that glycogenolysis is the only pathway

active in the late stage of meiosis [8,13]. From 8.25 to 9.25 hours,

net ATP production minimization is the best objective function.

Yeast cells are moving towards a dormant phase; most pathways

except glycogenolysis are turned off and lipids are the only

macromolecule being synthesized [8,10,13,15].

Although the solution space has been constrained by network

structures, reaction stoichiometry, reaction bounds, and objective

functions, linear optimization often leads to multiple optimal flux

distributions with an identical objective value. To determine

whether the optimal solution identified using our method is an

artifact of one single optimum or a representative of multiple

optima, we sample the solution space of meiosis-specific network

models for each objective function while constraining the objective

value to its optimum. The sampling is performed at each time

point during sporulation using expression-based constraints. We

find that alternative optima exist for carbohydrate breakdown

maximization (6.5, 7, 7.25, 7.75, 8, 8.25, 8.75, and 9.25 hours)

and acetate uptake maximization (8, 8.25, and 8.75 hours), both

having only one reaction in the objective function. Pearson

correlations are calculated between alternative optima and

biochemical data on pathways to obtain the distribution of

correlations at each time point. The correlation value of optimum

identified by our method falls within the range of sampled

correlations for carbohydrate breakdown maximization at all eight

time points (Figure S1) and for acetate uptake maximization at one

out of three time points, suggesting that most optimal solutions

identified using our method are consistent with multiple optima

derived from sampling the solution space. The lack of multiple

optima for other objective functions may be explained by the

relatively small size of the meiosis-specific network.

To provide further proof of best objective functions identified

along the time series, we implement four alternative methods to

deduce objectives. First, instead of using the Pearson correlation,

we calculate the Spearman correlation between predicted fluxes

and biochemical data. All best objective functions except those

during 6.5–8 hours reproduce as using the Pearson correlation

(Figure S2). Second, instead of using gene expression to constrain

the maximum flux through reactions, we apply iMAT [20] to

obtain context-specific networks through maximizing the consis-

tency between reaction fluxes and gene expression states. Sixteen

out of 18 networks capture reactions that participate in the best

objective functions determined by the Pearson correlation (Table

S5). Third, instead of using expression data from ribosome

profiling, we apply microarray data at 1, 2, 3, 4, 6, 8, and 10 hours

of sporulation [55] to constrain the maximum flux through

reactions. All best objective functions except those at 6 and

Figure 1. A meiosis-specific metabolic network in yeast. Five metabolic pathways are active during meiosis when acetate serves as the
external carbon source: glutamate formation, TCA cycle, glyoxylate cycle, gluconeogenesis, and glycogenolysis. Metabolites in these pathways are
utilized to synthesize macromolecules: nucleotides, amino acids, and lipids.
doi:10.1371/journal.pone.0063707.g001

Figure 2. Scaled biochemical data on metabolic pathways and macromolecule syntheses during yeast meiosis. The time scale of
sporulation (12 hours) is defined by the SK1 strain. Datasets obtained using other strains are standardized to the SK1 time scale based on the
duration when the ascus level reaches a steady state. Activities of metabolic pathways and macromolecule syntheses are further scaled to the range
of 0 and 1. Raw and scaled biochemical data are summarized in Table S3. A. Pathway activity: glutamate formation [9,10], TCA cycle [13],
gluconeogenesis [11], and glycogenolysis [8]. B. Macromolecule synthesis: DNA [13], RNA [13], protein [13], and lipid [15].
doi:10.1371/journal.pone.0063707.g002
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8 hours adhere to the objectives deduced from ribosome profiling

(Figure S3). Finally, instead of using gene expression to constrain

the maximum flux through reactions, we impose a uniform

constraint on all reactions. Only three out of 18 best objective

functions reproduce as those identified using gene expression,

indicating the importance of incorporating expression data to

deduce meiosis-specific metabolic requirements (Figure S4).

Results from the first three methods further justify the sequential

change of objective functions during sporulation, as determined by

constraining reactions with ribosome profiling data and calculating

the Pearson correlation between predicted fluxes and biochemical

data.

Model validation using known sporulation-deficient
genes

We use independent data—data distinct from those used for

model building—to evaluate the meiosis-specific network models.

High-throughput screens of ,4,000 yeast deletion strains have

identified 267 genes required for sporulation, i.e., sporulation-

deficient genes, as well as 102 genes that enhance sporulation

proficiency [57]. Our meiosis-specific network contains 16 of the

sporulation-deficient genes but none of the sporulation-enhanced

genes, suggesting the network includes essential reactions of yeast

meiosis. The 16 enzymes catalyze 13 reactions, most of which are

in TCA cycle, while others participate in glyoxylate cycle,

gluconeogenesis, acetate uptake, and amino acid synthesis. Each

of the 16 enzymes catalyzes only one reaction, while some

reactions are catalyzed by more than one of those enzymes.

