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Abstract
Biological networks provide additional information for the analysis of human diseases,

beyond the traditional analysis that focuses on single variables. Gaussian graphical model

(GGM), a probability model that characterizes the conditional dependence structure of a set

of random variables by a graph, has wide applications in the analysis of biological networks,

such as inferring interaction or comparing differential networks. However, existing

approaches are either not statistically rigorous or are inefficient for high-dimensional data

that include tens of thousands of variables for making inference. In this study, we propose

an efficient algorithm to implement the estimation of GGM and obtain p-value and confi-

dence interval for each edge in the graph, based on a recent proposal by Ren et al., 2015.

Through simulation studies, we demonstrate that the algorithm is faster by several orders of

magnitude than the current implemented algorithm for Ren et al. without losing any accu-

racy. Then, we apply our algorithm to two real data sets: transcriptomic data from a study of

childhood asthma and proteomic data from a study of Alzheimer’s disease. We estimate the

global gene or protein interaction networks for the disease and healthy samples. The result-

ing networks reveal interesting interactions and the differential networks between cases

and controls show functional relevance to the diseases. In conclusion, we provide a compu-

tationally fast algorithm to implement a statistically sound procedure for constructing Gauss-

ian graphical model and making inference with high-dimensional biological data. The

algorithm has been implemented in an R package named “FastGGM”.
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Author Summary

Gaussian graphical model (GGM), a probability model for characterizing conditional
dependence among a set of random variables, has been widely used in studying biological
networks. It is important and practical to make inference with rigorous statistical proper-
ties and high efficiency under a high-dimensional setting, which is common in biological
systems that usually contain tens of thousands of molecular elements, such as genes and
proteins. This work proposes a novel efficient algorithm, FastGGM, to implement asymp-
totically normal estimation of large GGM established by Ren et al [1]. It quickly estimates
the precision matrix, partial correlations, as well as p-values and confidence intervals for
the graph. Simulation studies demonstrate our algorithm outperforms the current algo-
rithm for Ren et al. and algorithms for some other estimation methods, and real data anal-
yses further prove its efficiency in studying biological networks. In conclusion, FastGGM
is a statistically sound and computationally fast algorithm for constructing GGM with
high-dimensional data. An R package for implementation can be downloaded from http://
www.pitt.edu/~wec47/FastGGM.html.

Introduction
Biological networks, involving biochemical reactions, regulatory interactions or other relation-
ships among molecules, such as DNA, RNA and proteins, play a critical role in various biologi-
cal processes. Understanding the static and dynamic structure of biological networks can help
to elucidate important mechanisms of complex biological processes and diseases [2,3].

Traditional regression or co-expression models, while being widely used, can only explore
marginal correlations but cannot distinguish direct or indirect (e.g. through intermediates)
relationships. Graphical Model (GM) is relatively more realistic to present complex networks
due to its interpretation with conditional dependence. Although GM is a classical and well-
studied statistical model, with the advance of technology for data collection, biological applica-
tions impose a new challenge, in which the number of variables or features is often far larger
than the sample size. Many efforts have been spent on analyzing biological networks in the
past decade using GM in this high-dimensional setting under certain sparseness assumptions
due to the belief that biological molecules operate in specific biological pathways and the
genetic networks are intrinsically sparse. Typically, the existing methods depend on regulariza-
tion techniques. Relevant methodology and theoretical works include: penalized likelihood
estimation of the sparse precision matrix in Gaussian graphical model (GMM) [4]; neighbor-
hood selection with the Lasso to estimate neighbors separately for each variable in sparse high-
dimensional graphs [5]; applying the scaled Lasso to obtain optimal convergence rate in the
estimation of precision matrix [6]; and others. In spite of extensive literature on the topic, sta-
tistical inference is not rigorous enough, and the precise relationship between regularized
parameters and the number of false edges is unclear. Hence, Liu proposed a simultaneous test-
ing procedure for conditional dependence in GGM to control the false discovery rate [7]. More
recently, Ren et al. proposed a novel regression-based method to obtain asymptotically normal
estimation of large GGM under a minimal sparseness condition [1], it provides both p-value
and confidence interval for each edge in the graph. However, the computation of naïve imple-
mentation of the method in real biological applications, which often possess tens of thousands
of variables, is very expensive. There are some other recent developments on inference of
GGM: Janková and van de Geer applied a bias correction approach to make inference of each
edge in the graph [8] based on the popular penalized likelihood estimation [4]; Gu et al.

