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Abstract

Using monthly data from the Ebola-outbreak 2013–2016 in West Africa, we compared two
calibrations for data fitting, least-squares (SSE) and weighted least-squares (SWSE) with
weights reciprocal to the number of new infections. To compare (in hindsight) forecasts for
the final disease size (the actual value was observed at month 28 of the outbreak) we fitted
Bertalanffy–Pütter growth models to truncated initial data (first 11, 12, …, 28 months).
The growth curves identified the epidemic peak at month 10 and the relative errors of the
forecasts (asymptotic limits) were below 10%, if 16 or more month were used; for SWSE
the relative errors were smaller than for SSE. However, the calibrations differed insofar as
for SWSE there were good fitting models that forecasted reasonable upper and lower bounds,
while SSE was biased, as the forecasts of good fitting models systematically underestimated the
final disease size. Furthermore, for SSE the normal distribution hypothesis of the fit residuals
was refuted, while the similar hypothesis for SWSE was not refuted. We therefore recommend
considering SWSE for epidemic forecasts.

Introduction

Epidemiology uses a wide variety of mathematical tools to model the spread of infectious dis-
eases. ‘Mathematical models […] take many forms, depending on the level of biological
knowledge of processes involved and data available. Such models also have many different pur-
poses, influencing the level of detailed required’ [1]. Examples of the most common model
types that use highly aggregated data (infection counts over time) are trend models, as consid-
ered in this paper (another example is GGM of [2]), and compartmental dynamical systems
models (including the classical continuous and deterministic SIR in [3], or stochastic SIR
and SEIR in [4] or [5], respectively). By contrast, individual-based simulation models describe
the interactions of large numbers of individuals and therefore need detailed information to
characterise them [6]. This paper focuses on trend-models with sigmoidal (S-shaped) growth
curves, as these have been useful for practitioners. For example, the simple logistic growth
model correctly predicted the slowing down of the 2013–2016 Ebola outbreak in West
Africa [7–11].

In this paper, we considered the more general Bertalanffy–Pütter (BP) differential equation
(details in the section ‘Method’) for modelling epidemic trajectories. For an illustration, we fit-
ted BP models to data from the 2013–2016 Ebola outbreak in West Africa, using the method of
least-squares (nonlinear regression). In order to assess the practical significance of this model-
fitting exercise, we used initial data from the Ebola outbreak to forecast the final disease size.
Forecasting the final size of an epidemic is an important task for modelling; underestimating it
may lead to a false sense of security.

In previous papers, we have studied the BP equation for modelling the growth of tumours,
chicken, dinosaurs and fish [12–15] and we found that it was a versatile tool that resulted in
significant improvements in the fit of the model to the data, when compared to previous
results in the literature. However, in that papers we also found that the least-squares method
underestimated the potential of further growth. We therefore proposed a calibration that for
the considered size-at-age data provided more realistic asymptotic size estimates.

For the Ebola data, we observed the same problem; using ordinary least-squares the final
disease size was underestimated. As to the reason, ordinary least-squares assumes equal var-
iances while animal sizes and epidemic data displayed size-dependent variances (heteroscedas-
ticity). However, the pattern of heteroscedasticity was different: although for the size of
smaller/larger animals the variance was lower/higher, for epidemic data (total disease counts)
the variance was highest at the epidemic peak (most new cases) and low at the initial and final
phases. For the Ebola data, we therefore used a weighted least-squares method with a new
weight function (details in the section ‘Method’): Using this calibration, prediction of the
final disease size became reliable for the late phase of the outbreak (after it has peaked).
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Method

Materials

The data and the results of the optimisations were recorded in
spreadsheets (Microsoft Excel); see the Supporting information.
The computations used Mathematica 12.0 software (Wolfram
Research). We used commercially available PCs and laptops
(Intel i7 core). For them, CPU-time for fitting the BP model to
monthly data was 1 week per dataset (less for SSE). However,
for weekly data and SWSE, data fitting used 8 weeks. Therefore,
the paper reports the results for the monthly data.

Data

CDC [16] compiled data from three countries of West Africa,
based on weekly Ebola reports by the WHO (Fig. 1) that counted
the confirmed, probable and suspected infections and fatalities in
each country. CDC [16] added the numbers of infections since
the start of the outbreak to the number of total cases.