To verify the meiosis-specific network models, we delete each of

the 16 sporulation-deficient genes in silico and obtain the optimal

fluxes for a gene knockout (KO) using the identified best objective

function and expression-based constraints at every time point. The

Pearson correlation between in silico fluxes of a KO and

biochemical data on eight pathways is calculated in a similar

way as that for wild-type (WT). The KO effect is quantified by a z-

score that measures the difference in correlation coefficient

between a KO and WT. This allows us to assess each KO’s

change in correlation with experimental values in units of standard

deviation, a form of the z test. A negative z-score indicates that the

KO causes pathway fluxes less correlated with biochemical data

compared to WT for a given time point. Using the criterion of

having a z-score less than -2 for at least one time point, our models

validate 12 out of 16 sporulation-deficient genes (Figure 4).

All 12 validated KOs exhibit reduced correlation with

biochemically determined pathway data during the first 1.5 hours

of sporulation when net ATP production maximization and

glutamate synthesis maximization are the most relevant objective

functions. These genes have essential functions in TCA cycle

(IDH2, KGD1, KGD2, LSC1, LSC2, SDH1, SDH2, MDH1),

glyoxylate cycle (ICL1, MLS1), acetate uptake (ADY2), and others

(MDH2), thus affecting sporulation at an early stage.

We further examine the flux difference between validated KOs

and WT on eight pathways (Figure 5). At 0.033 hour, when net

ATP production maximization is the best objective function, KOs

exhibit either a reduced flux in TCA cycle alone (SDH1, SDH2,

MDH1, ADY2) or in combination with an increased flux in

glyoxylate cycle (IDH2, KGD1, KGD2, LSC1, LSC2). Between 0.5

and 1.5 hours, when glutamate synthesis maximization is the most

favored objective, reduced flux is observed in glutamate formation,

TCA cycle, and glyoxylate cycle (SDH1, SDH2, MDH1, ICL1,

MLS1, ADY2, MDH2).

Model prediction of novel genes required for sporulation
High-throughput screens of deletion strains have discovered

more than 300 genes required for sporulation, many are associated

with metabolic pathways [57,58,59,60]. However, we hypothesize

that not all sporulation-deficient genes have been revealed through

these approaches. To predict novel metabolic genes essential for

yeast meiosis, we delete every gene in the meiosis-specific network

in silico and find 32 out of 69 KOs are predicted to affect

Figure 3. Evaluation of objective functions using the meiosis-specific network models. The Pearson correlation is calculated between
predicted fluxes and biochemical data on eight pathways when maximizing or minimizing each of the ten objective functions at each of the 18 time
points. The best objective function for each time point is the one with the maximum Pearson correlation coefficient. Close circle: maximization of an
objective function; open circle: minimization of an objective function. Undefined correlation coefficients due to zero variance of predicted pathway
fluxes are not shown in the figure.
doi:10.1371/journal.pone.0063707.g003
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Figure 4. Validation of the meiosis-specific network models using known sporulation-deficient genes. A total of 16 enzymes in the
meiosis-specific network are known to be essential for sporulation. These genes are individually deleted in silico; optimal fluxes are obtained using
the best objective function combined with expression-based constraints at each time point. Pearson correlations are calculated between optimal
fluxes and biochemical data on eight pathways for gene KOs. Deviation from the WT correlation is quantified by a z-score. Gene KOs with a z-score
#22 for at least one time point are considered to validate the models (underlined).
doi:10.1371/journal.pone.0063707.g004

Figure 5. Flux changes in metabolic pathways and macromolecule syntheses when individually deleting known sporulation-
deficient genes. A. IDH2 deletion at 0.033 hour. Single gene KOs of KGD1, KGD2, LSC1, and LSC2 show similar flux changes at the same time. B.
SDH1 deletion at 0.033 hour. Single gene KOs of SDH2, MDH1, and ADY2 show similar flux changes at the same time. C. ICL1 deletion at 1.5 hours.
Single gene KOs of SDH1, SDH2, MDH1, MLS1, ADY2, MDH2, and ICL1 show similar flux changes at 0.5, 1, and 1.5 hours.
doi:10.1371/journal.pone.0063707.g005
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sporulation as defined by having a z-score less than 22 for at least

one time point, the same criterion used for the validation

experiment. Among the 32, 12 are known sporulation-deficient

genes and the remaining 20 are potential novel genes required for

meiosis (Figure 6).