Algorithm for Gaussian Graphical Model

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004755 February 12, 2016 2 / 16

Competing Interests: The authors have declared
that no competing interests exist.

http://www.pitt.edu/~wec47/FastGGM.html
http://www.pitt.edu/~wec47/FastGGM.html


extended this idea to the high-dimensional inference of Gaussian copula graphical model [9]
based on a novel decorrelated score test proposed by Ning and Liu [10]. However, both works
also encounter the same implementation issue, besides some extra model assumptions, com-
pared to Ren et al [1].

In this study, we propose an efficient algorithm named FastGGM for the inference of GGM
to implement the theoretical work of Ren et al. [1] and close the gap between the theoretical
development and real applications in high-dimensional settings. Using both simulated and real
data sets, we demonstrate that our algorithm is able to speed up the existing implementation in
several orders of magnitudes without losing efficiency in estimation. Therefore, FastGGM can
make it feasible to infer biological networks under the framework of GGM at a whole-genome
scale.

Methods
We first briefly describe the Gaussian graphical model and summarize the statistical properties
of the inference method proposed by Ren et al [1]. An efficient implementation algorithm is
introduced for this method in the next section.

Basic model
The methodology of this study is based on the Gaussian graphical model (GGM), a probability
model that characterizes the conditional dependence structure of a set of random variables by a
graph. Let X = (X1,X2,� � �,Xp)0 be a multivariate Gaussian random vector with mean μ (we
assume μ = 0 hereafter) and covariance matrix S. A GGM associated with X is a graph G =
(V, E). The node set V = {X1,X2,� � �,Xp} has p components and the edge set E consists of pairs
(i, j), where (i, j) 2 E if there is an (undirected) edge between Xi and Xj. There is an edge
between two nodes Xi and Xj if and only if Xi and Xj are conditional dependent given all other
variables {XK, k 6¼ i, j}. It is well known that the conditional independence between Xi and Xj

given other variables is equivalent to that the corresponding element in the precision matrix is
zero [11,12], i.e., ωij = 0, where the precision matrix is the inverse covariance matrix O = (ωij) =
S−1. Given n i.i.d and samples X(1),� � �,X(n), the goal is to make statistical inference of each edge
in the graph, or equivalently of each ωij.

In the classical low-dimensional setting, in which p is fixed while n goes to infinity, it is nat-
ural to apply the maximal likelihood estimator, the inverse of sample covariance matrix, to
obtain the asymptotic normality estimation of each edge at

ffiffiffi
n

p
rate. However, in modern

applications of biological network, the dimension p is often far larger than n, so the inverse
sample covariance matrix does not exist or is inconsistent. Motivated by the sparseness
assumption of the graph, i.e., most ωij are zeros, Ren et al. and Sun and Zhang tackled the infer-
ence problem from another point of view of the model [1,13].

Assume we are interested in the partial correlation between the ith and jth
variables, we model the conditional Gaussian distribution with index set A = {i, j},

XAjXAc � Nð�O�1
A;AOA;AcXAc ;O�1

A;AÞ; OA;A ¼
oii oij

oij ojj

 !
, where XC represents the coordinates

of X indexed by C and OC,D denotes the submatrix of O with rows and columns indexed by C
and D respectively. This observation motivates us to consider the estimation of individual ele-
ment ωij by estimating the noise level OA,A in the bivariate regression of XA against XAc . To be
specific, we regress the ith and the jth columns XA of the n × p dimensional data matrix X =
(X(1),� � �,X(n))0 against the remaining columns XAc based on the equation XA ¼ XAcβA þ �A,

where the true coefficients βA0 ¼ �O�1
A;AOA;Ac is sparse due to the sparseness structure of the
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graph and rows of �A are i.i.d. Gaussian vectors with mean zero and covariance O�1
A;A. A tuning-

free penalized approach, scaled Lasso was used for this regression to obtain an estimator β̂A of

βA as well as the residue �̂A ¼ XA � XAc β̂A. Then the final estimator ô ij can be formally written

as ÔA;A ¼
ô ii ôij

ô ij ô jj

 !
¼ 1

n
�̂ 0A�̂A

� ��1
. It is worthwhile to note that the method is tuning-free

and thus can avoid the statistical problems arisen from the cross-validation procedure, and the
estimator is proven optimal in the decision theory framework. In particular, when the network
graph is sufficiently sparse, the number of active variables or non-zero edges is not too large rela-
tive to the sample size, i.e., the maximum node degree of the graph satisfies s ¼ oð ffiffiffi

n
p

= log pÞ,
besides the bounded eigenvalue condition onO, the estimator is asymptotically efficient in the

sense that
ffiffiffiffiffiffiffi
nFij

p ðôij � oijÞ!D Nð0; 1Þ; Fij ¼ ðôiiôii þ ô ij
2Þ�1. A closely related quantity, partial

correlation, which has a natural interpretation for the strength of conditional dependence, is for-

mally written as ĝ ij ¼ �ôij=
ffiffiffiffiffiffiffiffiffiffiffi
ô iiô jj

q
with the property

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� ĝ2ijÞ�2

q
ðĝ ij � gijÞ!D Nð0; 1Þ.