Unfortunately, there were some flaws in the data. First, there
were false-positive and false-negative diagnoses: initially Ebola
was diagnosed as fatal diarrhoea (December 2013 and January
2014) and at the peak of the outbreak villages reported Ebola
cases that were later falsified, but the total counts in the reports
were not corrected retrospectively. Second, the published data
contained typos, incorrect arithmetic and an obvious outlier at
24 June of 2015. (We suppose that it resulted from a typo: 24
472 instead of 27 472.) We therefore aggregated the CDC list to
Table 1, which eliminated data uncertainty as much as possible
without altering the data. It also reduced random fluctuations.
Nevertheless, it still was representative of the raw data (Fig. 1).

In addition, we also fitted the BP models to the full set of data
from CDC [16] about West Africa. As amongst the 265 data-
points (brown rings in Fig. 1) there were contradictory values
for 19 April, 3 May and 30 June of 2015, we took the larger counts
(reducing the size of the dataset to 262 data-points) and left the
data otherwise unaltered (not removing the outlier).

The BP model class

The BP differential equation (1) describes the cumulative count of
infected individuals, y(t), as a function of time, t, since the start of
an infection. It uses five model parameters that are determined
from fitting the model to cumulative epidemiological data;
non-negative exponent pair a < b, non-negative scaling constants
p and q and the initial value y(0) = c > 0:

y′ (t) = p · y (t)a − q · y (t)b (1)

Equation (1) appeared originally in Pütter [17]; von Bertalanffy
[18, 19] popularised it as a model for animal growth. In epidemi-
ology, and for a≤ 1, this model has been proposed as the general-
ised Richards model [20, 21]. It can be solved analytically, although
in general not by means of elementary functions [22].

We interpret equation (1) as a model class, where each expo-
nent pair (a, b) defines a unique model BP(a, b) in the BP class of
models; BP(a, b) has three free parameters (c, p, q). Equation (1)
then includes several trend models that have been used to describe
epidemic trajectories [23–25], such as the Brody [26] model of
bounded exponential growth BP(0, 1), [27] logistic growth BP(1, 2),
the model BP(2/3, 1) of von Bertalanffy [18] or the model BP

(3/4, 1) of West et al. [28]. Also, the Gompertz [29] model fits
into this scheme: it is the limit case BP(1, 1), with a different dif-
ferential equation, where b converges to a = 1 from above [30].
Equation (1) also includes several classes of models, such as the
generalised Bertalanffy model (b = 1 with a variable) and the
Richards [31] model (a = 1 with b variable). However (Fig. 2),
when compared to the range of models searched for this paper
(yellow area), these named models appear as rather exceptional.

Some authors added further assumptions about the parameter
values in order to simplify the model (e.g. setting c = 1 in advance
for the indicator case). We do not consider such simplifications.

Model calibration

The (ordinary) least-squares method is common in epidemiology
for large case counts, as for the present data [32]. It measures the
goodness of the fit to the data by means of SSE, the sum of
squared errors (fit residuals). In the present context, we sought
parameters a, b, c, p and q so that for the solution y(t) of equation
(1) the following sum SSE was minimised, whereby (ti, yi) were
the first n total case counts yi at time ti (here 10≤ n≤ 28):

SSE =
∑n

i=1

(yi − y (ti))
2 (2)

An implicit assumption of the least-squares method is a normal
distribution of the errors: in formal terms, SSE is equivalent to
the maximum-likelihood estimate under the assumption of nor-
mally distributed data with expected value y(t) and time-
independent variance s > 0. If this assumption is not satisfied, as
for the animal size-at-age data or the outbreak data, other meth-
ods of calibration need to be considered. For the animal data we
could work well under the assumption of a log-normal distribu-
tion, where the variance increases with the size. However, for
the Ebola data (total case counts) this assumption was problem-
atic, too, as the variance was maximal at an intermediate stage
(epidemic peak).

We therefore developed another measure for the goodness of
fit, weighted least-squares that aimed at finding parameters to
minimise the following sum of weighted squared errors SWSE:

SWSE =
∑n

i=1

(yi − y(ti))2
|y′(ti)| (3)

This weight function tolerates a higher variability in the total
count during the epidemic peak. In formal terms, SWSE identifies
the maximum-likelihood estimate under the assumptions that the
data are normally distributed with expected value y(t) and a vari-
ance s⋅y′(t) with s a constant. (Thus, the variance of the total
counts is assumed to be proportional to the absolute value of
the derivative of y. This derivative corresponds to the number
of new cases.)