Deletions of each of the 20 genes disrupt network fluxes at

different phases of sporulation. In fact, these genes are identified

when pathways that they belong to become the most relevant

objective function at the time. At 0.033 hour, when net ATP

production maximization is the best objective function, additional

genes in the TCA cycle (IDH1, ACO1, LPD1, SDH3, SDH4,

FUM1) and acetate transport (ACS2) are predicted to be required

for sporulation. These KOs result in reduced TCA activity or both

enhanced glyoxylate cycle flux and reduced TCA activity, as we

have seen in deletions of known sporulation-deficient genes

(Figure 5A–5B). When the metabolic requirement is best described

as glutamate synthesis maximization at 0.5–1.5 hours, deleting

genes in glutamate formation (GDH3), TCA cycle (ACO1, SDH3,

SDH4, FUM1, DIC1), and acetate metabolism (ACS2) cause

reduced correlation of predicted pathway fluxes with experimen-

tally determined values. In these KOs, in silico fluxes in glutamate

formation, TCA cycle, and glyoxylate cycle are reduced compared

to WT, similar to the pattern seen for the KOs of known

sporulation-deficient genes at the same time frame (Figure 5C).

In contrast to known sporulation-deficient genes that impact in

silico fluxes only during the first 1.5 hours, 11 out of 20 predicted

novel genes are detected after two hours of sporulation. At 2–

3 hours, when nucleotide synthesis maximization is the most

relevant objective function, deletion of PGM2, GPH1, or ZWF1

results in significantly reduced correlation between experimental

and computational fluxes on pathways. ZWF1 controls the initial

step of nucleotide synthesis from glucose-6-phosphate, while

PGM2 and GPH1 catalyze reactions producing glucose-6-phos-

phate. A common feature of in silico fluxes in these three KOs is a

dramatic reduction of nucleotide synthesis. From 6.5 to 8 hours of

sporulation, when the metabolic requirement is best described as

carbohydrate breakdown maximization, GPH1 is consistently

predicted to affect sporulation. GPH1 mediates the first reaction

of glycogenolysis—glycogen breakdown. Thus, it is unsurprising

the GPH1 KO exhibits a reduced flux in glycogenolysis. When

sporulation reaches the end stage from 8.25 to 9.25 hours, net

ATP production minimization becomes the most suitable objective

function. Eight enzymes are predicted to be essential for

sporulation at that time frame; all except ACC1 participate in

Figure 6. Model prediction of novel genes required for sporulation. Every gene in the meiosis-specific network is deleted in silico; optimal
fluxes are obtained using the best objective function combined with expression-based constraints at each time point. Pearson correlations are
calculated between optimal fluxes and biochemical data on eight pathways for gene KOs. Deviation from the WT correlation is quantified by a z-
score. Genes previously unknown to be required for sporulation and having a z-score #22 for at least one time point are predicted to be novel
sporulation-deficient genes.
doi:10.1371/journal.pone.0063707.g006
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glycogenolysis (FBA1, PGI1, PGM2, GPH1, PFK1, PFK2, PYK2).

ACC1 converts cytoplasmic acetyl-CoA to lipids; the ACC1 KO

exhibits reduced fluxes in lipid synthesis. Deletions of the other

seven genes lower fluxes in both glycogenolysis and lipid synthesis.

At 11 hours of sporulation, carbohydrate breakdown maximiza-

tion becomes the best objective function again. PGM2, GPH1, and

INO1 are predicted to be required for sporulation. INO1 converts

glucose-6-phosphate into lipids, while PGM2 and GPH1 catalyze

initial reactions in glycogenolysis to produce glucose-6-phosphate.

These gene KOs completely shut down the lipid synthesis and

decrease the glycogenolysis activity.

Literature validation of predicted sporulation-deficient
genes

The meiosis-specific network models predict 20 genes that

potentially affect sporulation, among which four are essential for

cell viability (SDH3, UGP1, ACC1, ACS2) [61]. Literature studies of

the other 16 genes reveal that five are, indeed, required for

sporulation (LPD1, ZWF1, PFK1, FBA1, PGI1) [62,63,64,65];

deletion of GPH1 still permits sporulation [52]. Although no

sporulation-deficiency phenotype has been reported for the

remaining 10 genes, they are promising candidates for future

experimental testing. We perform a robustness analysis on

reactions catalyzed by the five literature-validated genes

(Figure 7). The robustness analysis allows the computation of

how the value of an objective function changes as the flux along

one or multiple reactions varies in magnitude, revealing the

sensitivity of the objective to reactions [66].

