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Abstract

Motivation

Cellular identity and behavior is controlled by complex gene regulatory networks. Transcrip-

tion factors (TFs) bind to specific DNA sequences to regulate the transcription of their target

genes. On the basis of these TF motifs in cis-regulatory elements we can model the influ-

ence of TFs on gene expression. In such models of TF motif activity the data is usually mod-

eled assuming a linear relationship between the motif activity and the gene expression level.

A commonly used method to model motif influence is based on Ridge Regression. One

important assumption of linear regression is the independence between samples. However,

if samples are generated from the same cell line, tissue, or other biological source, this

assumption may be invalid. This same assumption of independence is also applied to differ-

ent yet similar experimental conditions, which may also be inappropriate. In theory, the inde-

pendence assumption between samples could lead to loss in signal detection. Here we

investigate whether a Bayesian model that allows for correlations results in more accurate

inference of motif activities.

Results

We extend the Ridge Regression to a Bayesian Linear Mixed Model, which allows us to

model dependence between different samples. In a simulation study, we investigate the dif-

ferences between the two model assumptions. We show that our Bayesian Linear Mixed

Model implementation outperforms Ridge Regression in a simulation scenario where the

noise, which is the signal that can not be explained by TF motifs, is uncorrelated. However,

we demonstrate that there is no such gain in performance if the noise has a similar covari-

ance structure over samples as the signal that can be explained by motifs. We give a mathe-

matical explanation to why this is the case. Using four representative real datasets we show

that at most*â€‹40% of the signal is explained by motifs using the linear model. With these

data there is no advantage to using the Bayesian Linear Mixed Model, due to the similarity

of the covariance structure.
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Availability & implementation

The project implementation is available at https://github.com/Sim19/SimGEXPwMotifs.

Introduction

Cell type-specific gene expression programs are mainly driven by differential expression and

binding of transcription factors (TFs). The human genome contains *1, 600 TFs, which rep-

resent 8% of all genes [1]. These proteins bind DNA in a sequence-specific manner and typi-

cally have a 1000-fold or greater preference for their cognate binding site as compared to other

sequences [2]. By binding to cis-regulatory regions, i.e. promoters and enhancers, they can

control the chromatin environment and the expression of downstream target genes [1]. Cell

type identity is determined by the expression of a select number of TFs. This is evidenced by

the growing number of cell reprogramming protocols that rely on the activation of a few TFs

to reprogram the cell state, for instance from a somatic cell to a pluripotent stem cell [3, 4].

Mis-regulation of TF expression or binding is associated with a variety of diseases, such as

developmental disorders and cancer [3]. Hence, it is of great importance to understand the

mechanisms of gene regulation driven by TFs.

TFs bind to specific DNA sequences called sequence motifs. These motifs are relatively

short, with a length usually ranging from six to twelve nucleotides, and flexible in the sense

that several TFs can bind to the same motif [1]. The binding sites of TFs can be determined

genome-wide using chromatin immunoprecipitation with specific antibodies followed by

high-throughput sequencing (ChIP-seq). Although ChIP-seq studies suggest that many TF

binding events appear to be not functional, the presence of a sequence motif is still predictive

of gene expression [1]. With a linear regression model, in which the sequence information is

used to model gene expression, one can learn the TFs that play a major role in gene regulation

[5–9]. Typical approaches either use linear regression with L2
-regularization (Ridge Regres-

sion) or a combination of L1
- and L2

-regularization (ElasticNet). These approaches tend to

explain only a small fraction of the variation of gene expression. However, due to the large

number of genes, the coefficients are generally highly significant and can be interpreted as a

measure of TF activity.

One of the key assumptions of a linear regression model is the independence between

samples. If samples originate from the same cell line, tissue, or other biological source, this

assumption may be invalid. In addition, related cell types will also have similar gene expression

profiles, where the expression of many genes will be highly correlated.

Here, we propose a Bayesian Linear Mixed Model that builds upon the previously described

Bayesian Ridge Regression [5, 6], but allows for correlated motif activity between samples. Our

model relaxes the rigid independence assumption common to earlier approaches Fig 1.

We compare our full Bayesian Linear Mixed Model with Bayesian Ridge Regression on sim-

ulated data, for which we control the degree of correlation between samples. We show that the

Bayesian Linear Mixed Model formulation outperforms the Ridge Regression for data with

randomly distributed noise. This is the case especially for highly correlated data. We further

show that the Bayesian Linear Mixed Model loses its superiority over the Ridge Regression if

only a small part of the gene expression signal can be explained by motif influence, while other

influential factors contribute largely to the gene expression. We confirm the observations

made during the simulation study on four real-world datasets, in which a significant amount

of the biological signal cannot be uniquely explained by a linear combination of motifs. We
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can explain this phenomenon mathematically and give more technical details regarding the

computation of the model.

Methods

Here, we introduce the mathematical models that are used throughout this paper. First, we

introduce the linear model that represents the signal of expression data YG,C as a linear combi-

nation of motif scores and their influential weights. Second, we present a Bayesian perspective

on the model. Finally, we show that the Ridge Regression formulation is a special case of the

newly introduced Bayesian formulation. We then outline in detail how we simulate data,

which we use to compare the complete Bayesian perspective and the Ridge Regression model.

In the following sections we will interchangeably use sample or condition.

Inference of motif activities

The general model used throughout this paper models gene expression yg,c in condition c as

a linear function of motif scores mt,g of motifs t = {1, . . ., T}, weighted by the motif influence

ωt,c, at the promoter region of gene g:

�yg;c ¼
XT

t¼1

mt;got;c þ noise; ð1Þ

with the normalized gene expression data �yg;c ¼ yg;c � �yg � �yc, where �yg is the average signal

over the promoter of gene g over all conditions C and �yc is the average signal of condition c
over all genes G. In the following, we will refer to the normalized gene expression simply as

YG,C. The term “noise” represents all signal that cannot be explained by the model, i.e. the

Fig 1. Project overview. We model the motif influence on gene expression signal in different conditions with a linear combination of the motif scores

in each promoter region of the gene. We introduce the Bayesian Linear Mixed Model that allows for correlation between samples in contrast to the

Ridge Regression, which is commonly used to model motif activity.

https://doi.org/10.1371/journal.pone.0231824.g001
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linear combination of the motif scores MT,G. This can be any technical noise, motif influence,

for which the linear assumption might be too simplistic, but also any other source that drives

the gene expression yg,c and is not modeled. The model was originally introduced by [5] and

subsequently expanded by [6].

For the application of the above model to the H3K27ac dataset, we re-use the above nota-

tion, where G represents the dimensionality in enhancer space (not gene space). Instead of

computing motif scores MT,G in the promoter region, we compute them in the enhancer

region and the expression signal YG,C is the H3K27ac ChIP-seq signal.

Bayesian Linear Mixed Models

The main idea behind a Bayesian formulation is to include prior knowledge about the data,

called the prior. Here, we model ωt,c, the influence of motif t 2 {1, . . ., T} in condition c 2 {1,

. . ., C}, as a normally distributed prior with mean zero, with σ2 IT being the covariance over all

motifs and VC the covariance over all conditions:

vecðoT;CÞ � N ð0TC; s
2VC � ITÞ: ð2Þ

We use the vector notation for the matrix normal distribution, for which we make use of

the Kronecker product between the covariance matrices. Another mathematical notation of

the model is MN T;Cð0T;C; s2IT;VCÞ. Note that in the vectorized notation the mean 0T,C is writ-

ten in vector notation, too: vec(0T,C) = 0TC.

In this paper, we assume independence between motifs. Extending the assumption to

dependence between motifs with covariance matrix C could easily be implemented.

Combining the prior knowledge about ωT,C in Eq (2) with the model in Eq (1), it follows

that the expression data YG,C conditioned upon ωT,C obeys:

vecðYG;CjoT;CÞ � N ð0; s2VC �PG þ dSC � IGÞ; ð3Þ

with PG ¼ M⊺
T;GMT;G, where ⊺ is the transpose. Hence, the covariance between genes is driven

by the similarity among motif counts MT,G. SC is the covariance of noise between conditions

and δ IG is the covariance matrix between genes. Thus, we assume independence between

genes in the noise term. The posterior mean of the motif influence ωT,C, denoted ôT;C, given

the expression vec(YG,C) then reads:

vecðôT;CjYG;CÞ ¼ ðVC �M⊺
T;GITÞ½s

2VC �PG þ dSC � IG�
� 1vecðYG;CÞ: ð4Þ

This model is explained in more detail in S1A Appendix.