Ren et al.’s theoretical study provides asymptotically normal estimation of each edge in
GGM under a minimal sparseness assumption, hence can provide p-value and confidence
interval for each ωij [1].

FastGGM algorithm
Although theoretically Ren et al. have developed a justified tuning-free inference methodology
[1], it is still not very clear if it can handle real high-dimensional datasets in a reasonable time.
While no software was provided by Ren et al., later Chen et al. developed an R package named
“ANTAC” for a naïve implementation of the methodology [14]. However, as the procedure of
the method implies, in order to obtain asymptotically normal estimators of all edges, an order
of O(p2) runs of scaled Lasso regressions need to be implemented, which make the computa-
tion with ANTAC for tens of thousands of variables extremely challenging and even infeasible.

In this study, we develop a tuning-free and efficient algorithm to accelerate the implementa-
tion and make the method of Ren et al. computationally attractive and feasible with tens of
thousands of variables. Specifically, by focusing on the cyclical coordinate descent method for
Lasso regression [15], our new algorithm pre-calculates and saves the sample covariance matrix
which is used for each single run of scaled Lasso regression later. As a result, the new algorithm
is able to avoid repetitive computation of this major step for all of O(p2) runs (or O(sp) runs,
see Discussion below the flowchart) of Lasso and thus its computational cost is significantly
reduced. Our fast algorithm is not an approximate version but provides exact solution of the
method proposed by Ren et al. and thus can accurately generate partial correlation, p-value
and confidence interval of the edge between any two nodes in the studied network. We outline
a detailed procedure below (Fig 1), followed by some discussion on the advantage of our
algorithm:

1. Standardize each variable in data matrix X:

a. Center each column of X to have mean zero and get matrix X_c;

b. Scale each column of X_c by
ffiffiffi
n

p
=kX c�ik for all i = 1,� � �,p, where k�k denotes the vector

‘2 norm, and get matrix X_s;

2. Calculate sample covariance matrices for the purpose of accelerating Lasso regression using
coordinate descent optimization based on covariance updates [16,17], they are:
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a. IP_YX, where IP_YXij is the inner product between the column i of X_c and the column j
of X_s;

b. IP_XX, where IP_XXij is the inner product between the column i and column j of X_s. It
can be rapidly calculated via multiplying each column of IP_YX by

ffiffiffi
n

p
=kX c�ik;

3. Apply scaled Lasso regression (SLR) to each variable i against all other variables ic:

minb2Rp�1 ;s2Rþ
kX ci � X sicbk2

2ns
þ s

2
þ l

X
k2ic jbkj

� �
ð1Þ

a. Fix σ and solve a fast Lasso regression based on the pre-calculated covariance matrices to
get β (See the pseudo code of fast Lasso solver in S1 File);

b. Fix β and update s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kX ci � X sicbk2=n

q
;

c. Iterate steps a and b until σ and β converge to get ŝ and b̂;

Fig 1. Flowchart of FastGGM algorithm.

doi:10.1371/journal.pcbi.1004755.g001
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d. Save b̂ and residual �̂ ¼ X ci � X sic b̂ for variable i respectively into the i column of a
p × pmatrix B = (bij) with 0 diagonal and a n × pmatrix �̂;

4. Estimate conditional dependence relationship for each pair of variables (e.g. i and j, i 6¼ j).
Results from step 3 allow reducing computations of SLR due to the sparse assumption:

a. For the variable i, get residual of SLR against all other variables except variables i and j
(i.e. {i, j}c):

i. If bji = 0 in the saved Bmatrix, directly get �̂i from column i of the pre-saved �̂ matrix;

ii. If bji 6¼ 0, apply SLR (2) in the same way as that in step 3 to obtain the residue �̂i;

minb2Rp�2 ;s2Rþ
kX ci � X sAcbk2

2ns
þ s

2
þ l

X
k2Ac

jbkj
� �

; A ¼ fi; jg ð2Þ

b. For variable j, similarly get residual of regression against variables {i, j}c:

i. If bij = 0 in the saved Bmatrix, directly get �̂j from column j of the pre-saved �̂ matrix;

ii. If bij 6¼ 0, apply SLR (3) to obtain residue �̂j;

minb2Rp�2 ;s2Rþ
kX cj � X sAcbk2

2ns
þ s

2
þ l

X
k2Ac

jbkj
( )

; A ¼ fi; jg ð3Þ

c. Calculate precision matrix for variables i and j:

ô ii ô ij

ô ij ô jj

 !
¼ 1

n

ε̂ 0
i

ε̂ 0
j

 !
ð ε̂ i ε̂ j Þ

" #�1

ð4Þ

d. Estimate p-value and confidence interval for ωij from distribution:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðô iiô jj þ ô2

ijÞ�1
q

ðô ij � oijÞ!
D
Nð0; 1Þ ð5Þ

e. Calculate partial correlation ĝij ¼ �ôij=
ffiffiffiffiffiffiffiffiffiffiffiffi
ôiiôjj

p
;

f. Estimate p-value and confidence interval for γij from distribution:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1� ĝ2ijÞ�2

q
ðĝ ij � gijÞ!

D
Nð0; 1Þ ð6Þ

The advantage of our fast algorithm over the algorithm in the software developed by Chen
et al. is mostly due to steps 2 and 3. First of all, step 2 is completely new and can save computa-
tion in all runs of SLR in steps 3 and 4. To see the reason, we take a close look at the covariance
updates in the coordinate descent optimization for Lasso regression, which is reflected in the
line 15 of the pseudo code (See S1 File). For each single run of Lasso regression, inner products
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of response and design matrix as well as sample covariance of the design matrix need to be
computed in advance (O(np2) operations). Although initial computation procedures for differ-
ent Lasso regressions in steps 3 and 4 are slightly different, they all rely on a single sample
covariance matrix of the data matrix X. Realizing this fact, the number of operations can be sig-
nificantly reduced from O(np4) (or O(nsp3)) to only O(np2) since there are O(p2) (or O(sp))
runs of Lasso in steps 3 and 4. Secondly, as briefly commented by Ren et al. [1], the extra p runs
of scaled Lasso in step 3 can further significantly save the computation in step 4 and reduce the
required number of runs of scaled Lasso from O(p2) to O(sp). This is because whenever bji = 0,
the solution of scaled Lasso applied to the ith variable against all others (saved in step 3) is
equal to that of SLR in (2). Since the maximum node degree is s, we expect there are no more
than s nonzero elements in each column of B.

Besides the fast algorithm, we develop FastGGM package with R language and two libraries,
“Rcpp” [18] and “RcppParallel”, which help implement C++ functions in R and significantly
speed up the loop operation. The package has three main functions: “FastGGM” is for analyz-
ing GGM with one CPU, “FastGGM_parallel” is for analyzing with parallel computation, and
“FastGGM_pairs” is for analyzing the conditional dependence for specific variable pairs. The
first two functions output matrices of precision and partial correlation as well as the corre-
sponding p-value and confidence interval for every pair of variables. The last function outputs
vectors of precision, partial correlation, p-value, and confidence interval for the specified vari-
able pairs. According to Section 5.1 in Ren et al.’s work, the default value of penalty parameter

λ in our package is set as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2� logðp= ffiffiffi

n
p ÞÞ=n

p
.

Results

Simulation analysis
To illustrate the efficiency of FastGGM, we simulated data as follows: Firstly, we generated the
upper triangular of a p × p sparse precision matrix O with diagonal element being 4, where the
probability of each off-diagonal element being nonzero was π and its value was randomly set as
0.3, 0.6 or 1 with equal probability whenever the element is nonzero. Next, we madeO symmet-
rical and set the elements of its bottom right block, whose size was p

2
� p

2
, as twice of the ele-

ments of its top left p
2
� p

2
block. Finally, we inversed O to get a covariance matrix, and

generated a n × p data matrix X by randomly sampling from a multivariate Gaussian distribu-
tion N(0,O−1). Note thatO is invertible with high probability by our construction. Eleven mod-
els with different combinations of parameters {π, p, n} were considered in our data simulation
(See Table 1).