In the following subsections, we will explain our notation
using SSE; the same definitions will also apply to SWSE.

Optimisation

For model class (1) standard optimisation tools (e.g. Mathematica:
NonLinearModelFit) may not identify the best-fit parameters
(numerical instability). To overcome this difficulty, we used a
custom-made variant of the method of simulated annealing [33]
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which solves the optimisation problem to a prescribed accuracy
[12]. Note that using simulated annealing to optimise all five
parameters of equation (1) at once may not always come close
to the optimum parameters, because the region of nearly optimal
parameters may have a peculiar pancake-like shape ([15];
extremely small in one direction and extremely large in other
ones).

We confined optimisation to a grid (Fig. 2). For each exponent
pair on the grid 0≤ a≤ 1.3 and a < b≤ 3 with distance 0.01 in
both directions we searched for the best-fit model BP(a, b); i.e.
we minimised SSE for the model BP(a, b). Thus, we defined the
following function SSEopt on the grid:

SSEopt(a, b) = min
c,p,q

(SSE), SSEmin = min
a,b

SSEopt(a, b) (4)

Summarising this notation, for each exponent pair (a, b) on the
grid we identified the best-fit model BP(a, b) with certain para-
meters c, p, q and the corresponding least sum of squared errors
SSEopt(a, b). These values were recorded in a spreadsheet. Finally,
the best-fit model had the overall least sum of squared errors
(SSEmin). It minimised the function SSEopt at the optimal expo-
nent pair (amin, bmin). From the above-mentioned spreadsheet
we could then read off the other parameters pmin, qmin, cmin that
minimised SSEopt(amin, bmin) of the model BP(amin, bmin).
However, if that optimal exponent pair was on the edge of the
search grid, then we extended the search grid and continued
the optimisation. (Otherwise, if the optimal exponent pair was
surrounded by suboptimal ones, then we stopped the search for
an optimum.)

Model comparison

For each exponent pair (a, b) of the search grid we identified a
best-fitting model BP(a, b), whose fit was given by SSEopt(a, b)
of formula (4). Amongst these models we selected the model
with the least SSEopt. In the literature, there are various alternative
criteria for the comparison of models, amongst them the root
mean squared error RMSE and the Akaike’s [34] information cri-
terion (AIC). RMSE is the square-root of SSE/n and AIC = n ⋅
ln (SSE/n) + 2K, where n is the number of data-points (between
10 and 28 for the monthly truncated data), K = 4 is the number
of optimised parameters of the model BP(a, b) with a given expo-
nent pair (counting c, p, q and SSE), and SSE = SSEopt(a, b). As an
additional measure to compare the goodness of fit, we used for-
mula (5) for the relative Akaike weight:

‘ = exp(−((AIC − AICmin)/2))
1+ exp(−((AIC − AICmin)/2))

(5)

Fig. 1. Total weekly and monthly count of Ebola cases in West Africa; blue dots connected with a black line are the values of Table 1 and brown rings are the counts
from CDC [16]; plotted using MS Excel.

Fig. 2. Named models (blue) and initial search region (yellow) of BP models (plot
using Mathematica 12.0): 0≤ a ≤ 1.3, a < b ≤ a + 3, step size in both directions 0.01.
When needed, the grid was extended.
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This formula has been interpreted as probability, ‘, that the
(worse) model with higher AIC would be ‘true’, when compared
to the model with the least AIC [35, 36]. Thereby (citation from
[37], on p. 272, referring to information theory of [38]) ‘true’
means that the model ‘is, in fact, the K-L best model for the
data… This latter inference about model selection uncertainty is
conditional on both the data and the full set of a priori models
[in formula 5: the models with AIC and with AICmin] considered’.
Furthermore, as does AIC, the Akaike weight assumes a normal
distribution of the (weighted) fit residuals.

Using SSE or AIC is only meaningful with reference to a fixed
dataset (different models are fitted to the same data), whereas
RMSE and ‘ make also sense, if we consider datasets with differ-
ent sizes, as for the forecasts, where we successively use truncated
initial data with 10, 11, …, 28 months. Thereby, we prefer the
probabilities for their more intuitive appearance. Note that
‘ = 50% is the maximal value that can be attained by ‘ (compari-
son of the best-fit model with its copy).