Special case: Ridge regression. Ridge Regression, also known as Tikhonov Regulariza-

tion, prevents over-fitting in a linear regression by using an L2
-regularization on the estimated

parameters. For more details on L2
-regularization and Ridge Regression, we refer the reader

to [10]. Note that in a Ridge Regression the samples are assumed to be isotropic, i.e. indepen-

dent and identically distributed. The covariances in the model, VC and SC, therefore reduce to

identity matrices, which only differ in the constant with which they are multiplied:

VC ¼ s
2IC ; ΣC ¼ dIC: ð5Þ

With the above model we formulated a Bayesian Linear Mixed Model to explain the motif

influence on expression data YG,C based on motif scores. The Bayesian Linear Mixed Model

provides a relaxation of the so far used assumption of independence in Ridge Regression. It

allows for modeling dependency structures between conditions and in the noise, which can

increase the power of the model, as shown in the Results section. In the following, we will refer
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to the model as Bayesian Linear Mixed Model when allowing for correlation between samples

and noise, i.e. the covariance matrices VC and SC are not restricted except for being symmetric

positive definite matrices. We refer to the model as Ridge Regression when we specifically

assume independence between conditions and noise, i.e. VC = σ2 IC, and SC = δ IC.

Code availability

The project implementation (https://github.com/Sim19/SimGEXPwMotifs) is provided in the

programming language Python [11, 12], where we make use of the packages pandas [13],

matplotlib [14], seaborn [15] and numpy [16].

Model fitting

We run the optimization of Eq (3) to compute Eq (4) with the Python package limix [17–19]

and use the module VarianceDecomposition(), which we use with the parameter set-

tings for restrictions on VC to “freeform”, which models concurrently SC to be of “random”

shape. These parameter settings only restrict VC and SC to be positive-definite matrices, with
1

2
C � C þ 1ð Þ parameters to be estimated. With these settings, there are no restrictions on the

rank of the matrix, i.e. the degree of correlation among samples. For the optimization start, VC

and SC are both set to be the estimated covariance matrix of Y⊺
G;C, each divided by half. The

optimization is based on the L-BFGS algorithm to minimize the log likelihood with an L2
-reg-

ularization along the non-diagonal elements of the covariance matrix SC, which is also known

as isotropic Gaussian prior with zero mean. The implementation makes use of the reduction of

computational complexity by using the Kronecker product notation and its identities for the

case of matrix variate data, which is highly efficient [18, 19]. For more detailed information

about Linear Mixed Models and its implementation in limix, refer to [20]. We run Ridge

Regression in the simulation study with the Python implementation in the package

sklearn.linear_model.RidgeCV() [21]. For the data application, we make use of

the limix.VarianceDecomposition() implementation with the setting “freeform”

for VC and “random” noise for SC for fitting the Bayesian Linear Mixed Model. For the com-

putation of Ridge Regression, we restrict VC and SC to be identity matrices. Both computa-

tions (limix.VarianceDecomposition() with restrictions for VC and SC to identity

matrix and sklearn.linear_model.RidgeCV()) yield the same results (see S1 Fig).

Visualization

For the visualizations in this article, we work with the plotting facility from pandas and

seaborn [15]. For boxplots and other results from the simulation study, we make use of the

R-ggplot2 package [22] and R-cowplot [23]. The visualization of clustered data is done

with python’s seaborn.clustermap() using the “complete” method for the dendogram

computation on Euclidean distance.

Simulating data

For the simulation study we generate data based on the model introduced in Eqs (1)–(4), given

a covariance matrix VC. The prior weight ~oT;C and the expression signal YG,C are generated

according to Eqs (2) and (1). The expression data YG,C from Eq (1) is then used to estimate VC

and SC. Based on these computations, the posterior motif influence ôT;C is then computed and

compared to the simulated motif influence ~oT;C with a Pearson correlation [24] over all condi-

tions. We provide the same analysis with the Spearman’s rank correlation [25] and the Mean-

Squared Error S1 and S3 Figs. As gene set we use the 978 landmark genes from the LINCS
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project [26]. In a secondary simulation we increase the size of the gene set to 5000 genes,

which originate from an analysis of the most variational genes across all samples from the

GTEx project (Genotype Tissue Expression, https://gtexportal.org/home/). We generate data

for C = {10, 30, 50, 70, 100, 120} conditions.

Covariance types of VC

For the generation of simulated motif influence ~oT;C (Eq (2)), we need to give a covariance

matrix σ2 VC� IT. As the covariance along TFs is modeled to be isotropic (independent and

identically distributed), one can generate ~ot;C randomly T times with ~ot;C � N ð0; s2VCÞ. For

the covariance between the weights ~oT;C in Eq (2) and hence expression data YG,C in Eq (3),

we consider four types of covariance matrices for VC, according to assumptions made about

the correlation between samples: (i) Isotropic V: same number on the diagonal, all off-diagonal

elements set to zero. Samples drawn from such a covariance matrix are independent. This

matches the implicit assumption of the Ridge Regression. We will refer to this as “V: indepen-

dent”. (ii) Full matrix V with all positive off-diagonal elements. Samples drawn from such a

covariance matrix are positively correlated, without any specific (block) structure. This is a

clear mismatch with the assumptions underlying Ridge Regression, and results are expected to

favor the (full) Bayesian Linear Mixed Model. We will refer to this as “VC: correlated (no

groups)”. (iii) Block structure with many blocks, each modeling a group of biological repli-

cates. Samples within each block are highly correlated, with small correlation values between

the blocks. Blocks vary in size. Average block size is two. We will refer to this as “VC: correlated

(many groups)”. (iv) Block structure similar to (iii), but now with just two blocks. We will

refer to this as “VC: correlated (two groups)”.

For the generation of the correlated covariance matrices with groups, we provide pseudo-

code in S2B Appendix. An exemplary visualization of a covariance matrix with samples that

correlate in many groups is given in Fig 2A and 2B, left panel.

Noise SC–unstructured and structured

To generate the gene expression data YG;Cj~oT;C, we compute the signal as the product of the

motif scores MT,G (explained hereafter) and their weights ~oT;C (explained previously). Due to

the randomness in the signal that is not explained by motifs, we add some random noise,

which is drawn from a normal distribution with covariance δ SC� IG. We generate SC in two

different ways: (i) we assume no particular structure, SC,random, which is a matrix filled with

values drawn from a standard normal distribution, multiplied with itself. This is the Wishart

distribution with C degrees of freedom. (ii) We add the same covariance matrix VC that is used

to model the correlations between the conditions to SC,random from (i): SC,VC, ρ = SC,random+

ηρ VC. The noise matrices are then normalized by their trace. The detailed description of the

generation of the noise matrices as well as the control of structuredness in it is given in S2B

Appendix. For the simulation study depicted in Fig 2 and discussed in the Results section we

generate the structured noise with ρ = 0.7. A visualization of both types of noise matrices is

given in Fig 2A and 2B, both in the respective right panel.

Signal-to-noise ratio. Previous research has shown that roughly 10-20% of the signal of

gene expression can be explained by motif influence in the promoter region [6]. We therefore

generate the data in such a way, that 20% of the signal in expression data YG,C is due to motifs,

and the rest unexplainable noise. We achieve this by adjusting the parameter σ2 and δ. We fix

δ and determine σ2 by bisection such that it explains 0.2 of the variance coefficient (Eq (1)).

More details can be found in S2B Appendix.

PLOS ONE Bayesian Linear Mixed Models for motif activity analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0231824 May 1, 2020 6 / 25

https://gtexportal.org/home/
https://doi.org/10.1371/journal.pone.0231824


Fig 2. Simulation study. Data is generated over G = 978 informative genes and T = 623 motif scores and 100 repetitions, with either

unstructured noise SC (A,C) or structured noise SC (B,D). (A,B): exemplary covariance matrix between samples, VC, and noise

matrix SC being unstructured (A) or structured (B). Data is shown for C = 50 samples with a covariance between conditions with

k = 25 blocks, i.e. 25 sample groups, in which samples are completely correlated. (C) and (D): The Pearson correlation values

between generated and estimated motif-condition-weights are shown for different degrees of correlation between samples. The

values are depicted per method used to predict the motif-condition-weights: the Bayesian Linear Mixed Model (BLMM, in red),

which allows for dependence between samples, and the Ridge Regression (RIDGE, in blue), which assumes independence between

samples. Data is generated with the following covariances between samples. (i) independence between samples, VC = IC, (ii)

unrestricted correlation between samples, (iii) correlated data with many sample groups, and (iv) highly correlated samples,

assuming samples originate from two biologically different samples. Results are shown based on data generated with unstructured

noise ((C), see (A)), or with structured noise ((D), see (B)). (E): Exemplary comparison of Pearson correlation values between

simulated and predicted posterior motif influence ôT;C . The data is generated with highly correlated samples, modeling two groups

of biological replicates. Corresponding replicates are combined by a gray line. The data in the left panel is generated with

unstructured noise SC (see (A)) and in the right panel with structured noise (see (B)).

https://doi.org/10.1371/journal.pone.0231824.g002
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Motif scores

For the computation of the TF motif scores MT,G we use log-odds scores based on the posi-

tional frequency matrices, which are computed with the software GimmeMotifs, v13 [27,

28]. We make use of the database gimme.vertebrate.v3.1, included with GimmeMo-
tifs. In general, we filter for genes that are known to be protein coding and on chromosomes

1-22 and X. For the GTEx dataset we assume the promoter region to be 400bp upstream and

100bp downstream of the Transcription Start Site of the given gene sets. We take the Tran-

scription Start Site from the GENCODE database (version 26) [29] and generate a bed file

with the promoter regions with BEDTools, v2.17.0 [30] and the subcommand slop.