Next, we estimated the underlying precision matrices from the simulated data matrices. For
each precision matrix, we randomly generated 100 data matrices and respectively applied
FastGGM on them. Then we compared differences between the true precision matrix and 100
estimated ones. We calculated Pearson correlation coefficient (PCC) and Chebyshev distance
(ChebDist, defined as the greatest difference along any coordinate dimension) between two
vectors consisting of the upper triangular entries (because the matrices are symmetric) to mea-
sure the differences. Ideally, a good estimation should present large PCC and small ChebDist.
Table 1 shows the mean differences of 100 estimations for each precision matrix. It is shown
that when p is fixed (e.g. 400) and n increases, PCC gets larger and ChebDist gets smaller;
while n is fixed (e.g. 400 or 800) and p increases, PCC turns smaller and ChebDist becomes
larger. This means that data with more samples or less variables are better for the inference of
GGM. Besides, we evaluated the estimation of nonzero entries in the precision matrix, which
could be considered as conditional interactions between the variables. We calculated mean
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type I error of 100 estimations at the level of 0.01 using the output p-values. The results in
Table 1 show that FastGGM controls type I error well. In addition, we generated Receiver
Operating Characteristic (ROC) curve, which presents the true-positive rate against false-posi-
tive rate at various threshold settings, using the estimated p-values and the truth of zero and
non-zero entries in the simulated precision matrix, and then computed the Area Under the
Curve (AUC) to measure the performance of estimation. The larger AUC represents the better
estimation. Table 1 also lists the mean AUC of 100 estimations for each precision matrix
model, all AUCs are large enough to demonstrate that the estimations are accurate, and when
p is fixed AUC consistently goes higher as n increases, which again indicates that large sample
size is beneficial to the estimation of conditional interaction relationship among variables.
Note that Ren et al. had compared the estimator of the entire sparse precision matrix via the
current available algorithm after certain data-driven thresholding procedure with the existing
‘1 penalized methods, such as GLasso and CLIME, and reported better performance [1], we
additionally compared with another Spectral method proposed by Honorio and Jaakkola with
an ‘2 penalty [19]. As a result, FastGGM outperformed Honorio’s method on estimating the
sparse precision matrix after the thresholding procedure (See results in S2 File).

FastGGM is designed to accelerate the inference of GGM on large-scale data sets based on
the theoretical work proposed by Ren et al [1]. Note that Chen et al. developed the R package
ANTAC, in which a function ANT_GGM is a naïve implementation of the original method
[14]. In simulation studies, we compared the computational time of FastGGM on each simula-
tion data set with the ANT_GGM and another fast stock method GLasso [4] that was imple-
mented in R package “huge” [20]. Table 2 shows that FastGGM is much faster than
ANT_GGM on all data sets. In particular, our algorithm is still feasible for even p = 5000 or
10,000 while ANT_GGM clearly cannot handle the settings. It is worthwhile to point out that
besides the structural advantages of our algorithm over the naïve one implemented by
ANT_GGM, there is another important aspect for saving the computational time complexity:
we implemented C++ functions in R environment for efficient loop computation with the help
of Rcpp and RcppParallel libraries. On the other hand, Table 2 also shows that the computa-
tional time of FastGGM is comparable with huge_glasso and even faster when applying parallel
computing with 10 CPUs. The parallel computation is another big advantage of FastGGM and
makes it more feasible in real applications. Besides, note that GLasso is only able to provide
point estimation of the precision matrix without inference results, while FastGGM can addi-
tionally provide p-values and confidence intervals.

Table 1. Performance of estimating the precisionmatrix.

Π p n PCC ChebDist Type I error (p-value < 0.01) AUC

0.04 100 400 0.946 1.793 0.0088 0.878

0.02 200 400 0.903 1.938 0.0092 0.872

0.01 400 100 0.592 4.925 0.0073 0.721

0.01 400 200 0.725 3.023 0.0086 0.806

0.01 400 400 0.832 1.995 0.0093 0.879

0.01 400 800 0.905 1.356 0.0095 0.936

0.005 800 400 0.730 2.107 0.0093 0.886

0.005 1000 800 0.806 1.423 0.0096 0.941

0.0025 2000 800 0.695 1.520 0.0096 0.946

0.0001 5000 800 0.523 1.608 0.0097 0.946

0.0005 10000 1000 0.436 1.462 0.0097 0.960

doi:10.1371/journal.pcbi.1004755.t001
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Global gene association networks in childhood asthma
We applied our algorithm on a public gene expression microarray data set, E-MTAB-1425
[21], which was measured from the human lymphoblastoid cells of 258 asthmatic children and
134 healthy children, to estimate the global gene association networks in normal and disease
cells and compare the differences between the two networks.

We downloaded the normalized data from the EMBL-EBI ArrayExpress database [22], and
averaged the expression values of probes that represented the same genes in each sample. Then
we removed genes that had a mean or standard deviation ranked below 40%, and remained the
expression data of 10,049 genes. Next, we filtered 111 genes that were highly associated with
either age or gender (FDR< = 0.01 under univariate regression), and generated two expression
matrices of 9,938 genes for the disease and normal samples. After this preprocessing, we
respectively utilized FastGGM on the two matrices to estimate the corresponding GGMs of
genes. From the results we selected significant gene pairs, whose partial correlations had FDR
< = 0.01, and constructed the gene association networks under the two conditions. A Venn
diagram of the edges and nodes in the two networks (Fig 2A) showed that the disease network
had more edges than the healthy network (11,139 vs 8,373), and only 561 edges were over-
lapped, although there was a large proportion of nodes overlapped between the two networks.
These indicated the associations among genes changed a lot when the disease occurred. Com-
paring the vertex degrees (i.e. the number of nearest neighbors of a vertex) of the two networks,
we found that the disease network had more genes with large degrees (Fig 2B). Besides, the dis-
ease network consisted of 276 clusters, which represented the maximal connected sub-net-
works, while the healthy network had 453 clusters. These observations indicated that the
connection of genes in disease samples was stronger than that in healthy samples.

