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Abstract: Belavkin–Staszewski relative entropy can naturally characterize the effects of the possible
noncommutativity of quantum states. In this paper, two new conditional entropy terms and four
new mutual information terms are first defined by replacing quantum relative entropy with Belavkin–
Staszewski relative entropy. Next, their basic properties are investigated, especially in classical-
quantum settings. In particular, we show the weak concavity of the Belavkin–Staszewski conditional
entropy and obtain the chain rule for the Belavkin–Staszewski mutual information. Finally, the
subadditivity of the Belavkin–Staszewski relative entropy is established, i.e., the Belavkin–Staszewski
relative entropy of a joint system is less than the sum of that of its corresponding subsystems with the
help of some multiplicative and additive factors. Meanwhile, we also provide a certain subadditivity
of the geometric Rényi relative entropy.

Keywords: Belavkin–Staszewski relative entropy; geometric Rényi relative entropy; conditional
entropy; mutual information; classical-quantum setting

1. Introduction

Rényi proposed an axiomatic approach to derive the Shannon entropy, and he found a
family of entropies with parameter α (α ∈ [0, 1)∪ (1, ∞)), called Rényi entropy. Meanwhile,
the same axiomatic approach was extended to relative entropy and obtained Rényi relative
entropy [1]. Relative entropy (or Kullback–Leibler divergence [2]) is a special case of
Rényi relative entropy, which is an important ingredient for a mathematical framework of
information theory. It has operational meaning in information theoretical tasks and can be
used to describe the level of closeness between two random variables [3,4]. The axiomatic
approach introduced by Rényi can be readily generalized to quantum settings [5,6]. Because
of the non-commutativity of the quantum states, there are at least three different and special
ways to generalize the classical Rényi relative entropy [6–10], such as Petz-Rényi relative
entropy [11,12], sandwiched Rényi relative entropy [6,13] and geometric Rényi relative
entropy [14,15]. These quantities are very meaningful in different information-theoretic
tasks, including source coding, hypothesis testing, state merging, and channel coding.

The fact is that quantum relative entropy, by taking the limit as α→ 1, is a special case
of the Petz-Rényi and sandwiched Rényi relative entropies. However, the geometric Rényi
relative entropy converges to the Belavkin–Staszewski (BS) relative entropy by taking the
same limit. It is noteworthy that both the quantum and BS relative entropies are important
variants of the classical relative entropy extension to quantum settings [16–18]. Quantum
relative entropy, a direct generalization of the classical relative entropy, has been studied
extensively in recent decades. BS relative entropy is also an enticing and crucial entropy
used to process quantum information tasks, which can be used to describe the effects of
possible noncommutativity of the quantum states (the quantum relative entropy can not
work well for this). Additionally, BS relative entropy has recently attracted the attention of
researchers. More precisely, Katariya and Wilde employed BS relative entropy to discuss
quantum channel estimation and discrimination [19], Bluhm and Capel contributed a
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strengthened data processing inequality for BS relative entropy [20]. This property was first
established by Hiai and Petz [21]. Bluhm et al. produced some weak quasi-factorization
results for BS relative entropy [22]. Fang and Fawzi studied quantum channel capacities
with respect to geometric Rényi relative entropy [23].

It is commonly known that von Neumann entropy, quantum conditional entropy,
and quantum mutual information play vital roles in quantum information theory. Apart
from the above entropic measures derived from the quantum relative entropy, however,
other useful entropy-like quantities have also been well studied recently, such as max-
information [24], collision entropy [25], and min- and max-entropies [26–28]. All of these
information measures were generated from quantum Rényi relative entropies by taking
different limits.