For the Cacchiarelli and Toufighi dataset, we scan for motifs in the closest accessible region, as

measured using DNase1. We downloaded the regulatory index (version 20190703), created by

integrating 733 DNase-seq datasets [31], from https://www.meuleman.org/project/dhsindex/.

For each gene we select the DNaseI summit with the highest mean signal within 1kb of the

gene Transcription Start Site. We use 200bp centered at the summit for motif scanning. For

the H3K27ac data we use 200bp centered at the summit of the corresponding DNaseI peak, see

[28] for more details.

Cross-validation and permutation

In the Results section, we compare the performance of the Bayesian Linear Mixed Model and

of the Ridge Regression on four real-world datasets. To assess the performance of both model

assumptions, we make use of a ten-fold cross-validation by creating ten random subsets across

the genes. Each of these ten subsets is used as a test dataset, while the model is trained on the

union of the remaining nine subsets. As there is no knowledge about the motif influence ~oT;C,

we compute the expression ŶG;C with the predicted posterior motif influence ôT;C (Eq (1)) and

compare the Pearson correlation between predicted expression ŶG½test�;C on the test set and the

original expression YG[test], C of the test set.

Per cross-validation round, we additionally run 1000 permutations (without replacement)

in the motif scores MT,G along the genes.

Experimental data

For the application analysis presented in the Results section, we make use of four experimental

datasets.

H3K27ac ChIP-sequencing signal at hematopoietic enhancers. We use experimental

enhancer activity data from the human hematopoietic lineage [28, 32]. This dataset is based on

193 ChIP-seq experiments in 33 hematopoietic cell types using an antibody specific for histone

H3 acetylated at Lysine 27 (H3K27ac). The H3K27ac histone modification is deposited by the

histone acetyltransferase p300 (EP300) and is associated with enhancer activity [33]. ChIP-seq

reads were counted in 2kb regions centered at accessible regions, log-transformed and normal-

ized using scaling by Z-score transformation. The peaks, or accessible regions, represent puta-

tive enhancers. We subset the peaks to the most variable 1000 peaks over all samples. We

selected all replicates of the cell types “monocytes” and “T-cells”, which are 23 samples in total.

Different samples of the same cell type represent different donors.

Human tissue gene expression data (GTEx). Second, we make use of gene expression

data from human tissues. The data is from the Genotype Tissue Expression (GTEx) database

[34], and is available on https://gtexportal.org/home/. It is RNA-seq data from many different

tissues. The data was downloaded with project number SRP012682 with the R-package R-
recount, v.1.63 [34–37]. We scale the raw counts by the total coverage of the sample
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(function scale_counts(), setting “by = auc”) and keep entries with at least 5 counts. We

transform the data with the DESeq2-package, v.1.20.0 and use the variance stabilizing

transformations [38–40], implemented in the package function vst(), with blind transfor-

mations to the sample information.

We selected the 5, 000 most variable genes over all samples of the entire GTEx experiment.

We then choose 75 random samples, of which there are 35 different tissues from 21 different

organs.

As we model the normalized expression data YG,C (see Eq (1)), we subtract the mean along

genes and along conditions from the expression data. For the analysis, we further normalize

the motif score matrix.

Time-series data. We additionally compare the performances of both model assumptions

on two time-series datasets [41, 42]. Samples from different time-series are known to be highly

correlated.

Human cellular reprogramming RNA-seq data. We make use of RNA-seq data for a

reprogramming time-course from human induced fibroblasts (hiF) to induced pluripotent

stem cells (hIPSC) [41]. Gene expression levels were measured at several different time points,

and human embryonic stem cells (hESC) were included for comparison. The expression data

is available at https://www.cell.com/cms/10.1016/j.cell.2015.06.016/attachment/97ec2bc2-

5577-4d4a-966b-3cd2a63a76c2/mmc2.xlsx. We transform the data to a log2-scale. For more

details on the data and the original analysis, refer to [41].

Human keratinocyte differentiation microarray data. The microarray data of the differ-

entiation of human primary keratinocytes was originally generated by [43] and is re-used in

[42]. Gene expression levels were measured every five hours over a time span of 45h, resulting

in ten samples. Measurements were taken in triplicates. Data is available at the article’s website

and published at https://doi.org/10.1371/journal.pcbi.1004256.s022. The data has been pro-

cessed using background correction and quantile normalization, and was log2-transformed

[42].

Results

In this section, we apply the model that we introduced in detail in Eq (1)—Eq (4), to simulated

data and to four real-world datasets. We compare the two assumptions about the shape of

covariance, as discussed before: the novel allowance of dependence (Bayesian Linear Mixed

Model) to the restriction of independence, that has been applied so far (Ridge Regression).

Simulation

To quantify the differences in the model when allowing for dependence between conditions,

instead of assuming independence, we simulate data according to Eq (1). We generate differ-

ent datasets for G = 978 genes, for C = {10, 30, 50, 70, 100, 120} samples, and T = 623 motifs.

We vary the degree of correlation between the samples, expressed in the covariance matrices

VC and SC. We also vary the influence of these covariance matrices on the signal: As covari-

ance matrix VC we generate (i) an identity matrix, (ii) a full matrix with positive off-diagonal

elements (unrestricted correlation between samples), (iii) a block matrix with k ¼ 1

2
C blocks

along the diagonal, which models groups of biological replicates and (iv) a block-structured

matrix matrix with k = 2 blocks along the diagonal, modeling k = 2 groups of biological repli-

cates. As noise matrix SC we first generate unstructured or random noise. In a second step, we

generate the data with a structured noise matrix SC. For every parameter set we generate 100

replicates to verify the robustness of the two model assumptions. We compare the perfor-

mance of the two assumptions on the shape of covariance with a Pearson correlation score.
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The correlation is computed between the simulated motif influence ~oT;C and the estimated

posterior motif influence ôT;C. The higher the correlation values the better the performance of

the model. In S1 Fig, we confirm that the Bayesian Linear Mixed Model with fitting indepen-

dent samples and independent noise is equal to Ridge Regression.

We summarize the simulation study visually in Fig 2.

We separate the simulation study first on data generated with unstructured noise (exem-

plary visualization of data in Fig 2A, Pearson correlation values in Fig 2C) and second on data

with structured noise (exemplary data shown in Fig 2B, model performances shown in Fig

2D). Summarizing, we compare the performance of both models on the two types of data

(unstructured versus structured noise SC) in Fig 2E. We show an example of the model perfor-

mance for data generated with a covariance matrix VC that models all samples to originate

from many blocks, on unstructured (left) and structured noise (right). In S5 Fig, we show on

the example of C = 50 samples that a higher dimensional dataset, generated with G = 5000

genes, exhibits the same performance as for G = 978 genes.

Unstructured noise SC. Given the covariance VC, we generate a gene expression signal

YG,C according to Eq (1) with random noise SC,random (see Fig 2A). In Fig 2C, we compare the

performance of the Bayesian Linear Mixed Model, which allows for dependencies between

samples, to Ridge Regression, which assumes independence. We depict the Pearson correla-

tion values between estimated and simulated motif influence ωT,C for 100 randomly generated

datasets per boxplot. In every panel, we compare both model assumptions, (i) dependence (in

red, labeled BLMM) and (ii) independence (in blue, labeled RIDGE). We present the results

separated by the degree of correlation in VC, which was used to generate the data. Allowing for

dependencies between conditions leads to a better prediction performance, especially for cor-

related data (Fig 2C and 3E), independent of the sample size C. For uncorrelated data (VC = σ2

IC), the allowance for dependency yields a slightly better performance for small sample sizes, C
2 {10, 30, 50} (Fig 2C, upper left panel). For higher sample sizes, the performances are equal.

In Fig 2E, left panel, we show explicitly that the Pearson correlation values that result from the

dependence assumption (BLMM, in red) are always higher than those from the independence

assumption (RIDGE, in blue). The exemplary visualization shows the correlation between esti-

mated and simulated motif influence ~oT;C that was generated with a covariance matrix VC

with two blocks along the diagonal, i.e. k = 2 correlated groups of samples over C = 50 condi-

tions. We run both model assumptions on the same datasets. The correlation values from the

same datasets, depicted per model assumption, are connected with gray lines.

Structured noise SC. For the generation of the gene expression signal with structured

noise, we add the structure of correlation between conditions to the noise (see Fig 2B). This is

motivated by the fact that we can explain roughly 20% of the signal in expression data YG,C

data by motif influence, but not the remaining 80% of the signal. This remaining signal is often

similar to the covariance between samples. In Fig 2D, we depict the Pearson correlation values

that are computed between simulated motif influence ~oT;C and posterior motif influence ôT;C.