Analyzing differences of gene networks between the asthmatic and healthy conditions could
be helpful for understanding the genetic mechanisms of the disease. Therefore, we merged
18,390 unique edges that only belonged to one network to construct a differential gene associa-
tion network. For simplification and visualization, we selected the top 3 hub genes and
extended with their nearest neighbor genes to generate a differential sub-network, which
included 80 genes and 84 edges (Fig 3). In this network, many genes have been reported rele-
vant to asthma. For example, TNF/TNF-α is a pro-inflammatory cytokine that has been impli-
cated in many aspects of the airway pathology in asthma, and anti-TNF-α has been
demonstrated as a potential therapy in severe refractory asthma [23];MIF plays important
function in the immune pathogenesis of asthma via the promotion of TH2 responses, and its

Table 2. Comparison of computational time.

Π p n FastGGM_parallel with 10 CPUs (s) FastGGM (s) Huge_glasso (s) ANT_GGM (s)

0.04 100 400 0.064 0.395 0.593 819.441

0.02 200 400 0.236 1.488 1.108 3502.05

0.01 400 100 0.281 1.465 6.213 13780.36

0.01 400 200 0.516 2.735 6.406 15818.482

0.01 400 400 1.079 6.095 4.829 20306.049

0.01 400 800 3.14 20.876 4.139 31023.622

0.005 800 400 7.565 50.136 30.542 202324.949

0.005 1000 800 33.083 123.483 50.366 576136.41

0.0025 2000 800 175.816 922.169 457.981 3196656.58

0.0001 5000 800 5799.889 9902.518 8431.532 -

0.0005 10000 1000 48702.67 74007.22 59084.709 -

doi:10.1371/journal.pcbi.1004755.t002
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inhibition may be therapeutically beneficial to asthma [24]; The hub gene CLK1 has been
shown significantly down regulated in alveolar macrophages by diesel exhaust particles, which
can induce or aggravate pulmonary diseases including asthma [25]. In addition, functional
analysis on this sub-network indicated the most significantly enriched KEGG pathway of these
inclusive genes was “Protein processing in endoplasmic reticulum” (Fisher’s exact test, p-
value = 2e-8). It has been approved that endoplasmic reticulum stress and the related signaling
networks are important modulators of inflammatory and immune responses in the develop-
ment of allergen-induced bronchial asthma, especially severe asthma [26]. In short, our analy-
sis on the gene expression data of asthma manifests that FastGGM is useful for studying large-
scale biological networks.

Synaptic protein networks in Alzheimer’s disease (AD)
Then we applied our algorithm on a proteomic data set coming from 59 AD subjects with mild
to moderate dementia severity. The objective of this study was to use targeted mass spectrome-
try to determine levels of a number of synaptic proteins and to construct networks of these pro-
teins. Post-mortem tissue samples from the dorsolateral prefrontal cortex (DLPFC) of the
subjects were obtained from the University of Pittsburgh Alzheimer Disease Research Center
Brain Tissue Bank. It was of interest to examine the synaptic protein networks for the AD sub-
jects and to detect modules of highly interconnected proteins from the network to elucidate the
disease physiology.

Protein from gray matter homogenates were assayed in triplicate using targeted mass spec-
trometry with a stable isotope labeled mammalian brain standard to quantify 283 peptides
from 192 synaptically expressed proteins. In the data processing step, for each protein, a pro-
tein-level measure was derived by calculating the weighted average of all standardized peptide
measures mapped to that protein, where the weights are inversed to the percent of coefficient
of variance (CV) of the peptide measures. S1 Table provides the protein-level data for these 59

Fig 2. Comparing gene association networks under asthmatic and healthy conditions. A) Venn diagram of the edges and nodes in the asthmatic and
healthy networks. B) Distributions of vertex degree in the two networks.

doi:10.1371/journal.pcbi.1004755.g002
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AD subjects (protein names were coded). We then applied FastGGM to construct a partial-cor-
relation-based protein network for all the 59 AD subjects. For each pair of proteins, we tested
whether the partial correlation was zero or not. As a comparison, we also performed marginal-
correlation-based analysis to examine the co-expression network of the genes or proteins using
the weighted gene co-expression network approach (WGCNA) [27].