BS relative entropy can be seen as a fresh and forceful tool to resolve some specific
challenges of quantum information-processing tasks. Concurrently, the main use of the
geometric Rényi and BS relative entropies is to establish upper bounds on the rates of
feedback-assisted quantum communication protocols [29]. To our present knowledge, there
is no systematic analysis and research for conditional entropy and mutual information
defined from BS relative entropy. Therefore, this paper explores some basic but necessary
results for BS relative entropy. More precisely, we first provide a class of new definitions
of conditional entropy (called BS conditional entropy, see Definition 2) and new mutual
information (called BS mutual information, see Definition 3) via BS relative entropy. Ad-
ditionally, we showed that von Neumann entropy can be defined by BS relative entropy.
Second, we built an order relation between the BS conditional entropy of the bipartite
and tripartite quantum systems. Subsequently, since classical-quantum states play an
essential role in quantum channel coding and classical data compression with quantum
side information, we discussed some valuable properties of BS conditional entropy and
BS mutual information in classical-quantum settings. We established the weak concavity
of BS conditional entropy and obtained chain rules for BS mutual information. Last but
not least, the subadditivity of the geometric Rényi and BS relative entropies is established
with the help of some multiplicative and additive factors (the factors are different linear
combinations of quantum max-relative entropy [30]), i.e., the geomertric Rényi/BS relative
entropy of a joint system is less than the sum of that of its corresponding subsystems.

This paper is organized as follows. In Section 2, we present the mathematical termi-
nology and formal definitions necessary for the formulation of our results. Our results are
shown in Section 3. The paper ends with a conclusion.

2. Basic Notations and Definitions

We denote a finite-dimensional Hilbert space by H. Normalized quantum states
are in the set S=(H) := {ρ ∈ P(H) : Trρ = 1}, and subnormalized states are in the
set S≤(H) := {ρ ∈ P(H) : 0 < Trρ ≤ 1}. We use P+(H) and P(H) to denote the
set of positive definite operators and the set of positive semi-definite operators on H,
respectively. An identity operator is denoted by I. The Hilbert spaces corresponding to
different physical systems are distinguished by different capital Latin letters as a subscript.
A compound system is modeled using the Hilbert spaceHAB = HA ⊗HB. For a bipartite
classical-quantum systemHXB, the corresponding state ρXB is formalized as

ρXB = ∑
x

p(x)|x〉〈x|X ⊗ ρx
B, (1)

where {|x〉} corresponds to an orthonormal basis on the classical system HX, ρx
B is any

quantum state on the quantum system HB, p(x) is the probability distribution, and
∑x p(x) = 1 [17,29]. We also refer to a tripartite classical-quantum state,

ρXAB = ∑
x

p(x)|x〉〈x|X ⊗ ρx
AB, (2)

where ρx
AB is any quantum state on the quantum systemHAB.
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In quantum information theory, one can generalize Rényi relative entropy to the
quantum case, these quantities depend on a parameter α ∈ (0, 1) ∪ (1, ∞), and one can
evaluate their values at α ∈ {0, 1, ∞} by taking different limits. For Petz-Rényi relative
entropy [11,12] and sandwiched Rényi relative entropy [6,13], if one takes the limit as
α → 1, we can obtain the well-known quantum relative entropy. For ρ ∈ S=(H) and
σ ∈ S≤(H), if supp(ρ) ⊆ supp(σ), the quantum relative entropy of ρ and σ is defined as

D(ρ‖σ) = Tr[ρ(log ρ− log σ)]; (3)

otherwise, it is defined as +∞. Throughout this paper, we take the logarithmic function
to base 2. The quantum relative entropy is nonnegative and satisfies the data processing
inequality, which has good applications in quantum hypothesis testing and quantum
resource theory [5,31,32]. We now define the geometric Rényi relative entropy [5,14,15,29].

Definition 1. For all α ∈ (0, 1) ∪ (1, ∞), ρ ∈ S=(H) and σ ∈ S≤(H), the geometric Rényi
relative entropy is defined as

D̂α(ρ‖σ) =
1

α− 1
log
[
Tr
[
σ(σ−

1
2 ρσ−

1
2 )α
]]

. (4)