They result from applying the dependence (BLMM, in red) and independence assumption

(RIDGE, in blue) to data that is generated with such a structured noise at a degree of ρ = 0.7.

The results are again shown for differently correlated datasets between conditions VC, analo-

gous to the previous section. With that structure in the noise SC, both methods perform

equally with low correlation values. As shown in Fig 2E, right panel, the Bayesian Linear

Mixed Model performs equally or slightly worse than Ridge Regression.

Indeed, when applying a degree of structure in the noise SC (explained in detail in Eq. (17)

and Eq. (18) in S2B Appendix) by varying ρ between zero and one in a step size of 0.1, there is

loss of performance of the Bayesian Linear Mixed Model for an increasing structured signal in
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the noise (see S4 Fig). In contrast, the correlation values resulting from Ridge Regression

applied to this data with structured noise are very similar, if not equal, to those from data that

was generated with unstructured noise (Fig 2C). Both model assumptions perform approxi-

mately equally when applied to data with structured noise. For an exemplary visualization we

depict the correlation values per sample in Fig 2E, right panel, with lines connecting the two

results from the two model assumptions, which were applied to the same dataset. The reason

for this performance loss is the computation of the posterior motif influence ôT;C (Eq (4)). If

SC takes a structure that is too similar to VC, these two terms can be summarized in the covari-

ance of vec(YG,C|ωT,C) in Eq (3). This covariance returns as inverse in Eq (4) and therefore VC

and SC cancel out with VC from the motif-dependent term VC �M⊺
T;GIT . We give more mathe-

matical details in the Discussion.

Application

We compare the Bayesian Linear Mixed Model and the Ridge Regression on four real-world

datasets. First, we apply the method to a ChIP-seq dataset of the histone modification

H3K27ac in the human hematopoietic lineage. This histone mark correlates with enhancer

activity [33]. We refer to this dataset as H3K27ac. Second, we use RNA-seq gene expression

data from the GTEx consortium. It is known from RNA-seq data, that there is generally a high

contribution of “technical” noise, such as measurement noise that is introduced purely by the

experiment (laboratory [44, 45] and batch [46]) and by biological variation [47]. Hence, we

expect a significant contribution of such “technical” noise to the signal. We refer to this RNA-

seq dataset as GTEx. We additionally compare the two model assumptions on two time-series

datasets: the Cacchiarelli dataset is an RNA-seq dataset applied to reprogramming from fibro-

blasts to IPSCs. Additionally, we analyse microarray data, which we refer to as Toufighi data,

that measures the human keratinocyte differentiation over 45 hours. For all four datasets, we

compare the dependence and independence assumption (Bayesian Linear Mixed Model and

Ridge Regression) by means of a cross-validation.

Acetylation data H3K27ac. We split the acetylation dataset H3K27ac into two sample

groups, originating from two different cell types: (i) monocytes from the myeloid lineage and

(ii) T-cells from the lymphoid lineage. Within these two groups the ChIP-seq signal YG,C is

highly correlated as the samples represent the same cell types from different donors. The

results from the application of the Bayesian Linear Mixed Model and the Ridge Regression to

the H3K27ac dataset are summarized in Fig 3.

To assess and compare the model performances, we run a ten-fold cross-validation. Per run

we compute the Pearson correlation between measured and predicted ChIP-seq signal YG,C of

the test and training set. The correlation values from the cross-validation are shown in Fig 3B.

The performance of the test set (solid line) is depicted to gain insight into the prediction per-

formance of each model, the performance of the training set (dotted line) to check for over-fit-

ting. We additionally depict a summary of Pearson correlations over 1000 permutations in the

motif scores MT,G along the genes G per cross-validation (gray line). Both model assumptions

yield very similar performances and shuffling the motif scores completely negates the models’

performances. Hence, on the basis of cross-validation, no clear statement about superiority of

one model assumption to another can be made. A visualization of the estimated VC and SC,

depicted in S6–S9 Figs, emphasizes again the great difference between the two models and

their model fits. While for Ridge Regression both matrices are identity matrices with a scaling

factor, both covariance matrices from the more flexible Bayesian Linear Mixed Model exhibit

strong correlation structures (S8 and S9 Figs). These two latter matrices are very similar. Clus-

tering the covariance matrices yields two clearly separated blocks along the diagonal, showing
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a strong correlation among the samples within the cell types, and independence, or even a

slight anti-correlation, between the two cell types. This pattern follows the partitioning of the

samples into biological replicates for the two different cell types.

Looking in more detail into the importance of the posterior motif influence ôT;C, we com-

pare the motifs by ranks. They are ordered based on the difference of the motif’s mean

Fig 3. Data application on H3K27ac data. (A): Pattern of H3K27ac ChIP-seq signal in putative enhancers over two

hematopoietic cell types, T cells and monocytes. (B): Pearson correlation between training set and predicted ChIP-seq

signal on training set and between test set and predicted test ChIP-seq signal of a ten-fold cross-validation. In gray, the

mean Pearson correlation between predicted and real signal using each method (overprinted lines show high

concordance between methods), with a 1000-fold randomization of motif scores is shown. (C) and (D): Motif weights

for 50 enhancers across the two cell types, assuming dependence (C) or independence (D) between the conditions.

Enhancers are chosen based on largest difference in mean H3K27ac ChIP-seq signal per tissue group. Common motifs

of Bayesian Linear Mixed Model (C) and Ridge Regression (D) are depicted in blue, others are depicted in yellow.

https://doi.org/10.1371/journal.pone.0231824.g003
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influence onto each class, i.e.
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with Cmonocytes+ CT-cells = C. They are sorted in decreasing order, i.e. the higher the mean dif-

ference, the higher the rank of a motif, where rank 1 is the most important motif and rank 623

the least important. For Fig 3C and 4D, we choose the top 50 ranking motifs, respectively. We

color motifs that are shared for both methods in blue and different motifs in yellow. All in all,

40 motifs are shared among the 50 chosen. The posterior motif influences, depicted in Fig 3C

and 4D, clearly separate the motif influences based on the underlying cell types for both mod-

els. Despite the clear differences in model estimates, the performances in predictive power are

very similar. We hypothesize that the similarity of the performances results from the similarity

between estimated covariance matrix VC and noise SC in the Bayesian Linear Mixed Model,

which leads to canceling out the covariance structure in the posterior. We elaborate on this

phenomenon in the Discussion.

RNA-seq data GTEx. We further compare the performance of both model assumptions

on a human tissue-specific RNA-seq dataset from GTEx. In comparison to the H3K27ac data-

set discussed in the previous section, RNA-seq is known to exhibit more “technical” noise, i.e.

noise that is added to the signal purely by conducting the experiment. Hence, the expected

noise structure should be better separable from the motif signal.

For the G = 5000 most variable genes across the entire GTEx dataset, we apply the Bayesian

Linear Mixed Model and the Ridge Regression on C = 75 randomly chosen samples. Among

those, there are several biological replicates, resulting in 35 different tissue types across 21

organs. The results of the GTEx dataset are summarized in Fig 4.

Analogous to the analysis on the H3K27ac dataset, we conduct a ten-fold cross-validation

together with a 1000 permutations over the motif scores MT,G per cross-validation. The Pear-

son correlation values of the cross-validation of the expression data YG,C (colored lines) are

very similar for both model assumptions (see Fig 4A) on the test (solid line) and on the train-

ing (dotted lines) dataset. Again, shuffling the motif scores along the genes negates the models’

performances. The Pearson correlation of all motif scores between the two model assumptions

per tissue is high with the median at 0.83, the first quantile at 0.79 and the third quantile at

0.90 (see Fig 4B). In Fig 4C we highlight examples of high (left) and low (remaining four panels

on the right, same replicate) Pearson correlation values between the estimated motif weights

from the two models (colored accordingly).

When we compare the estimated covariance matrices, there are strong differences in VC

and SC (S11–S14 Figs). Independent of the model assumptions, there is a difference of 104 in

order of magnitude of the signal assigned to the covariance between condition and the esti-

mated noise.

We compute the inter-quantile range of the posterior motif influences of all T = 623 motifs

per tissue to investigate the posterior motif influence ôT;C in more detail. We summarize the

posterior motif influences over tissues with replicates with the median. We then filter those

motifs that lie outside the range of 2.5 times the inter-quantile range above and below the

median. Combining the two sets from Bayesian Linear Mixed Model and Ridge Regression

results in 56 motifs, of which 50 are in the intersection of the two sets.