LPD1 encodes dihydrolipoamide dehydrogenase, an enzyme

required for TCA cycle in the mitochondria. Homozygous lpd1

diploids are unable to sporulate, suggesting the enzymatic activity

is essential [63]. LPD1 is predicted to affect sporulation immedi-

ately after meiotic initiation (Figure 6). Robustness analysis

indicates that net ATP production increases with flux through

the LPD1 reaction. A complete deletion of the reaction is predicted

to lower the optimal level of ATPs by half (Figure 7).

ZWF1 encodes a cytoplasmic glucose-6-phosphate dehydroge-

nase that catalyzes the first step of the pentose phosphate pathway.

The pentose phosphate pathway is important for generating

NADPH as well as a variety of sugar molecules that are required

for the biosynthesis of nucleic acids. A strain homozygous for the

zwf1 mutation sporulates at a reduced level compared to WT [64].

In our meiosis-specific network, the ZWF1 reaction is the only

reaction controlling nucleotide synthesis and is predicted to affect

sporulation during hours 2–3 when nucleotide synthesis maximi-

zation is the best objective function (Figure 6). Robustness analysis

reveals a linear relationship between nucleotide production and

the ZWF1 reaction flux. Deletion of the ZWF1 reaction is

predicted to result in no nucleotide synthesis (Figure 7).

PFK1 catalyzes the formation of fructose 1,6-bisphosphate from

fructose 6-phosphate and ATP. Unlike other enzymes that

function in both directions of gluconeogenesis and glycogenolysis,

PFK1 is specific to glycogenolysis and is required for sporulation

[65]. Robustness analysis indicates that net ATP production is

sustained near the optimal value over a range of flux values,

demonstrating network robustness with respect to the flux change

in the PFK1 reaction. However, once the flux value drops below

27, ATP production is sensitive to changes in the reaction flux,

exhibiting a linear decline. A complete deletion of the reaction is

predicted to reduce ATP production to 500 that cannot meet the

energy requirement of cells at the late phase of sporulation

(Figure 7).

Both FBA1 and PGI1 catalyze reversible reactions in gluconeo-

genesis and glycogenolysis. Homozygous diploids bearing either

fba1 or pgi1 mutations are asporogenous, indicating an absolute

requirement for gluconeogenic and glycogenolytic events in

sporulation [62,64]. These two genes are predicted to be essential

at a late stage when net ATP production minimization is the best

objective function (Figure 6). For both genes, we vary two

reversible reaction fluxes simultaneously to observe the effects on

net ATP production. The results are plotted as a 3-D surface,

revealing the interaction between two reversible reactions. When

FBA1 reaction fluxes are at their optimal values (gluconeogenesis

reaction = 0, glycogenolysis reaction = 27), the maximum net ATP

production is achieved at 800. FBA1 KO results in the deletion of

two reversible reactions, reducing the net ATP production to 500.

With such amount of ATP production, the cell is unable to meet

the energy requirement for viability. Similarly, PGI1 KO decreases

net ATP production from the maximum value to 500 that is

predicted to be deleterious to cells at a late phase of sporulation.

Metabolic requirements of sporulating yeast determined
by a genome-scale metabolic network

To evaluate whether the identified metabolic requirements of

sporulating yeast are network-dependent, we repeat the analysis

using iMM904, a genome-scale yeast metabolic network consisting

of 1,577 reactions catalyzed by 904 enzymes [28]. The definition

for ten objective functions and eight pathways remains the same as

that of the meiosis-specific network (Table S1). Pearson correla-

tions are calculated between experimental and computational flux

values on pathways when constraining the model with objective

functions and expression-based reaction bounds. We again find

that the metabolic requirements of yeast cells evolve during

sporulation, starting from ATP production maximization during

the first three hours and followed by (net) ATP production

Figure 7. Robustness analyses on reactions catalyzed by predicted genes required for sporulation. The objective function value is
computed as the flux through the reactions varies. The best objective function combined with expression-based constraints at a specific time is used
for the robustness analysis.
doi:10.1371/journal.pone.0063707.g007
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minimization throughout the rest period (Figure S5). Objective

functions identified from the genome-scale network are overall

consistent with those determined from the meiosis-specific

network. Sporulating cells first maximize the production of energy

and macromolecules by relying on acetate as the sole carbon

source. Subsequently, under nutrient scarcity, cells reduce all

pathway activities by limiting ATP production, leading to the

dormant stage of spores. Results from the genome-scale network

indicate that our findings on metabolic requirements of sporulat-

ing yeast are robust and independent of networks.

We compare the performance of meiosis-specific and genome-

scale network models in predicting KO sporulation deficiency

(Table 1). Among 69 genes in the meiosis-specific network, 16 are

known sporulation-deficient genes and 32 are predicted to affect

sporulation with a z-score less than 22 for at least one time point.