Multi-model approach

For each exponent pair (a, b) of the search grid we identified the
best-fit growth curve ya,b(t) for the model BP(a, b); its parameters
p, q and c were optimised according to formula (4). Thereby, we
could observe a high variability in the best-fit exponents: even for
exponent pairs (a, b) with notable differences from the optimal
exponent pair (amin, bmin) the best-fit growth curve ya,b(t) barely
differed from the data. To describe this phenomenon, we used the
following terminology: a model BP(a, b) and its exponent pair (a, b)
are u-near-optimal with model-uncertainty u, if SSEopt(a, b)≤
(1 + u) ⋅ SSEmin. Figure 3 illustrates this concept by plotting near-
optimal exponent pairs for different levels u = 0.17 and u = 0.5 of
model-uncertainty (red and blue dots).

Using formula (5), we translated the level u of near optimality
into a probability ‘ = 1/(1+

���������
(1+ u)n

√
). For example, if we wish

to consider models (exponent pairs) with a probability of at least
10%, this corresponds to a model uncertainty of at most u = 0.55
for the 10-month data (n = 10) and u = 0.17 for the 28-month
data.

For each dataset, we then may ask about the forecasts that
would be supported by models with e.g. ‘ = 10% or higher, dis-
carding other possible forecasts as unlikely, given the data.
Thus, given a model probability, ‘, we studied the forecasts that
came from the ensemble of the growth curves ya,b(t) correspond-
ing to the near-optimal models BP(a, b) with that probability or

higher. For example, for each of these ya,b(t) we estimated its
final disease size by the asymptotic limit. The upper and lower
bounds for these estimates defined a prediction interval that
informed about the likely disease size. Note that this is an analysis
of model uncertainty, not of data uncertainty, whence the predic-
tion interval is not a confidence interval. (Confidence intervals
assess data uncertainty by means of simulations that add random
errors to the data and use best-fit functions to compute bounds
for the confidence interval. For prediction intervals, different
models are fitted to the same data.)

Results

Best fits

Table 2 identified the optimal parameters of BP models that were
fitted by ordinary least-squares, equation (2) for SSE, to initial
segments of the monthly data, meaning the data of Table 1 for
the first 10≤ n≤ 28 months. As slight changes in the parameter
values could result in highly suboptimal growth curves, from
which standard optimisation tools could not find back to the
region of near optimality, certain parameters were given with an
accuracy of 30 or more decimals. Table 3 identified the optimal
parameters for initial segments, using the method of weighted
least-squares, formula (3) for SWSE.

At a first glance, the growth curves for the same data looked
similar, regardless of the method of calibration. Figure 4 plots

Table 1. Total monthly count of Ebola cases in West Africa

Month Casesa Month Casesa Month Casesa Month Casesa

0b 1 8 3052 15 25 178 22 28 547

1 5 9 6553 16 26 298 23 28 601

3 120 10 13 676 17 27 145 24 28 604

4 242 11 16 899 18 27 540 25 28 603

5 309 12 20 171 19 27 840 26 28 603

6 599 13 22 057 20 28 065 27 28 610

7 1322 14 23 694 21 28 388 28 28 616

aFor each month, the table records the maximum of the total number of cases reported from Guinea, Liberia and Sierra Leone since the beginning of the outbreak.
bMonth 0 is December 2013 (index patient).
Source: Adapted from [16].

Fig. 3. Optimal exponent-pair (black) for fitting the data of Table 1 with respect to
SSE; red and black dots for 245 and 1330 exponent pairs with up to 17% and 50%
higher SSE; exponent-pairs of the Bertalanffy, Gompertz and Verhulst models
(cyan) and part of the search grid (yellow).
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Table 2. Parameters for the best-fit (SSE) model (1) to the data up to the indicated month