The term of σ
1
2 (σ−

1
2 ρσ−

1
2 )ασ

1
2 is called the weighted matrix geometric mean of two

positive definite operators ρ and σ, where α is the weight parameter [5,23,33]. The geometric
Rényi relative entropy can be shown to be the maximal relative entropy among all quan-
tum Rényi relative entropies satisfying the data processing inequality [5,15], so it is also
called maximal quantum Rényi relative entropy [5]. The geometric Rényi relative entropy
increases monotonically with respect to the parameter α. Specially, for the limit as α→ 1,
the geometric Rényi relative entropy converges to the BS relative entropy [15,19,29], i.e.,

D̂(ρ‖σ) = lim
α→1

D̂α(ρ‖σ) = Tr
[
ρ log(ρ

1
2 σ−1ρ

1
2 )
]
, (5)

where supp(ρ) ⊆ supp(σ); otherwise, D̂(ρ‖σ) = +∞. Here, the inverse σ−1 is taken on
the support of σ.

Similar to the quantum relative entropy [17], the BS relative entropy is non-negative
and satisfies the data processing inequality [15,19,29]. For every quantum channel E ,
we have

D̂(E(ρ)‖E(σ)) ≤ D̂(ρ‖σ). (6)

For more properties of the BS and geometric Rényi relative entropies, one can refer
to [19,29]. In particular, the quantum relative entropy is never larger than the BS relative
entropy [19,21], i.e.,

D(ρ‖σ) ≤ D̂(ρ‖σ). (7)

Obviously, if ρ and σ can be commuted, the BS relative entropy will reduce to the
quantum relative entropy. In this paper, we also need to employ the quantum max-relative
entropy [5,6,30,34], which comes from the sandwiched Rényi relative entropy by taking the
limit as α→ ∞, and

Dmax(ρ‖σ) = log inf{λ : ρ ≤ λσ}. (8)

3. Main Results

Once again, the Petz-/sandwiched and geometric Rényi relative entropies are incon-
sistent when taking the limit as α → 1, which leads to many differences between the BS
relative entropy D̂(ρ‖σ) (generated from the geometric Rényi relative entropy) and the
quantum relative entropy D(ρ‖σ) (generated from the Petz-/sandwiched Rényi relative
entropy). However, we find that both the quantum relative entropy and the BS relative
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entropy reduce to the von Neumann entropy for any quantum state ρ when one takes
σ = I, i.e.,

D̂(ρ‖I) = Tr
[
ρ log(ρ

1
2 I−1ρ

1
2 )
]

= Tr[ρ log ρ]

= −S(ρ).

Thus, we have
D̂(ρ‖I) = D(ρ‖I) = −S(ρ). (9)

3.1. Belavkin–Staszewski Conditional Entropy

One of the significant properties of the relative entropy is that it can derive the con-
ditional entropy and mutual information in information theory. The quantum relative
entropy is the quantum analogue of Kullback–Leibler divergence. We know that there is no
similar concept for the joint probability distribution of two variables with different time in
quantum mechanics; in other words, there is no real conditional quantum state to process
quantum information tasks. Thus, we can consider a formal definition of the quantum
conditional entropy [17,31], i.e.,

S(A|B)ρ = S(ρAB)− S(ρB), (10)

where ρB = TrA(ρAB) is the reduced state for the bipartite quantum state ρAB. The quantum
conditional entropy S(A|B)ρ can be denoted as the quantum relative entropy [5,29], i.e.,

S(A|B)ρ = −D(ρAB‖IA ⊗ ρB). (11)

In fact, from the basic properties of the quantum relative entropy, the above equation
has another equivalent expression [5,29],

S(A|B)ρ = max
σB
−D(ρAB‖IA ⊗ σB), (12)

where the maximum is taken over all sub-normalized states onHB.
Combining Equation (9) with Equation (10), we have

S(A|B)ρ = −D̂(ρAB‖IAB) + D̂(ρB‖IB). (13)

However, from the property of Equation (7) and definition of Equation (11), intuitively,
we find that conditional entropy defined by the BS relative entropy is different from the
quantum conditional entropy of Equation (11) generally. Therefore, we define a new
conditional entropy based on the BS relative entropy in the following: the so-called BS
conditional entropy.