Twelve predicted genes are in fact known sporulation-deficient

genes, equivalent to a hypergeometric P-value of 0.009. The same

analysis is conducted for iMM904: among 867 solvable KOs, 35

and 173 are known and predicted sporulation-deficient genes,

respectively, and 13 predicted genes are true. Thus, the

significance of iMM904 in detecting sporulation-deficient genes

equals to 0.012, comparable to the meiosis-specific network.

However, the precision of the meiosis-specific network in

discovering known sporulation-deficient genes is higher than that

of iMM904 (12/32 = 37.5% v.s. 13/173 = 7.5%).

To further assess the performance of network models, we

implement two alternative approaches to estimate KO effects

(Table 1). The first is to compute the difference in optimal

objective value between a KO and WT and then transform the

difference into a standard z-score. The second is to compute the

total flux difference between a KO and WT using linear MOMA

[67,68]. By calculating the hypergeometric P-values of KO effects,

we find both alternative approaches achieve comparable perfor-

mance to our method—z-score of Pearson correlations. Further,

both methods support the finding that the significance level of

detecting known sporulation-deficient genes is similar for meiosis-

specific and genome-scale networks.

Discussion

Yeast meiosis is a reproductive process producing four haploid

spores from one diploid cell. Shifting from a mitotic to a meiotic

state requires multiple adjustments within the cell. Indeed, cells

constantly tailor their metabolic machinery to meet new energy

and biosynthesis requirements, and this is no less true in the

meiotic process. Decades of biochemical research have identified

most enzymes that catalyze metabolic reactions. However, the

optimal principles that drive the dynamic adaptation of metabolic

pathways are poorly understood.

FBA can be utilized to predict flux distribution in a metabolic

network when the objective function is known. Because metabolic

requirements are uncharacterized in yeast meiosis, we test a total

of ten probable objective functions to uncover the optimal

principles for different phases of meiosis. Although FBA predicts

flux distribution at a steady state, the use of time-course expression

data for reaction bounds allows us to change constraints,

generating dynamic fluxes over the entire period of yeast meiosis.

The ribosome-protected mRNA levels measured by deep

sequencing [56] are an approximation of enzyme activity,

nevertheless they are superior to total mRNA levels estimated

from microarray experiments [55]. A systematic analysis of the

relationship between in silico fluxes and in vivo fluxes is performed

using quantitative metrics—the Pearson correlation coefficient. It

measures the overall agreement between computational and

experimental pathway values and allows direct comparison of

the performance of all objectives. Our results from the meiosis-

specific network suggest that the metabolic requirements of cells

evolve during sporulation, starting with ATP production maximi-

zation followed by glutamate and nucleotide synthesis maximiza-

tion. Carbohydrates in the form of glycogen are subsequently

broken down to supply energy. At the end, under nutrient scarcity,

cells reduce all pathway activities by limiting ATP production,

which leads to the dormant stage of spores. Similar objective

functions are determined from a genome-scale network: ATP

production maximization at the early phase and ATP production

minimization at the late stage. Consistent metabolic requirements

revealed by two networks of different scales suggest the robustness

of optimal flux solutions on pathways. These best objective

functions reflect the cellular adaptation to the acetate environment

by switching from glycolysis to gluconeogenesis, using ATP

efficiently, and producing macromolecules for spore formation.

The meiosis-specific network model is validated using genes

known to be required for sporulation [57] by studying the effects of

single gene KOs. The model predicts the sporulation-deficiency

phenotype with a significant hypergeometric P-value of 0.009,

suggesting that the network specifically and accurately captures

reactions active during yeast meiosis. The genome-scale models

achieve a comparable P-value but with low precision. The

advantage of genome-scale networks is that they contain all

reactions occurring in a cell, including pathways that may become

active when the meiosis process is under internal or external

perturbations. However, genome-scale models have missing

reactions and enzymes. For example, one third of reactions in

iMM904 have no enzyme association; the average of genome-wide

expression is used to constrain the maximum flux through these

reactions, which may generate incorrect flux solutions. Predictions

from genome-scale models will become more accurate with

continued refinements of the reconstructions, e.g., adding gene-

reaction associations.