The clustering of posterior motif influence ôT;C results in comparable clusters (S10 Fig),

with the clustering on tissues from Ridge Regression being seemingly better due to a clearer

clustering of replicates.
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The overall correlation between the posterior motif influence ôT;C per tissue of both meth-

ods is very high (median�0.95, Fig 5A), which underlines the strong similarity between the

two models (see S15 Fig for the five highest correlated motifs across all tissues and S16 Fig for

the five lowest correlated motifs). The assumption of dependence between samples (BLMM)

results in higher variation of posterior motif influences (see S17 Fig). Among the 56 chosen

motifs, there are a few cases, where one model assumption yields a weight value of around zero

and the other is significantly different from zero (see Fig 5B). Out of those four examples, we

found evidence that the TFs are known to play a major role in the descriptive tissue: FOXO1,
FOXO3 and FOXO4 in liver [48], RUNX1-3 in blood [49–51] and in B-cell lymphocytes [52].

We found no explicit relevance for YY1 in skin fibroblasts. The YY1 TF is known to be

involved in the repression and activation of a diverse number of promoters [53–55]. It is rela-

tively highly expressed in skin cells and fibroblasts, which we find from gene expression pro-

files from the Protein Atlas [56], data available from v18.1 proteinatlas.org. This could be

biologically relevant, but no specific function is known. Hence, despite similar performances

we find evidence of motif influences found by the Bayesian Linear Mixed Model, but not by

Ridge Regression. The same holds vice-versa for EBV-transformed lymphocytes, for which

Fig 4. Data application on GTEx data. (A): Pearson correlation values between training set and predicted gene expression of training set and between

the test set of the gene expression data and the predicted gene expression of ten-fold cross-validation for Bayesian Linear Mixed Model (BLMM, in red)

and Ridge Regression (RIDGE, in blue). In gray, the mean Pearson correlation between predicted and real signal using both methods (overprinted lines

show high concordance) with a 1000-fold randomization of motif scores is shown. (B): Pearson correlation of estimated motif scores on the basis of the

Ridge Regression and the Bayesian Linear Mixed Model. Per correlation value, all motif scores are taken per replicate. Examples shown in (C) are

colored according to respective color. (C): Exemplary scatter plots of tissue replicates, on which the Pearson correlation for the posterior motif influence

ôT;C is high or low between the two methods, Bayesian Linear Mixed Model and Ridge Regression, as colored in (B). The values along the x-axis result

from the Bayesian Linear Mixed Model, assuming dependence between samples, and on the y-axis from assuming independence (Ridge Regression).

The diagonal is shown in gray and the overall trend of the data is shown with its 95% confidence interval.

https://doi.org/10.1371/journal.pone.0231824.g004
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Ridge Regression predicts an influence of the motif to which the TFs RUNX1, RUNX2,
RUNX3 bind, whilst the Bayesian Linear Mixed Model does not. This finding is concordant

with the observation that the Epstein-Barr virus (EBV) TF EBNA-2 induces RUNX3 expres-

sion in EBV-transformed lymphocytes [57].

Time-series datasets. As a final test of the Bayesian Linear Mixed Model we analyze two

time-series datasets. Due to the nature of temporal expression data, we expect significant cor-

relation of gene expression levels between subsequent time-points. We made use of two differ-

ent time-series experiments: (i) reprogramming of fibroblasts to induced pluripotent stem

cells (iPSCs) [41] and (ii) differentiation of keratinocytes [42] (see Methods for details). We

analyze these datasets analogous to the previous benchmarks. We run a ten-fold cross-valida-

tion with 1000 permutations per fold to compare both model assumptions on each dataset. We

summarize the most important results from the analysis in Fig 6, where we capture the Pearson

correlation between expression data from the ten-fold cross-validation study (Fig 6A), as well

as the Pearson correlation values between the two posterior motif influences ôT;C over all con-

ditions (Fig 6B), which result from the two methods assuming (i) dependence as well as (ii)

independence per time series.

We show the estimated covariance matrices VC and SC for both model assumptions for the

Cacchiarelli and Toufighi dataset in S19–S22 and S25–S28 Figs, respectively. Analogous to the

previous two datasets, the covariance matrices from the Bayesian Linear Mixed Model show a

correlation pattern of the data. Again, the values estimated for the noise matrix SC are larger

by a factor of 104 and more for both methods.

We depict scatter plots of the estimated motif weights ôT;C between the Bayesian Linear

Mixed Model and Ridge Regression, separated by time frame, in S23 and S29 Figs.

Fig 5. IQR-study on GTEx motif-weight. (A): Pearson correlation values between the predicted posterior motif influence ôT;C from the Bayesian

Linear Mixed Model and the Ridge Regression of 56 selected motif values over all tissues. (B): extreme cases of different motif scores per method. Each

box shows the predicted motif scores per sample, separated by model assumptions used to predict the scores (dependence, denoted BLMM, colored in

red, and indepdence between samples, named RIDGE, colored in blue). Per sample, the first, second and third quantile (as in a boxplot) of the overall

motif activity of all motifs on that sample are depicted in gray.

https://doi.org/10.1371/journal.pone.0231824.g005
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Fig 6A shows the Pearson correlation between real and predicted expression levels for both

the Cacchiarelli and Toufighi dataset. The correlation values average to 0.2 across the folds for

the test dataset (ranging both from 0.1 to 0.3) and 0.6 for the training dataset. Both models

show a similar degree of (over)fitting to the training data, and equal performance in predicting

the test data. As expected, shuffling the motif scores (gray line) completely negates the model

performance. Overall, we see that there is no significant difference between the two methods

based on the cross-validation analysis. This recapitulates the findings from the previous

benchmarks.

In Fig 6B, we depict the Pearson correlation values between the motif scores from both

methods over all conditions (depicted in S18 and S24 Figs in detail). We only show the correla-

tion values for the union of the 50 most variable motifs for both methods. The motifs that are

in the common subset for both methods are colored in black. The remaining motifs are col-

ored based on the method, for which they were found to be among the 50 most variable. There

are 42 motifs shared among the 50 most variable motif scores across conditions for the Cac-

chiarelli dataset. The motif scores for the Cacchiarelli dataset are highly correlated with a

median correlation value at 0.97 and the first and third quantile at 0.95 and 0.99, respectively.

The correlation values rank from 0.83 to 0.998. Hence, both methods perform equally well on

the Cacchiarelli dataset and produce very similar results. The motif scores of the Toufighi data-

set are also highly correlated with a median correlation at 0.84, and the first and third quantile

at 0.77 and 0.90, respectively. The estimated motif influences are more different between the

two models for these data, as compared to the Cacchiarelli dataset. One of the reasons could be

the nature of the data, as microrarray data generally contains more technical noise and has a

lower dynamic range as compared to RNA-seq data. While the predicted motif activity scores

are different, qualitative evaluation of the identified motifs shows no clear advantage of either

method (see S29 Fig). Motifs for TFs that are known to be differentially expressed in

Fig 6. Data application on time-series datasets. (A): Pearson correlation between training set and predicted expression signal on training set and

between test set and predicted test expression signal of a ten-fold cross-validation. In gray, the mean Pearson correlation between predicted and real

signal using Bayesian Linear Mixed Model (results for Ridge Regression are almost identical) with a 1000-fold randomization of motif scores is shown.

(B): Pearson correlation values per condition between the predicted motif weights ôT;C assuming (i) dependence and (ii) independence between the

conditions.

https://doi.org/10.1371/journal.pone.0231824.g006
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keratinocyte differentiation show very similar score for both methods. For instance, TP63 is

important for epidermal commitment and is downregulated during differentation, which is

recapitulated by the predicted score of both methods. Similarly, both Ridge Regression and

Bayesian Linear Mixed Model identify the JUN motif. The AP1 TFs that are known to bind to

this motif are well-studied regulators of epidermal keratinocyte differentiation [58].

In summary, we can not find a clear advantage of Bayesian Linear Mixed Model as com-

pared to Ridge Regression on the basis of these time-series datasets.

Discussion

In this work we introduce a novel extension of Ridge Regression for motif activity analysis.

The Bayesian Linear Mixed Model can leverage the sample covariation structure to more accu-

rately determine motif activities. Through extensive simulation benchmarks, we observe a

clear superiority of the Bayesian Linear Mixed Model over Ridge Regression when the entire

signal can be explained by motif influence and no, or less, comparable structure between sam-

ples can be found in the noise. However, with the simulation study, we observe a decrease in

performance for the Bayesian Linear Mixed Model for an increasingly structured signal in the

noise (see S4 Fig). When applying the two model assumptions to four real-world datasets, we

see no favorable performance on the basis of a cross-validation. Only a more detailed investi-

gation of motif importance reveals some differences, which are a lot stronger for the GTEx and

Cacchiarelli RNA-seq datasets, as more “technical” noise is present than in the acetylation

dataset. The origin of noise in our model has two different sources: the “technical” noise,

which includes noise introduced (i) in the lab (different technicians, different days of experi-

ment conducted, pipeting error, different kits, etc.), (ii) by the machine (batch effect, sequenc-

ing, lane-to-lane variability, etc.), and (iii) through biological variability due to gene

expression being a stochastic process [59]. The other source of noise originates from the

model that explains the expression signal uniquely as a linear combination of motif scores.

Other sources that contribute to the signal are not modeled here, hence end up in the noise.