Montha

Model parametersb Goodness of fitc

Asymptotic limitcamin bmin cmin pmin qmin SSEmin/10
6 RMSE

10 1.19 1.42 17.7741 0.317228 0.0228423 0.0153 39.09 93 647

11 1.02 6.6 8.45046 0.663536 1.657 × 10−24 0.0211 43.84 16 976

12 1.38 1.6 27.263 0.123849 0.0138776 1.4188 343.85 21 006

13 1.29 1.35 4.84703 0.819036 0.448672 1.9064 382.94 22 711

14 1.2 1.29 1.33673 1.12273 0.452778 2.4962 422.26 24 105

15 1.02 1.4 0.0781697 1.44265 0.0306548 3.5057 483.44 25 220

16 1.15 1.16 0.188038 12.6072 11.3871 4.5167 531.31 26 333

17 1.1 1.25 0.35805 1.40607 0.304888 5.7890 583.55 26 655

18 1.0 1.32 0.0562717 1.68091 0.0640025 6.3774 595.23 27 256

19 1.03 1.3 0.184543 1.46154 0.0925867 6.9879 606.45 27 416

20 1.02 1.29 0.159357 1.54147 0.0972962 7.3897 607.85 27 788

21 0.95 1.38 0.0186636 1.96722 0.0241207 7.9605 615.69 27 878

22 1.0 1.31 0.123787 1.60994 0.0672919 8.3679 616.73 28 047

23 1.07 1.23 0.461196 1.49859 0.290988 8.7655 617.34 28 106

24 1.03 1.26 0.23758 1.54609 0.146399 8.8929 608.72 28 240

25 1.02 1.27 0.217945 1.56039 0.120352 9.0691 602.30 28 256

26 0.99 1.3 0.101559 1.70456 0.0710008 9.1356 592.76 28 362

27 1.03 1.25 0.229343 1.58429 0.166104 9.2035 583.84 28 318

28 1.0 1.28 0.135994 1.67323 0.0947475 9.2829 575.79 28 414

aThis indicates the data from month 0 to the displayed month.
bThe table reports the parameters based on the best-fit grid-point exponent pairs (the overall optima were slightly different).
cEstimates above the actual count of 28 616 cases in italics.

Table 3. Best-fit parameters with respect to SWSE for the data up to the indicated month

Month amin bmin cmin pmin qmin SWSEmin RMSE Asymptotic limit

10 1.05 9.6 14.022600 0.515153 1.08640 × 10−36 133.934 3.65971 14 881

11 1.05 6.12 14.005700 0.515379 1.83792 × 10−22 133.997 3.49021 16 996

12 1.16 2.04 20.008300 0.277716 0.0000429172 520.806 6.58790 21 412

13 1.23 1.65 19.336400 0.226581 0.0033374200 668.755 7.17235 22 986

14 1.21 1.52 13.764400 0.310600 0.0135567000 1055.060 8.68110 24 392

15 1.13 1.45 6.163090 0.551204 0.0213620000 1785.130 10.9091 25 791

16 1.02 1.53 2.362370 0.945249 0.0052132000 2605.260 12.7604 26 811

17 1.04 1.35 1.190240 1.102900 0.0463179000 3139.260 13.5890 27 622

18 1.00 1.39 0.763762 1.278370 0.0235874000 3425.320 13.7948 27 931

19 1.06 1.32 2.046030 1.018100 0.0709812000 3537.840 13.6456 28 096

20 0.99 1.46 1.549080 1.178370 0.0095493700 4010.670 14.1610 28 157

21 0.96 1.36 0.202642 1.697710 0.0280686000 4329.330 14.3582 28 451

22 1.00 1.25 0.196457 1.723510 0.1325430000 4595.860 14.4535 28 591

23 1.02 1.22 0.292313 1.724230 0.2213960000 4733.780 14.3463 28 650

24 0.94 1.43 0.456417 1.668570 0.0109219000 5501.110 15.1398 28 657

25 0.93 1.51 1.223280 1.567290 0.0040738800 6211.630 15.7628 28 651

26 0.90 1.59 0.771413 1.825950 0.0015353400 6535.000 15.8539 28 637

27 0.93 1.43 0.254940 1.798650 0.0106292000 5423.320 14.1726 28 635

28 0.90 1.61 1.144070 1.774490 0.0012154400 6846.480 15.6370 28 630

Notes as in Table 2 (referring to SWSE rather than to SSE).
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the monthly data and the growth curves that were fitted to the ini-
tial segments by means of ordinary least-squares and Figure 5
plots the monthly data and the best-fit curves using weighted
least-squares. The two figures look alike and for both methods
good forecasts (asymptotic limits in Tables 2 and 3) for the final dis-
ease size of 28 616 cases could be obtained from the data truncated
at month n, n between 16 and 28, whereby the forecasts using
weighted least-squares were more accurate: the relative error of
the forecasts was 1–8% for SSE and 0–6% for SWSE. All growth
curves were bounded, whereby for SSE the first curve (data trun-
cated at month 10) exceeded the data and the following curves
approached the data from below; all asymptotic limits remained
below the actual final disease size. For SWSE the growth curves ini-
tially approached the data from below and starting with month 23
their asymptotic limits were slightly above the final disease size.