The meiosis-specific network model is key to manipulating

reactions or genes to determine their contribution to cell

metabolism. We delete each gene in the network to study the

Table 1. Performance comparison between the meiosis-
specific network and iMM904 in predicting sporulation-
deficient genes using hypergeometric P-values.

meiosis-specific
network iMM904

z-score of Pearson correlations& 0.009 0.012

z-score of optimal objective values* 0.019 0.004

total flux differences from linear
MOMA#

0.001 0.004

&The Pearson correlation between in silico fluxes and biochemical values on
eight pathways is calculated for each gene KO and WT. A z-score is computed
to measure the difference in correlation coefficient between a KO and WT. A KO
with z-score#22 for at least one time point is predicted to be a sporulation-
deficient gene.
*The optimal objective value is obtained for each gene KO and WT. A z-score is
computed to measure the difference in optimal objective value between a KO
and WT. A KO with z-score#22 for at least one time point is predicted to be a
sporulation-deficient gene.
#The total flux difference between a gene KO and WT is obtained from linear
MOMA. A KO with flux difference$1000 for at least one time point is predicted
to be a sporulation-deficient gene.
doi:10.1371/journal.pone.0063707.t001
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effects of knockouts. These in silico perturbations pinpoint specific

enzymes essential for sporulation, allowing for the prediction of

novel sporulation-deficient genes that have not been identified by

high-throughput screens [57,58,59,60]. We have used quantitative

metrics—the z-score—to prioritize predicted enzymes and verified

some candidates based on the literature [52,62,63,64,65].

In summary, this study provides an in-depth knowledge of

metabolic mechanisms during yeast meiosis. Further, the meiosis-

specific network model offers a theoretical framework to investi-

gate the contribution of enzymes and reactions to the sporulation

phenotype. The model is powerful with respect to performing in

silico experiments on any reaction or multiple reactions simulta-

neously, or on over-expression, knockdown, or knockout of any

enzyme or combinations of multiple enzymes. Such analyses will

provide insight into the metabolic machinery of yeast meiosis, and

may open new avenues for engineering pathways to increase

sporulation efficiency.

Materials and Methods

Construction of a meiosis-specific metabolic network in
yeast

We manually construct a meiosis-specific metabolic network by

including reactions known to be active during yeast meiosis. The

network comprises pathways involved in the uptake of acetate

from the external environment; the use of acetate for synthesizing

carbohydrates, amino acids, nucleotides, and lipids; and, later, the

breakdown of stored carbohydrates [8,9,10,11,12,13,14,15]. Re-

actions and associated enzymes are obtained from the KEGG

database, the Saccharomyces Genome Database, iMM904, and

Yeast4.0 [28,29,31,32]. Reactions are compartmentalized in either

the cytoplasm or the mitochondria, based on the sub-cellular

localization of enzymes determined by experimental evidence

[33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53-

,54]. Transport reactions across cellular or mitochondrial mem-

brane are included in the network as well. All reactions are

unidirectional; a reversible reaction is represented as two

unidirectional reactions. Cofactors and end products are not

included as metabolites in the network: ATP, ADP, AMP, GTP,

GDP, UTP, UDP, NAD, NADH, NADP, NADPH, FAD,

FADH2, CO2, NH4, H2O, glutamate, glycogen, trehalose,

nucleotide, amino acid, and lipid. The resulting meiosis-specific

metabolic network comprises 31 unique metabolites and 62

unique biochemical reactions catalyzed by 69 unique enzymes

(Table S1, Model S1). The network in the Systems Biology

Markup Language format is available at the BioModels database

(http://www.ebi.ac.uk/biomodels/, MODEL1303140001).

We also investigate a genome-scale metabolic network–

iMM904, which contains 1,228 metabolites and 1,577 reactions

catalyzed by 904 unique enzymes [28]. To simulate the meiotic

condition using iMM904, we allow the import of acetate and

oxygen from the external environment but eliminate the intake of

glucose and ammonium.

Flux balance analysis
Flux is the rate at which metabolites are consumed or produced

in a reaction. Flux in the metabolic networks of yeast meiosis is

calculated using FBA at a steady state. Specially, all reactions in a

metabolic network are mathematically represented as a stoichio-

metric matrix, Sm|r, with m rows as metabolites and r columns as

reactions. The entries in the matrix correspond to coefficients of

metabolites for each reaction. Constraints are imposed for

reactions: aƒVƒb, where a and b define the lower and upper

bounds of allowable flux V for a reaction, respectively. An

objective function defines a particular goal of cells, and can be

represented as a linear combination of flux: Z~CT V where C is a

vector of weights on flux V. FBA seeks to maximize or minimize an

objective function using linear programming by carrying out a

steady-state analysis on Sm|r|Vr|1~0m|1. The outcome of

FBA is one optimal flux distribution (Vr|1, an optimal

assignment of fluxes to all the reactions in the network) among

many distributions that have the same optimal value for an

objective function [18].