And it is this large contribution of noise to the signal that is no “technical” noise that causes

the loss of performance of the dependence assumption in the covariance. Mathematically, VC

cancels out of the computation of the posterior (Eq (4)) if the covariance between conditions

VC and the noise term SC are comparable. This is the reason why the Bayesian Linear Mixed

Model does not perform better than the Ridge Regression in this case. If the noise takes a form

similar to the correlation between conditions, say:

ΣC ¼ gVC; ð7Þ

with some constant scaling γ, then Eq (4) takes the following form:

vecðôT;CÞ ¼ ðVC �M⊺
T;GITÞ½s

2VC �PG þ dgVC � IG�
� 1vecðYG;CÞ; ð8Þ

where VC cancels out in the equation:

vecðôT;CÞ ¼ ðIC �M⊺
T;GITÞ½s

2IC �PG þ dgIC � IG�
� 1vecðYG;CÞ: ð9Þ

Hence, the correlation structure between samples plays no role in the determination of pos-

terior motif influence ôT;C. One can therefore conclude, that the entire formulation of the

Bayesian Linear Mixed Model we proposed is equivalent to Ridge Regression if VC and SC are

the same up to a scaling factor. Hence, the Bayesian Linear Mixed Model is only to favor over

Ridge Regression if there is less noise from the signal than from the “technical” noise in the

data.
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Conclusion

In this research paper we extended a known framework to model motif influence on gene

expression signal, which was originally introduced by [5, 6]. While the previous formulation

assumes independence between samples, our Bayesian formulation provides the possibility to

relax this assumption and allows to model correlation between samples and hence to better

control the breakdown of measured signal into different sources. There are many applications

in the field of molecular biology, where Ridge Regression has proved to be successful. The

limix package itself was mainly developed to investigate the influence of SNPs on phenotype

prediction [19, 60, 61]. With an increase of computational power and better implementations

that reduce the computational complexity, this Bayesian formulation allows for a more flexible

separation of source influences onto the signal.

We first ran a simulation study on the basis of which we showed a significant improvement

of the Bayesian Linear Mixed Model as compared to Ridge Regression for data with indepen-

dent noise. For noise that is dependent on the signal, the Bayesian Linear Mixed Model quickly

loses its predictive power and has a similar performance to Ridge Regression. We further com-

pared the two model assumptions on four real-world datasets: H3K27ac, RNA-seq and micro-

array data. Across all four datasets, we observed the same phenomenon as in the simulation

study: no distinct superiority of the Bayesian Linear Mixed Model over Ridge Regression.

Practically, our findings indicate that the theoretical superior performance of the Bayesian

Linear Mixed Model do not translate to noticeable improvements on motif activity estimation

on real-world data. For expression data, we confirm the findings of earlier work, which dem-

onstrated that at most 10-20% of gene expression levels can be explained by TF motifs near the

gene promoter. Crucially, the remaining 80-90% of the variation is not independent noise.

This expression variation contains, for instance, the regulatory effect of distal enhancers, RNA

degradation rates and many other biological parameters that are not captured by our relatively

simple model. This results in a similar covariance structure over samples in the expression

modeled by the motifs and the signal that ends up in the noise term of the model. As we

explain mathematically above, this means that the effect of the correlation structure will be

canceled out. Even in the case of H3K27ac ChIP-seq data, where*40% of the signal can be

explained by TF motifs, we do not see a clear benefit of the Bayesian Linear Mixed Model over

Ridge Regression.

In conclusion, with the current model formulation we observe that the Bayesian Linear

Mixed Model does not gain predictive power over Ridge Regression using real-world data.

However, this might potentially change if the formulation of the model’s covariates is further

improved. For instance, this could include incorporation of motifs at enhancer regions, chro-

matin interaction maps determined by chromosome conformation capture techniques such as

Hi-C [62] and ChIP-seq assays measuring the chromatin environment.

Finally, while we showed here one specific application, we believe that these types of models

can be more generally useful to model biological systems. The advancements made in faster

implementations together with mathematical reformulations, as done by [18, 19], allow for the

usage of more complex models, such as the Bayesian Linear Mixed Model over simple Ridge

Regression. In concert with the increase in computational power, such increase of mathemati-

cal complexity becomes more feasible to work with and no longer represents a practical con-

straint as it used to.
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ear Mixed Model is limited to VC = σ2 IC and SC = δ IC (BLMM_id, in red). The Pearson

correlation values are computed between the generated and predicted posterior motif influ-

ence ôT;C, and separated by method used to compute them. Data is generated with (i) indepen-

dent samples, VC = IC, (ii) unrestricted correlation between samples, (iii) 50% correlated data,

where the samples cluster in many (k ¼ 1

2
C) sample groups, (iv) highly correlated data, by gen-

erating a covariance matrix with k = 2 completely correlated sample groups, with C the num-

ber of conditions.

(PDF)

S2 Fig. Simulation study with Spearman’s rank correlation values. Results of simulation

study analogously presented as in Simulation with Spearman’s rank correlation values.
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S3 Fig. Simulation study with Mean-Squared Error values. Results of simulation study ana-

loguously presented as in Simulation with Mean-Squared Error values.
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S4 Fig. Models’ performance interchange superiority for data generated with increasing

structuredness in noise. Data was generated over G = 978 informative genes, T = 623 motif

scores, 100 repetitions, and with a covariance matrix “VC: highly correlated (two groups)”. SC

is generated with increasing degree of structuredness (x-axis). Model performance of Bayesian

Linear Mixed Model (BLMM, in red) and Ridge Regression (RIDGE, in blue) are shown on

the bases of the Pearson correlation values between generated and predicted motif-condition-

weights.

(PDF)

S5 Fig. Simulation study on G = 5000 genes. We compare the model assumptions of Bayesian

Linear Mixed Model (BLMM, depicted in red) and Ridge Regression (LIMIX, in blue) on data-

sets generated with C = 50 samples, and G = 5000 genes. On the x-axis we show data that is

generated with unstructured noise (degree of structuredness = 0) and with structured noise

with ρ = 0.7. On the y-axis, we depict the Pearson correlation values between generated and

predicted motif-condition weights. In each panel, the data was generated with different

assumptions on the degree of correlation between samples: (i) independence (VC = IC (upper

left), (ii) unrestricted correlation (upper right), (iii) correlated with many sample groupgs

(lower left), and (iv) highly correlated with two sample groups) (lower right). There is no dif-

ference in performance when increasing the dimensionality of genes. The Bayesian Linear

Mixed Model has predictive power over Ridge Regression when the data is correlated,

uniquely for unstructured noise. For structured noise (ρ = 0.7), there is no gain in perfor-

mance, despite the bigger size of the dataset.
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S6 Fig. H3K27ac: VC for Ridge regression. Estimated correlation between conditions VC

assuming independence between the conditions for the H3K27ac dataset.
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S7 Fig. H3K27ac: SC for Ridge regression. Estimated noise SC assuming independence

between the conditions for the H3K27ac dataset.
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S11 Fig. GTEx: VC for Ridge regression. Estimated correlation between conditions VC

assuming independence between the conditions for the GTEx dataset.

(PDF)
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S14 Fig. GTEx: SC for Bayesian Linear Mixed Model. Estimated noise SC assuming depen-
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S15 Fig. GTEx: Most similar motif scores between methods. Motif values for the five highest
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(PDF)

S16 Fig. GTEx: Least similar motif scores between methods. Motif values for the five lowest
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between the conditions. Common motifs of Bayesian Linear Mixed Model (A) and Ridge

Regression (B) are depicted in blue, others are depicted in yellow.
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S22 Fig. Cacchiarelli: SC for Bayesian Linear Mixed Model. Estimated noise SC assuming
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motif weights ωT,C of Bayesian Linear Mixed Model vs. Ridge Regression, depicted per time
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S24 Fig. Toufighi: Clustermaps of motif-condition-weight matrix. Motif weights for the 50

most variable weights across conditions assuming dependence (A) or independence (B)

between the conditions. Common motifs of Bayesian Linear Mixed Model (A) and Ridge

Regression (B) are depicted in blue, others are depicted in yellow.
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S25 Fig. Toufighi: VC for Ridge Regression. Estimated correlation between conditions VC

assuming independence between the conditions for the Toufighi dataset.
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S26 Fig. Toufighi: SC for Ridge Regression. Estimated noise SC assuming independence

between the conditions for the Toufighi dataset.
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S27 Fig. Toufighi: VC for Bayesian Linear Mixed Model. Estimated correlation between con-
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S28 Fig. Toufighi: SC for Bayesian Linear Mixed Model. Estimated noise SC assuming

dependence between the conditions for the Toufighi dataset.
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(PDF)

S1 Appendix. A. Bayesian Linear Mixed Models. We give a more detailed derivation of the

model introduced in Eqs (1)–(4), providing more information about the Bayesian formula-

tion.

(PDF)

S2 Appendix. B. Simulation. Extensive details about the simulation of data.