Definition 2. For any quantum state ρAB ∈ S=(HAB), the BS conditional entropy is defined as

Ŝ(A|B)ρ = −D̂(ρAB‖IA ⊗ ρB). (14)

Similar to Equation (12), we can also define the alternative BS conditional entropy, i.e.,

Ŝm(A|B)ρ = max
σB
−D̂(ρAB‖IA ⊗ σB), (15)

where σB ∈ S≤(HB). In general, the optimal state is not necessarily the state ρB. We
further have

Ŝm(A|B)ρ ≤ Ŝ(A|B)ρ ≤ S(A|B)ρ, (16)

from the relation of Equation (7). Additionally, if one considers the above relations in the
bipartite classical-quantum systems, they remain equal, as follows.
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Lemma 1. For any bipartite classical-quantum states ρXB, we have

Ŝm(B|X)ρ = Ŝ(B|X)ρ = S(B|X)ρ. (17)

Proof. Without a loss of generality, letting σX = ∑x q(x)|x〉〈x| and ρX = ∑x p(x)|x〉〈x|,
using the definition of Equation (1), we have

Tr
[

ρXB log
(

ρ
1
2
XB IB ⊗ σ−1

X ρ
1
2
XB

)]
= Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
B · log

(
∑
x

p(x)q(x)−1|x〉〈x| ⊗ ρx
B

)]
(18)

= Tr

[
∑
x

p(x) log p(x)q(x)−1|x〉〈x| ⊗ ρx
B

]
+ ∑

x
p(x)Tr[ρx

B log ρx
B]

= D(p(x)‖q(x))−∑
x

p(x)S(ρx
B),

where the last equality follows from the fact that

Tr

[
∑
x

p(x) log p(x)q(x)−1|x〉〈x| ⊗ ρx
B

]
= Tr

[
∑
x

p(x) log p(x)q(x)−1|x〉〈x|
]
· Tr[ρx

B]

and Tr
[
ρx

B
]
= 1.

Next, taking the minimization of σX for both sides of Equation (18), we have

min
σB

Tr
[

ρXB log
(

ρ
1
2
XB IB ⊗ σ−1

X ρ
1
2
XB

)]
= min

σB
D(p(x)‖q(x))−∑

x
p(x)S(ρx

B) (19)

= −∑
x

p(x)S(ρx
B).

The optimization of σX for the first equality only depends on the first term. For
all x, one takes the minimization if and only if p(x) = q(x), which also implies that
D(p(x)‖q(x)) = 0. Furthermore, combining the definitions of Equation (15) with Equation (5)
to Equation (19), it holds that

Ŝm(B|X)ρ = ∑
x

p(x)S(ρx
B).

For Ŝ(B|X)ρ, we have

Tr
[

ρXB log
(

ρ
1
2
XB IB ⊗ ρ−1

X ρ
1
2
XB

)]
= Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
B · log

(
∑
x

p(x)p(x)−1|x〉〈x| ⊗ ρx
B

)]
= −∑

x
p(x)S(ρx

B).

Similarly, we have
Ŝ(B|X)ρ = ∑

x
p(x)S(ρx

B).

Finally, we can obtain the same result for S(B|X)ρ. We thus complete this proof.
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Since the BS relative entropy satisfies the data processing inequality (6), for any
tripartite quantum systemsHABC, it is easy to obtain that conditioning reduces entropy, i.e.,

Ŝ(A|BC)ρ ≤ Ŝ(A|B)ρ. (20)

This property also holds for the quantum conditional entropy S(A|B)ρ. However,
there is not always true for S(A|B)ρ ≤ S(AC|B)ρ (Problem 11.3(2), in [17]). For the BS
conditional entropy, this paper provides another result in the following.

Lemma 2. For any tripartite quantum states ρABC ∈ S=(HABC), we have

Ŝ(AB|C)ρ − log dA ≤ Ŝ(B|C)ρ (21)

and
Ŝm(AB|C)ρ − log dA ≤ Ŝm(B|C)ρ, (22)

where dA is the dimension of subsystemHA.