We used bootstrap aggregation suggested by Schafer et al. to achieve more reliable and sta-
ble estimation [28], since the sample size in this case is small (n = 59). Specifically, we boot-
strapped 200 times (with replacement) and computed the graph using FastGGM for each
bootstrap. We then averaged over the 200 graphs and obtained a “bagged” partial correlation

Fig 3. Sub-network of differential gene-gene associations between asthmatic and healthy conditions. The sizes of nodes are proportional to their
degrees.

doi:10.1371/journal.pcbi.1004755.g003
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matrix for the AD group. We then tested whether the partial correlation is zero or not for each
pair of proteins. In addition, we performed module detection using the hierarchical clustering
approach based on partial-correlation-based network matrix and marginal-correlation-based
network matrix, respectively.

Fig 4 presents the heat map of the partial-correlation-based network constructed through
FastGGM and the heat map of the marginal-correlation-based network constructed through
WGCNA. We selected the same parameters, such as the soft power and minimummodule size,
in both network construction and module detection. With the marginal correlation approach,
most of these synaptic proteins are found strongly connected (reflected by the overall red block
in the heat map). There are two modules being detected. However since the entire correlations
are so strong, these two modules are not really separable. In contrast, with the partial correla-
tion approach, the overall network is much sparser. There are four modules being detected.
Since the partial-correlation-based network quantifies the correlation between each pair of pro-
teins with the effects of other proteins excluded, it only keeps the correlations due to direct
causal relationships between the protein pairs, while the correlations originated via intermedi-
ate proteins are eliminated. This provides more useful information in elucidating the disease
physiology, especially in the case when there are strong marginal correlations among most of
the proteins so that the true underlying causal correlations are undistinguished.

With a FDR threshold of 0.001, 62 pairs of proteins are identified to have significant partial
correlations, while 15289 pairs have significant marginal correlations. Table 3 lists the top 10
pairs of proteins that have the most significant FDRs of partial correlations, and the marginal
correlations as well as corresponding p-values and FDR values are also listed for comparisons.

Fig 4. Heat maps of synaptic protein network in AD cohort where red indicates stronger correlation and the white indicates weaker correlation.
The left and top color bars indicate the module membership of each protein (grey colored proteins do not belong to any module), with the corresponding
hierarchical clustering dendrograms plotted. The left is the heat map based on partial correlations and the right is the heat map based on marginal
correlations.

doi:10.1371/journal.pcbi.1004755.g004
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It is interesting to point out that although most protein pairs with significantly strong partial
correlations also have strong marginal correlations, there is a special pair, SLC25A3 ~
VGLUT3, which have strong negative partial correlation but weak marginal correlation. Actu-
ally, VGLUT3, which is also known as SLC17A8, belongs to solute carrier transporter super-
family and transports substrates in cells like SLC25A3. And the genomic locations of the two
protein genes are very close on chromosome 12. These proteins are worthy of additional verifi-
cations for their interaction and functions in the AD physiology. A simple statistical explana-
tion of this interesting phenomenon, that two variables have significant partial correlation but
non-significant marginal correlation, could be like this: some confounders affect the correla-
tion between the two variables through other variables, after adjusting for the confounders, i.e.
conditioning on other variables, their correlation may be amplified.

The new algorithm finished GGM estimation over all 200 bootstraps with 4 CPUs in about
10 minutes. This example demonstrates that in the situation where the sample size and/or the
number of variables are small, our FastGGM is still attractive, especially when resampling tech-
niques are used with a large number of Gaussian graphic model estimations being performed.

Discussion
Our fast algorithm provides an opportunity for researchers to study large-scale networks, such
as gene/protein networks, using GGM in practice. Indeed, it is an exact implementation to the
asymptotically normal and efficient estimation established by Ren et al [1], and hence is statis-
tically sound. In addition, computationally the results show that the inference of partial corre-
lation between genes becomes feasible for whole-genome data sets or small data sets that need
resampling or permutations. It significantly differs from existing fast algorithms or methods on
GGM that only can provide statistical estimation of the edge strength between graph nodes
without the ability to do statistical inference.

There are several limitations of our method. First, the theoretical property of the method
relies on the sparseness assumption of precision matrix, that is, the maximum node degree
s ¼ oð ffiffiffi

n
p

=log pÞ. While in many biological applications this assumption makes a lot of sense, it
is impossible to obtain confidence interval with length Oð1= ffiffiffi

n
p Þ if the sparseness assumption

is violated no matter what method is applied (See details in [1]). Secondly, our inference result
of conditional dependence relies on the Gaussian assumption on the data, although the infer-
ence of partial correlation may be still valid for slightly general distributional assumptions.