(PDF)

Acknowledgments

Parts of this work were carried out on the Dutch national e-infrastructure with the support of

SURF Cooperative.

PLOS ONE Bayesian Linear Mixed Models for motif activity analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0231824 May 1, 2020 21 / 25

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s020
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s021
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s022
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s023
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s024
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s025
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s026
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s027
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s028
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s029
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s030
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0231824.s031
https://doi.org/10.1371/journal.pone.0231824


Author Contributions

Conceptualization: Cornelis A. Albers.

Formal analysis: Simone Lederer.

Methodology: Simone Lederer, Simon J. van Heeringen, Cornelis A. Albers.

Software: Simone Lederer.

Supervision: Tom Heskes, Simon J. van Heeringen, Cornelis A. Albers.

Writing – original draft: Simone Lederer.

Writing – review & editing: Simone Lederer, Tom Heskes, Simon J. van Heeringen, Cornelis

A. Albers.

References
1. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The Human Transcription Factors.

Cell. 2018 Feb; 172(4):650–665. https://doi.org/10.1016/j.cell.2018.01.029 PMID: 29425488

2. Geertz M, Shore D, Maerkl SJ. Massively parallel measurements of molecular interaction kinetics on a

microfluidic platform. Proceedings of the National Academy of Sciences. 2012 Oct; 109(41):16540–

16545. https://doi.org/10.1073/pnas.1206011109

3. Lee TI, Young RA. Transcriptional Regulation and Its Misregulation in Disease. Cell. 2013 Mar; 152

(6):1237–1251. https://doi.org/10.1016/j.cell.2013.02.014 PMID: 23498934

4. Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibro-

blast Cultures by Defined Factors. Cell. 2006 Aug; 126(4):663–676. https://doi.org/10.1016/j.cell.2006.

07.024 PMID: 16904174

5. The Fantom Consortium, the Riken Omics Science Center. The transcriptional network that controls

growth arrest and differentiation in a human myeloid leukemia cell line. Nature Genetics. 2009 May; 41

(5):553–562. https://doi.org/10.1038/ng.375 PMID: 19377474

6. Balwierz PJ, Pachkov M, Arnold P, Gruber AJ, Zavolan M, Van Nimwegen E. ISMARA: automated

modeling of genomic signals as a democracy of regulatory motifs. Genome Research. 2014; 24

(5):869–884. https://doi.org/10.1101/gr.169508.113 PMID: 24515121

7. Osmanbeyoglu HU, Pelossof R, Bromberg JF, Leslie CS. Linking signaling pathways to transcriptional

programs in breast cancer. Genome Research. 2014 Nov; 24(11):1869–1880. https://doi.org/10.1101/

gr.173039.114 PMID: 25183703

8. Schmidt C. The benefits of immunotherapy combinations. Nature. 2017 Dec; 552(7685):S67–S69.

https://doi.org/10.1038/d41586-017-08702-7

9. Madsen JGS, Rauch A, Van Hauwaert EL, Schmidt SF, Winnefeld M, Mandrup S. Integrated analysis

of motif activity and gene expression changes of transcription factors. Genome Research. 2018 Feb; 28

(2):243–255. https://doi.org/10.1101/gr.227231.117 PMID: 29233921

10. Ng AY. Feature selection and L 1 vs. L 2 regularization and rotational invariance. In Proceedings of the

twenty-first international conference on Machine learning (ICML’04). Association for Computing

Machinery, New York, NY, USA. 2004; 78.

11. Oliphant TE. Python for Scientific Computing. Computing in Science & Engineering. 2007; 9(3):10–20.

https://doi.org/10.1109/MCSE.2007.58

12. Millman KJ, Aivazis M. Python for Scientists and Engineers. Computing in Science & Engineering. 2011

Mar; 13(2):9–12. https://doi.org/10.1109/MCSE.2011.36

13. McKinney W, others. Data Structres for Statistical Computing in Python. Proceedings of the 9th Python

in Science Conference. 2010;51–56.

14. Hunter JD. Matplotlib: A 2D Graphics Environment. Computing in Science & Engineering. 2007;

9(3):90–95. https://doi.org/10.1109/MCSE.2007.55

15. Waskom M, Botvinnik O, O’Kane D, Hobson P, Lukauskas S, Gemperline DC, et al. mwaskom/sea-

born: v0.8.1 (September 2017). Zenodo. 2017 Sep;

16. Oliphant TE. A Guide to Numpy. Trelgol Publishing USA; 2006

17. Lippert C, Horta D, Casale FP, Stegle O. limix: linear mixed models for genomic analysis. 2015; avail-

able from https://github.com/limix/limix.

PLOS ONE Bayesian Linear Mixed Models for motif activity analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0231824 May 1, 2020 22 / 25

https://doi.org/10.1016/j.cell.2018.01.029
http://www.ncbi.nlm.nih.gov/pubmed/29425488
https://doi.org/10.1073/pnas.1206011109
https://doi.org/10.1016/j.cell.2013.02.014
http://www.ncbi.nlm.nih.gov/pubmed/23498934
https://doi.org/10.1016/j.cell.2006.07.024
https://doi.org/10.1016/j.cell.2006.07.024
http://www.ncbi.nlm.nih.gov/pubmed/16904174
https://doi.org/10.1038/ng.375
http://www.ncbi.nlm.nih.gov/pubmed/19377474
https://doi.org/10.1101/gr.169508.113
http://www.ncbi.nlm.nih.gov/pubmed/24515121
https://doi.org/10.1101/gr.173039.114
https://doi.org/10.1101/gr.173039.114
http://www.ncbi.nlm.nih.gov/pubmed/25183703
https://doi.org/10.1038/d41586-017-08702-7
https://doi.org/10.1101/gr.227231.117
http://www.ncbi.nlm.nih.gov/pubmed/29233921
https://doi.org/10.1109/MCSE.2007.58
https://doi.org/10.1109/MCSE.2011.36
https://doi.org/10.1109/MCSE.2007.55
https://github.com/limix/limix
https://doi.org/10.1371/journal.pone.0231824


18. Lippert C, Casale FP, Rakitsch B, Stegle O. LIMIX: genetic analysis of multiple traits. bioRxiv. 2014; 1–

26.

19. Casale FP, Rakitsch B, Lippert C, Stegle O. Efficient set tests for the genetic analysis of correlated

traits. Nature Methods. 2015 Aug; 12(8):755–758. https://doi.org/10.1038/nmeth.3439 PMID:

26076425

20. Lippert C, Casale FP, Rakitsch B, Stegle O. Supplemental Information Multivariate analysis of heritable

traits. bioRxiv. 2014 Nov;

21. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine

Learning in Python. Journal of Machine Learning Research. 2011; 12:2825–2830.

22. Wickham H. ggplot2: Elegant Graphics for Data Analysis. London: Springer International Publishing:

Springer-Verlag; isbn: 978-3-319-24275-0,. 2016;

23. Wilke CO. cowplot: Streamlined Plot Theme and Plot Annotations for’ggplot2’. 2018; available from

https://wilkelab.org/cowplot/

24. Pearson K. VII. Note on regression and inheritance in the case of two parents. Proceedings of the Royal

Society of London. 1895 Dec; 58(347-352):240–242. https://doi.org/10.1098/rspl.1895.0041

25. Meyer M. The Proof and Measurement of Association between Two Things. Psychological Bulletin.

1904; 1(10):363–363. https://doi.org/10.1037/h0065390

26. Koleti A, Terryn R, Stathias V, Chung C, Cooper DJ, Turner JP, et al. Data Portal for the Library of Inte-

grated Network-based Cellular Signatures (LINCS) program: integrated access to diverse large-scale

cellular perturbation response data. Nucleic Acids Research. 2018 Jan; 46(D1):D558–D566. https://doi.

org/10.1093/nar/gkx1063 PMID: 29140462

27. van Heeringen SJ, Veenstra GJC. GimmeMotifs: a de novo motif prediction pipeline for ChIP-sequenc-

ing experiments. Bioinformatics. 2011 Jan; 27(2):270–271. https://doi.org/10.1093/bioinformatics/

btq636 PMID: 21081511

28. Bruse N, van Heeringen SJ. GimmeMotifs: an analysis framework for transcription factor motif analysis.

bioRxiv. 2018 Nov.

29. Frankish A, Diekhans M, Ferreira AM, Johnson R, Jungreis I, Lovel J, et al. GENCODE reference anno-

tation for the human and mouse genomes. Nucleic Acids Research. 2019 Jan; 47(D1):D766–D773.

https://doi.org/10.1093/nar/gky955 PMID: 30357393

30. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformat-

ics. 2010 Mar; 26(6):841–842. https://doi.org/10.1093/bioinformatics/btq033 PMID: 20110278

31. Meuleman W, Muratov A, Rynes E, Halow J, Lee K, Bates D, et al. Index and biological spectrum of

accessible DNA elements in the human genome. bioRxiv. 2019 Jan;:822510.