The best fit curves to the full data were analysed in more detail,
including for the weekly data (details given in the Supporting
information). Figure 6 plots the growth curves that were fitted
to the full sets of monthly and weekly data, respectively, using
the two calibrations. Again, there were only slight differences
between the curves that used ordinary and weighted least-squares;
for SSE and SWSE the asymptotic limits were below and above the
final disease size, respectively. Furthermore, the growth curves for
the weekly and monthly data that were calibrated by the same
method were largely overlapping.

Despite these similarities there were obvious differences for the
exponent pairs that were computed using different calibrations;
Figure 7 plots them. Thereby, except for the SSE fit to the
28-month-data (Richards’ model), all exponent pairs were clearly
distinct from the exponent pairs of the named models mentioned
in the section ‘Method’.

Testing distribution assumptions

We now explain, why despite the apparent utility of the ordinary
least-squares method we will recommend our method of weighted
least-squares. One reason was that for the present data its implicit
distribution assumption was not outright false: the criteria
weights for SWSE were motivated from the observation that the
variance of the cumulative count depends on the number of
new cases (derivative of the cumulative count), as it was low at
the beginning and end of an outbreak and maximal at the peak
of the epidemics, while SSE assumed equal variances for all
data. We checked these distribution assumptions for the full data-
set by testing for SSE the normal distribution hypothesis for the
residuals and for SWSE the normal distribution hypothesis for
the residuals divided by the square root of y′.

Fig. 4. Monthly data (black dots) with the best-fit growth curves (SSE) for the data
until month 10 (red), 11, … 28 (green); month 0 is December 2013. The best-fit para-
meters are from Table 2 (plotted using Mathematica 12.0).

Fig. 5. Monthly data (black dots) with the best-fit growth curves (SWSE) for the data
until month 10 (red), 11, … 28 (green); month 0 is December 2013. The best-fit para-
meters are from Table 5 (plotted using Mathematica 12.0).

Fig. 6. Weekly data (blue dots, with correction of three inconsistencies), best-fitting
growth curve to these data using SSE (red) and SWSE (green) and best-fitting growth
curves fitted to the monthly data using SSE (orange) and SWSE (cyan), whereby at day
x we evaluated the growth function at month (x + 84)/30.4, because the daily data
started later. The parameters are given in the Supporting information; plotted
using Mathematica 12.0.

Fig. 7. Best-fit exponent pairs for the truncated monthly data using SSE (blue) from
Table 2 and SWSE (green) from Table 3. Lines connect exponent pairs for successive
data, starting with the exponent pair for the 10-month data (red) and ending with the
exponent pair for the 28-month data (black); plotted using Mathematica 12.0.
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Table 4 summarises the results. We tested the fits to the full set
of monthly data and for both calibration methods we took the
residuals from the best-fit models that we obtained from add-
itional simulated annealing steps (parameters given in the
Supporting information). We applied a set of the most common
distribution fit tests to the residuals; they relate to different aspects
for normality [39]. For ordinary least-squares (SSE) with one
exception (skewness) the tests supported the conclusion that at
95% confidence the residuals were not normally distributed
(P-values below 5%). Hence, an implicit assumption of this
method (and of the AIC) was refuted. For weighted least-squares
(SWSE) this difficulty did not occur: none of the tests rejected the
assumption of a normal distribution for the residuals divided by

the square root of the best-fit trajectory y′, as all tests had suffi-
ciently large P-values (20–70%).