Motivated by other biological questions, we can extend our method on several aspects. First,
It is generally believed that the architecture of cellular interactome can be re-wired under

Table 3. Top 10 pairs of proteins with significant partial correlations from the AD study.

Protein1 Protein2 parCor p.parCor fdr.parCor marCor p.marCor fdr.marCor

CAMK2A PSMA1 0.93 0 0 0.99 1.50E-53 6.80E-50

RAB10 RAB1A 0.83 3.50E-88 3.20E-84 0.98 2.80E-42 1.40E-39

MDH1 MDH2 0.81 1.60E-76 9.70E-73 0.99 1.20E-49 3.60E-46

RAB3A SLC25A3 0.78 2.20E-53 1.00E-49 0.92 1.40E-24 2.90E-23

SLC25A3 VGLUT3 -0.76 2.30E-44 8.40E-41 0.0039 0.98 0.98

SLC25A3 SLC25A5 0.74 1.00E-35 3.10E-32 0.93 3.40E-26 9.50E-25

FLOT1 FLOT2 0.73 7.70E-32 2.00E-28 0.88 8.80E-20 7.50E-19

VDAC1 VDAC2 0.71 1.10E-28 2.50E-25 1 4.80E-59 8.80E-55

AP2A2 AP2B1 0.66 9.00E-19 1.80E-15 0.91 3.20E-23 5.20E-22

AP2A1 AP2B1 0.64 2.10E-16 3.90E-13 0.97 1.60E-37 3.30E-35

doi:10.1371/journal.pcbi.1004755.t003
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different conditions, such as environment, tissue or disease. Analyzing differential networks
between conditions can help to elucidate the molecular mechanisms of complex biological pro-
cesses [3]. This method will be especially helpful for identifying novel biomarkers or biological
pathways for further experimental evaluation to uncover the regulation of multifactor and
chronic diseases such as cancer. In our analysis on the asthma data, we respectively built two
global gene networks for the disease and healthy samples under the GGM framework with a
FDR threshold for determining the existence of edges, and then compared the topological
changes with the unique edges that belonged to only one of the networks. Although some func-
tional interactions with relevance to the disease were identified, this differential analysis could
be improved by some rigorous statistical tests for the difference of conditional dependence
over different conditions. Moreover, we believe that larger sample sizes of the cases and con-
trols will increase the power of differential tests and promote the applications. Secondly, as
pointed out, noisy genes in the set of conditional variables may introduce spurious dependen-
cies and consequently false edges in the estimated gene networks [29,30], hence selecting a
proper set of variables on which the correlation is conditioned is critical in the study of high-
dimensional GGM. Thirdly, the rapid advances in data generation technologies have been pro-
ducing large amounts of omic data of biological systems, such as the genetic, transcriptomic,
proteomic, epigenomic, and phenomic data. The integrative analysis of the multi-omic data
helps generate systematic insights into mechanisms of complex biological processes and diseases,
filter the false positives introduced by the heterogeneous data sources, and provide meaningful
candidate markers for further studies. Among various analytical approaches, graphical model has
become a popular model to handle the heterogeneous data. For example, a few papers utilized
GGM on the genetic effects gene expression quantitative loci (eQTL) data to study the condi-
tional dependence among a set of gene expressions adjusting for genetic effects and demonstrated
that the model led to more interpretable gene networks than standard GGM based on gene
expression data alone [14,31–33]; some literature adopted GGM to jointly analyze the micro-
RNA-mRNA, copy number-mRNA-methylation dependencies and their associations with clini-
cal outcomes [34–36]. These areas are of great meaning and interest, yet beyond the scope of the
current study, we will explore in future studies. Furthermore, we will collaborate with biologists
to experimentally validate important findings by manipulating target gene or protein expression
and examining the expression of genes or proteins from the same biological networks based on
known interaction between target gene and co-expressed genes.

In conclusion, we developed a novel efficient algorithm, FastGGM, for the statistical infer-
ence of Gaussian graphical model. Through the simulation studies, we demonstrated that our
new algorithm is able to speed up the current available algorithm in several orders of magni-
tudes without losing any accuracy. Then we applied it on two real data sets and successfully
constructed the global gene/protein networks for the diseases. FastGGM can become a power-
ful tool of network analysis under the framework of conditional dependence, especially for
high-dimensional biological data. It has been implemented in an R package, which can be
downloaded from http://www.pitt.edu/~wec47/FastGGM.html.

Supporting Information
S1 File. Pseudo code of fast Lasso regression using coordinate descent based on covariance
updates.
(PDF)

S2 File. Comparing FastGGM with Honorio’s Spectral method on estimation of the sparse
precision matrices in simulations.
(PDF)
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