Objective functions. We systematically evaluate ten linear

objective functions relevant to the metabolic requirements of cells

during meiosis: 1) ATP production, 2) ATP consumption, 3) net

ATP production, 4) acetate uptake, 5) glutamate synthesis, 6)

carbohydrate synthesis, 7) carbohydrate breakdown, 8) nucleotide

synthesis, 9) amino acid synthesis, and 10) lipid synthesis. Each

objective function, Z~CT V , is maximized and minimized,

respectively, where C is a vector of zeros with a value of one at

the positions of reactions relevant to the objective function. The

exceptions are three ATP objectives: positive numbers of yielded

ATPs are coefficients for reactions participating in ATP produc-

tion, positive numbers of used ATPs are coefficient for reactions

participating in ATP consumption, and positive numbers of

yielded ATPs and negative numbers of used ATPs are entered as

coefficients for the objective function of net ATP production

(Table S1).

Flux constraints. For the meiosis-specific metabolic network,

the lower bound for all reactions is 0, implying irreversible

reactions. The upper bound is determined by deep sequencing of

ribosome-protected mRNA levels (GSE34082) [56]. A total of 18

time points are chosen to reflect the dynamic progression of

meiotic events: 0.033, 0.5, 1, 1.5, 2, and 3 hours of sporulation

from a traditionally-synchronized strain, and 6.5, 6.75, 7, 7.25,

7.5, 7.75, 8, 8.25, 8.5 8.75, 9.25, and 11 hours of sporulation from

a Ndt80-inducible strain. The expression of 69 unique genes

included in the meiosis-specific network is extracted from the

dataset. For isozymes that each can individually catalyze the same

reaction, the maximum of isozyme expressions is used as the

reaction upper bound. For multi-unit enzymes or enzyme

complexes that must act together to catalyze one reaction, the

minimum of subunit expressions is used as the reaction upper

bound (Table S1). Once upper bounds are determined for all

reactions in the network based on enzyme expression, they are

scaled to have an average value of 1,000 over the entire course of

sporulation. For the iMM904 genome-scale model, the same

procedure is applied to obtain the upper bounds for 1,577

reactions using the expression of 904 genes. The lower bounds of

reversible reactions are given the negative of the upper bound

values. For reactions with no enzyme association, the average of all

upper bounds in iMM904 is used.

Computation. One optimal solution of network flux is

obtained using GLPK (GNU Linear Programming Kit) supported

by the COBRA Toolbox for Matlab [66]. Alternate optimal

solutions are examined by random sampling the solution space

using a hit-and-run algorithm—gpSampler [66]. For each

objective function at each time point with expression-based

constraints, we sample the solution space with 2,000 points for

two minutes while constraining the objective value to its optimum.

A mixed fraction within the range of 0.47–0.53 is used to ensure a

proper sampling.

Selection of the best objective functions
For each of the 18 time points, optimal solutions for network

fluxes are obtained by maximizing or minimizing each of ten

objective functions combined with expression-based reaction
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constraints. The Pearson correlation is calculated between

predicted fluxes and biochemical data on eight pathways: 1)

glutamate formation, 2) TCA cycle, 3) glyoxylate cycle, 4)

gluconeogenesis, 5) glycogenolysis, 6) nucleotides, 7) amino acids,

and 8) lipids. The Pearson correlation quantifies the linear

relationship between two datasets and is defined as

rWT~

Pn
i~1

(xi{�xx)(yi{�yy)

(n{1)sxsy
, where x and y are computational

and experimental data, respectively, �xx and �yyare means, sx and sy

are standard deviations, and n is the number of pathways.

Computational data on pathways are obtained by averaging

optimal fluxes of reactions included in each pathway (Table S1).

Biochemical data on pathways are obtained by linear interpolation

of the scaled data to match the 18 time points (Table S4).

Experimental values on glyoxylate cycle are the maximum of

glutamate formation and gluconeogenesis at each time point.

Experimental values on nucleotides are the maximum of DNA and

RNA syntheses at each time point. The best objective function for

each time point is selected as the one with the maximum Pearson

correlation coefficient.

Model prediction of sporulation-deficient genes
High-throughput screens of yeast deletion strains have identified

267 sporulation-deficient genes (pre-sporulation/sporulation$1.5

in two independent experiments) [57]. For each sporulation-

deficient gene included in a network, we delete the gene by

changing the upper bound of the corresponding reaction and then

calculate network fluxes. The Pearson correlation is computed

between predicted KO fluxes and biochemical values on eight

pathways, similar to the calculation for WT. Finally, a z-score is

constructed to quantify the difference in the Pearson correlation

between KO and WT:
zg~

rgKO{rWT

sgKOs , where r is correlation

coefficient, sgKOs is the standard deviation of Pearson correlations

of all gene KOs in the network. A z-score of less than -2 is

considered as validating the sporulation-deficient phenotype.