Multi-model comparisons

In this section, we outline another drawback of the ordinary
least-squares method (SSE): using SSE, for the present data
good conservative forecasts for the estimated final disease size
could not be obtained with models that fitted well to the data.
Thus, paradoxically, a prudent forecaster using ordinary
least-squares would deliberately use models that are highly
unlikely in terms of their probability ‘ (Akaike weight) of equa-
tion (5). By contrast, for weighted least-squares (SWSE) the

Table 4. Testing the normal distribution hypothesis for SSE and SWSE

Test

SSE SWSE

Statistic P-value (%) Statistic P-value (%)

Anderson and Darling 0.843113 2.9 0.395597 37.5

Baringhaus and Henze 0.616057 4.4 0.203591 42.3

Cramér and von Mises 0.138078 3.4 0.0561172 43.3

Jarque and Bera 10.6558 3.6 2.03096 24.4

Kolmogorov and Smirnov 0.183602 1.7 0.129329 26.9

Kuiper 0.250117 2.8 0.178515 31.9

Mardia combined 10.6558 3.6 2.03096 24.4

Mardia kurtosis 2.07855 3.8 0.370169 71.1

Mardia skewness 1.38398 23.9 1.16285 28.1

Pearson χ2 12.0 3.5 6.28571 27.9

Shapiro and Wilk 0.911888 2.2 0.961703 38.2

Watson U2 0.137992 2.4 0.0524089 45.8

Note: Based on the best-fit growth curves y to the 28-month data, distribution-fit tests were applied to the residuals (SSE) and to the residuals divided by the square-root of y′ (SWSE),
respectively. The best-fit parameters are described in the text.

Table 5. 10% prediction intervals for asymptotic limits (SSE) and probabilities for predicting the month-28 count

Montha

Asymptotic limitb

Probabilityc (%) Montha

Asymptotic limitb

Probabilityc (%)Low High Low High

10 29 806 2 706 403 8 20 27 165 28 217 0.75

11 15 721 ∞ 25.11 21 27 377 28 429 1.01

12 19 768 23 488 0.13 22 27 613 28 480 1.4

13 21 571 24 705 0.03 23 27 799 28 594 3.8

14 23 038 25 398 0.01 24 27 874 28 539 3.65

15 24 143 26 359 0.03 25 27 940 28 557 9.19

16 25 191 27 366 0.17 26 28 005 28 621 8

17 25 953 27 597 0.38 27 28 098 28 630 25.11

18 26 423 27 903 0.55 28 28 145 28 587 0.13

19 26 893 28 139 0.65

aTruncated data from month 0 to the displayed month.
bMinimum and maximum of the asymptotic limits for models with 10% probability to be true, based on SSE, with limits above 28 616 cases displayed in italics.
cMinimum of the maximal probabilities of models BP(a, b), whose trajectories at month 28 were above or below the actual count of 28 616 cases.
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prediction intervals for the asymptotic limit contained the final
disease size, whereby the prediction intervals used only likely
models (high probability ‘).

Tables 5 and 6 inform about the 10% prediction intervals for
the asymptotic limits, using truncated monthly data, best-fit mod-
els using ordinary and weighted least-squares, respectively, and
assuming for all models a probability ‘ ≥ 10%. If the data were
truncated at month 10, then for both methods of calibration the
10% prediction intervals were useless: for SSE, already the lower
estimate was too pessimistic and for SWSE the interval was
unbounded above. For SSE there were only two data with 10%
prediction intervals that contained the final disease size of 28
616 cases: the data truncated at months 26 and 27. By contrast,
using SWSE for all datasets truncated at any of the months 21–28,
the 10% prediction intervals contained the final disease size.

We applied the notion of the prediction interval also to other
predictors, such as the forecasted disease size at month 28 (and in
the Supporting information, Tables S1–S3: best-fit model para-
meters for SSE and SWSE and coordinates of the inflection
point). Tables 5 and 6 inform about these intervals in an abbre-
viated form, informing about the least probability ‘ so that the
actual disease size of 28 616 cases could be found in the ‘ predic-
tion interval. For example, the month-10 entry of Table 5 was
obtained as follows: the best-fit model was BP(1.07, 1.29) and
for its epidemic trajectory y1.07, 1.29(t) the value y(28) was above
the actual disease size, while for the model BP(1.19, 1.42) and
for its best fitting epidemic trajectory y1.19, 1.42(t) the value y
(28) was below the actual disease size. The probabilities for
these models were ‘ = 50% and ‘ = 8% (this was the maximal
probability for such a model); the minimum of these probabilities
was reported in the table. For ordinary least-squares, models with
a probability below 10% were needed to enclose the actual disease
size in the prediction interval. Specifically, for the full data
(month 28), only unlikely trajectories (‘ = 0.13%, meaning
0.0013) exceeded the true count at month 28. Again, for weighted
least-squares and all datasets truncated at any of the month 21–28,
the 10% prediction intervals contained the final disease size.
Furthermore, for the data truncated at any of the months 21–28,
all likely growth curves (probability 10% to be true) deviated
from the final case count by at most ±2%. Thereby, there were

both likely curves above and below the final case count. Thus,
other than for ordinary least-squares, for weighted least-squares
there was no bias towards too optimistic forecasts, and forecasts
were not too pessimistic, either.