32. Martens JHA, Stunnenberg HG. BLUEPRINT: mapping human blood cell epigenomes. Haematologica.

2013 Oct; 98(10):1487–1489. https://doi.org/10.3324/haematol.2013.094243 PMID: 24091925

33. Creyghton MP, Cheng AW, Welstead GG, Kooistra T, Carey BW, Steine EJ, et al. Histone H3K27ac

separates active from poised enhancers and predicts developmental state. Proceedings of the National

Academy of Sciences. 2010 Dec; 107(50):21931–21936. https://doi.org/10.1073/pnas.1016071107

34. Lonsdale J, Thomas J, Salvatore M, Phillips R, Lo E, Shad S, et al. The Genotype-Tissue Expression

(GTEx) project. Nature Genetics. 2013; 45(6):580–585. https://doi.org/10.1038/ng.2653

35. Collado-Torres L, Nellore A, Kammers K, Ellis SE, Taub MA, Hansen KD, et al. Reproducible RNA-seq

analysis using recount2. Nature Biotechnology. 2017 Apr; 35:319. https://doi.org/10.1038/nbt.3838

PMID: 28398307

36. Collado-Torres L, Nellore A, Jaffe AE. recount workflow: Accessing over 70,000 human RNA-seq sam-

ples with Bioconductor. F1000Research. 2017 Aug; 6(6):1558. https://doi.org/10.12688/f1000research.

12223.1 PMID: 29043067

37. Ellis SE, Collado-Torres L, Jaffe A, Leek JT. Improving the value of public RNA-seq expression data by

phenotype prediction. Nucleic Acids Research. 2018 May; 46(9):e54–e54. https://doi.org/10.1093/nar/

gky102 PMID: 29514223

38. Tibshirani R. Estimating Transformations for Regression via Additivity and Variance Stabilization. Jour-

nal of the American Statistical Association. 1988 Jun; 83(402):394–405. https://doi.org/10.1080/

01621459.1988.10478610

39. Huber W, von Heydebreck A, Sueltmann H, Poustka A, Vingron M. Parameter estimation for the calibra-

tion and variance stabilization of microarray data. Statistical Applications in Genetics and Molecular

Biology. 2003 Jan; 2(1):1437–1452.e17. https://doi.org/10.2202/1544-6115.1008

40. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biology. 2010;

11(10):R106. https://doi.org/10.1186/gb-2010-11-10-r106 PMID: 20979621

PLOS ONE Bayesian Linear Mixed Models for motif activity analysis

PLOS ONE | https://doi.org/10.1371/journal.pone.0231824 May 1, 2020 23 / 25

https://doi.org/10.1038/nmeth.3439
http://www.ncbi.nlm.nih.gov/pubmed/26076425
https://wilkelab.org/cowplot/
https://doi.org/10.1098/rspl.1895.0041
https://doi.org/10.1037/h0065390
https://doi.org/10.1093/nar/gkx1063
https://doi.org/10.1093/nar/gkx1063
http://www.ncbi.nlm.nih.gov/pubmed/29140462
https://doi.org/10.1093/bioinformatics/btq636
https://doi.org/10.1093/bioinformatics/btq636
http://www.ncbi.nlm.nih.gov/pubmed/21081511
https://doi.org/10.1093/nar/gky955
http://www.ncbi.nlm.nih.gov/pubmed/30357393
https://doi.org/10.1093/bioinformatics/btq033
http://www.ncbi.nlm.nih.gov/pubmed/20110278
https://doi.org/10.3324/haematol.2013.094243
http://www.ncbi.nlm.nih.gov/pubmed/24091925
https://doi.org/10.1073/pnas.1016071107
https://doi.org/10.1038/ng.2653
https://doi.org/10.1038/nbt.3838
http://www.ncbi.nlm.nih.gov/pubmed/28398307
https://doi.org/10.12688/f1000research.12223.1
https://doi.org/10.12688/f1000research.12223.1
http://www.ncbi.nlm.nih.gov/pubmed/29043067
https://doi.org/10.1093/nar/gky102
https://doi.org/10.1093/nar/gky102
http://www.ncbi.nlm.nih.gov/pubmed/29514223
https://doi.org/10.1080/01621459.1988.10478610
https://doi.org/10.1080/01621459.1988.10478610
https://doi.org/10.2202/1544-6115.1008
https://doi.org/10.1186/gb-2010-11-10-r106
http://www.ncbi.nlm.nih.gov/pubmed/20979621
https://doi.org/10.1371/journal.pone.0231824


41. Cacchiarelli D, Trapnell C, Ziller MJ, Soumillon M, Cesana M, Karnik R et al. Integrative Analyses of

Human Reprogramming Reveal Dynamic Nature of Induced Pluripotency. Cell. 2015 Jul; 162(2):412–

424. https://doi.org/10.1016/j.cell.2015.06.016 PMID: 26186193

42. Toufighi K, Yang J-S, Luis NM, Aznar Benitah S, Lehner B, Serrano L, et al. Dissecting the Calcium-

Induced Differentiation of Human Primary Keratinocytes Stem Cells by Integrative and Structural Net-

work Analyses. PLOS Computational Biology. 2015 May; 11(5):e1004256. https://doi.org/10.1371/

journal.pcbi.1004256 PMID: 25946651

43. Janich P, Toufighi K, Solanas G, Luis NM, Minkwitz S, Serrano L, et al. Human Epidermal Stem Cell

Function Is Regulated by Circadian Oscillations. Cell Stem Cell. 2013 Dec; 13(6):745–753. https://doi.

org/10.1016/j.stem.2013.09.004 PMID: 24120744

44. Irizarry RA, Warren D, Spencer F, Kim IF, Biswal S, Frank BC, et al. Multiple-laboratory comparison of

microarray platforms. Nature Methods. 2005 May; 2(5):345–350. https://doi.org/10.1038/nmeth756

PMID: 15846361

45. Shi L, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC et al. The MicroArray Quality Control

(MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements.

Nature Biotechnology. 2006 Sep; 24(9):1151–1161. https://doi.org/10.1038/nbt1239 PMID: 16964229

46. Leek JT, Scharpf RB, Bravo HC, Simcha D, Langmead B, J WE, et al. Tackling the widespread and criti-

cal impact of batch effects in high-throughput data. Nature Reviews Genetics. 2010; 11(10):733–739.

https://doi.org/10.1038/nrg2825 PMID: 20838408

47. Hansen KD, Wu Z, Irizarry RA, Leek JT. Sequencing technology does not eliminate biological variability.

Nature Biotechnology. 2011 Jul; 29(7):572–573. https://doi.org/10.1038/nbt.1910 PMID: 21747377

48. Tikhanovich I, Cox J, Weinman SA. Forkhead box class O transcription factors in liver function and dis-

ease. Journal of Gastroenterology and Hepatology. 2013 Aug; 28(6):125–131. https://doi.org/10.1111/

jgh.12021 PMID: 23855308

49. Sood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood. 2017 Apr; 129

(15):2070–2082. https://doi.org/10.1182/blood-2016-10-687830 PMID: 28179279

50. Okuda T, Nishimura M, Nakao M RUNX1 / AML1: A Central Player in Hematopoiesis. International

Journal of Hematology. 2001; 74(3):252–253. https://doi.org/10.1007/bf02982057 PMID: 11721959

51. Qiao M, Shapiro P, Fosbrink M, Rus H, Kumar R, Passaniti A. Cell Cycle-dependent Phosphorylation of

the RUNX2 Transcription Factor by cdc2 Regulates Endothelial Cell Proliferation. Journal of Biological

Chemistry. 2006 Mar; 281(11):7118–7128. https://doi.org/10.1074/jbc.M508162200 PMID: 16407259

52. Gunnell A, Webb HM, Wood CD, McClellan MJ, Wichaidit B, Kempkes B, et al. RUNX super-enhancer

control through the Notch pathway by Epstein-Barr virus transcription factors regulates B cell growth.

Nucleic Acids Research. 2016 Jun; 44(10):4636–4650. https://doi.org/10.1093/nar/gkw085 PMID:

26883634

53. Taguchi S, Kawachi Y, Ishitsuka Y, Fujisawa Y, Furuta J, Nakamura Y et al. Overexpression of the

Transcription Factor Yin-Yang-1 Suppresses Differentiation of HaCaT Cells in Three-Dimensional Cell

Culture. Journal of Investigative Dermatology. 2011 Jan; 131(1):37–45. https://doi.org/10.1038/jid.

2010.229 PMID: 20686494

54. Bollag, Wendy B, Bollag, Roni J. Wherefore Art Thou and YY1?. Journal of Investigative Dermatology.

2011 Jan; 131(1):11–12. https://doi.org/10.1038/jid.2010.322

55. National Center for Biotechnology Information (US) Entrez-Gene: YY1 transcription factor [Homo sapi-

ens (human)]. 2019; available from https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=

ShowDetailView&TermToSearch=7528 accessed: 2019-07-27
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