Performance evaluation of network models in predicting
known sporulation-deficient genes

To determine whether known sporulation-deficient genes

are enriched among model-predicted deficient genes, we calculate

the P-value from a hypergeometric distribution:

P(X§k)~
Pmin(m,n)

X~k

m

k

� �
N{m

n{k

� �

N

n

� � , where N is the total number

of genes in a metabolic network, m is the number of known

sporulation-deficient genes in the network, n is the number of

genes that the model predicts to affect sporulation, and k is the

number of known sporulation-deficient genes predicted to affect

sporulation as well.

Supporting Information

Figure S1 The optimum identified by our method for
carbohydrate breakdown maximization is consistent
with multiple optima derived from sampling the
solution space of meiosis-specific network models. For

each of 18 time points with expression-based constraints, the

sampling is performed with 2,000 points while constraining the

objective value to its optimum. Multiple optimal solutions are

identified for 8 time points. Pearson correlations are calculated

between alternative optima and biochemical data on pathways.

The quartiles of the distribution of correlations are displayed:

maximum, 75 percentile, median, 25 percentile, and minimum.

The Pearson coefficient calculated from one optimum, as shown in

Figure 3, is displayed here again as dots.

(PDF)

Figure S2 The use of Spearman correlation to evaluate
objective functions for the meiosis-specific network
models. The Spearman correlation is calculated between

predicted fluxes and biochemical data on eight pathways when

maximizing or minimizing each of the ten objective functions at

each of the 18 time points. The best objective function for each

time point is the one with the maximum Spearman correlation

coefficient. Eleven out of 18 best objective functions during 0.033–

3 and 8.25–11 hours are consistent with those determined by the

Pearson correlation as the first, second, or third ranked objective.

Close circle: maximization of an objective function; open circle:

minimization of an objective function. Undefined correlation

coefficients due to zero variance of predicted pathway fluxes are

not shown in the figure.

(PDF)

Figure S3 The use of microarray data to evaluate
objective functions for the meiosis-specific network
models. Reaction constraints are defined by gene expression

from time-course Affymetrix data on SK1 sporulating cells at 1, 2, 3,

4, 6, 8, and 10 hours. The Pearson correlation is calculated

between predicted fluxes and biochemical data on eight pathways

when maximizing or minimizing each of the ten objective

functions at each of the seven time points. The best objective

function for each time point is the one with the maximum Pearson

correlation coefficient. Five out of seven best objective functions at

1, 2, 3, 4, and 10 hours are consistent with those deduced from

ribosome profiling. Close circle: maximization of an objective

function; open circle: minimization of an objective function.

Undefined correlation coefficients due to zero variance of

predicted pathway fluxes are not shown in the figure.

(PDF)

Figure S4 The use of uniform bounds to evaluate
objective functions for the meiosis-specific network
models. A uniform constraint of 1,000 is imposed for all

reactions. The Pearson correlation is calculated between predicted

fluxes and biochemical data on eight pathways when maximizing

or minimizing each of the ten objective functions at each of the 18

time points. The best objective function for each time point is the

one with the maximum Pearson correlation coefficient. Three out

of 18 best objective functions at 0.033, 2, and 3 hours are

consistent with those deduced from ribosome profiling. Close

circle: maximization of an objective function; open circle:

minimization of an objective function. Undefined correlation

coefficients due to zero variance of predicted pathway fluxes are

not shown in the figure.

(PDF)

Figure S5 Evaluation of objective functions using the
genome-scale network models. The Pearson correlation is

calculated between predicted fluxes and biochemical data on eight

pathways when maximizing or minimizing each of the ten

objective functions at each of the 18 time points. The best

objective function for each time point is the one with the

maximum Pearson correlation coefficient. Close circle: maximi-
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zation of an objective function; open circle: minimization of an

objective function. Optimal solution does not exist regardless of

objective functions at 2 hours of sporulation, thus does not shown

in the figure.

(PDF)

Model S1 The yeast meiosis-specific metabolic network
in the Systems Biology Markup Language format.
(XML)

Table S1 Reactions in the yeast meiosis-specific meta-
bolic network.
(PDF)

Table S2 A comparison between the meiosis-specific
network and iMM904.
(XLSX)

Table S3 Biochemical data on metabolic pathways and
macromolecule syntheses during yeast meiosis.
(PDF)

Table S4 Interpolated biochemical data on metabolic
pathways and macromolecule syntheses at 18 time
points.

(PDF)

Table S5 Context-specific networks determined by
iMAT for incorporating expression data with the
meiosis-specific network.

(XLSX)
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