Discussion

Our results have several implications for practical applications.
With respect to the choice of BP models, Viboud et al. [21]
recommended to use only exponents a≤ 1 to model the initial
phases of epidemics. However, for most truncated data better
fits were achieved for a > 1. Therefore, such a restriction appears
premature.

Concerning the two methods (SSE and SWSE) for the calibra-
tion of the models, we observed that the best-fit BP models
obtained by means of ordinary least-squares in general had
asymptotic limits that were too low, when compared to the final
disease size. For the modelling of epidemics this resulted in overly
optimistic forecast of the final disease sizes. Better estimates for
the final disease size could be obtained by weighted least-squares.
Thereby, different types of data needed different weight functions.
For epidemic data (total case counts) we recommend using as
weight function the reciprocal of the derivative of the growth
function; formula (3). This recommendation was supported by
an analysis of the (weighted) fit residuals. The normal distribution
assumption of the ordinary least-squares method was refuted, but
the similar assumption for weighted least-squares was not refuted.

For the present data we concluded that a reasonable prognosis
of upper and lower bounds of the final disease size was possible
much earlier when using this weight function rather than ordin-
ary least-squares, namely already at month 21 or later, while for
ordinary least-squares it was not sure, if that prognosis was
feasible at all. However (Supporting information, Table S3), as
follows from the prediction intervals for the inflection point,
the peak of the disease was attained around tinfl ≈ 10 months
regardless of the method of calibration. Thus, even with a suitable
weight function the prognosis of the final disease size may be
possible only at a surprisingly late phase of a disease.

Obviously, no calibration can extract more information about
the future trajectories than is available from the given data.

Table 6. 10% prediction intervals for asymptotic limits (SWSE) and probabilities for predicting the month-28 count

Montha

Asymptotic limitb

Probabilityc (%) Montha

Asymptotic limitb

Probabilityc (%)Low High Low high

10 12 899 ∞ 50 20 28 034 28 426 0.42

11 16 918 17 752 0.003 21 28 304 28 646 14.72

12 20 529 23 309 0.11 22 28 468 28 691 37.52

13 22 341 23 996 0.01 23 28 527 28 731 48.25

14 23 959 25 209 0.01 24 28 584 28 716 41.04

15 25 259 26 672 0.1 25 28 596 28 694 46.34

16 26 364 27 584 0.33 26 28 591 28 679 47.42

17 27 183 28 396 2.8 27 28 594 28 673 45.35

18 27 581 28 426 1.76 28 28 600 28 664 46.62

19 27 882 28 464 3.79

Notes as for Table 5 (referring to SWSE rather than to SSE).
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Forecasts using data from an early stage of epidemics prior to its
peak (e.g. 10-month data) remained uninformative also with the
new calibration. Thus, for precise forecasts about the final size
enough data-points beyond the peak of the epidemics were
needed to inform about how fast the epidemics slowed down.
However, for the present data the proposed weight function had
the advantage that its estimates of the final size of the disease
were reliable earlier than for the ordinary least-squares method
that currently is the standard method for such purposes.

Conclusion

This paper proposes a new calibration of phenomenological mod-
els in the context of modelling infectious disease outbreaks. We
recommend weighted least-squares using the reciprocals of the
derivatives of the growth function (this corresponds to the num-
bers of new cases) as weights.

We tested this calibration for the modelling of the West
African Ebola outbreak of 2013–2016 by means of the BP
model. Although for these data the estimates remained compar-
able to those of the least-squares method, we conducted several
tests (distribution of the fit residuals and forecasting intervals
for estimating the final disease size) that confirmed that the
new calibration was superior to ordinary least-squares.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0950268820003039

Data availability statement. The comparisons of models are based on the
data in Table 1. As explained in the section ‘Data’, these data are based on the
raw data published in CDC [16]; see Figure 1 for a comparison of Table 1 with
the raw data from the literature. In addition, the computations of the paper
generated new data about the best-fit parameters; for details see the
Supporting information.
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