Proof. Since the BS relative entropy satisfies the data-processing inequality (Corollary 4.53
in [29]) and the fact that partial trace is a quantum channel [5], we have

D̂(ρABC‖IAB ⊗ ρC) ≥ D̂(TrA(ρABC)‖TrA(IAB ⊗ ρC)).

Furthermore, we have

D̂(TrA(ρABC)‖TrA(IAB ⊗ ρC)) = D̂(ρBC‖dA IB ⊗ ρC),

where dA is the dimension of subsystem HA. Applying the additivity of the BS relative
entropy (Proposition 4.54, [29]), we then have

D̂(ρBC‖dA IB ⊗ ρC) = D̂(ρBC‖IB ⊗ ρC)− log dA.

Recalling the definition of the BS conditional entropy Ŝ(A|B)ρ to the above equality,
we have

Ŝ(AB|C)ρ − log dA ≤ Ŝ(B|C)ρ. (23)

Similarly, for the alternative definition of the BS conditional entropy Ŝm(A|B)ρ, taking
the minimization of σX , we have

min
σB

D̂(ρABC‖IAB ⊗ σC) ≥ min
σB

D̂(ρBC‖IB ⊗ σC)− log dA,

which implies that
Ŝm(AB|C)ρ − log dA ≤ Ŝm(B|C)ρ.

The quantum conditional entropy of Equation (10) also satisfies the concavity, which
plays an important role in the quantum information processing [5,17,31]. Additionally,
for the BS conditional entropy of the tripartite classical-quantum state, we obtain the
following result.

Theorem 1. For any tripartite classical-quantum states ρXAB, we have

H(X) + ∑
x

p(x)Ŝ(Ax|B)ρ ≤ Ŝ(A|B)ρ + log dX (24)

and
H(X) + ∑

x
p(x)Ŝm(Ax|B)ρ ≤ Ŝm(A|B)ρ + log dX , (25)



Entropy 2022, 24, 837 7 of 16

where H(X) is the Shannon entropy, and Ŝ(Ax|B)ρ is the BS conditional entropy for the quantum
state ρx

AB.

Proof. For any tripartite classical-quantum states ρXAB, we have

Tr
[

ρXAB log
(

ρ
1
2
XAB IXA ⊗ ρ−1

B ρ
1
2
XAB

)]
= Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
AB · log

(
∑
x

p(x)|x〉〈x| ⊗ (ρx
AB)

1
2 IA ⊗ ρ−1

B (ρx
AB)

1
2

)]
(26)

= Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
AB · log

(
∑
x

p(x)|x〉〈x|
)]

+Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
AB log

(
(ρx

AB)
1
2 IA ⊗ ρ−1

B (ρx
AB)

1
2
)]

.

For the first term of the last equality, we have

Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
AB · log

(
∑
x

p(x)|x〉〈x|
)]

= ∑
x
[p(x) log p(x) · Tr[ρx

AB]]

= −H(X),

where the last equality follows from the fact that Tr
[
ρx

AB
]
= 1. Similarly, for the second

term, we further have

Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
AB log

(
(ρx

AB)
1
2 IA ⊗ ρ−1

B (ρx
AB)

1
2
)]

= ∑
x

p(x)Tr
[
ρx

AB log
(
(ρx

AB)
1
2 IA ⊗ ρ−1

B (ρx
AB)

1
2
)]

= ∑
x

p(x)D̂(ρx
AB‖IA ⊗ ρB)

= −∑
x

p(x)Ŝ(Ax|B)ρ,

where Ŝ(Ax|B)ρ is the BS conditional entropy for the quantum state ρx
AB.

Therefore, we can obtain

Tr
[

ρXAB log
(

ρ
1
2
XAB IXA ⊗ ρ−1

B ρ
1
2
XAB

)]
= −H(X)−∑

x
p(x)Ŝ(Ax|B)ρ.

Using the definition of the BS conditional entropy Ŝ(XA|B)ρ to the above equality,
we have

Ŝ(XA|B)ρ = H(X) + ∑
x

p(x)Ŝ(Ax|B)ρ. (27)

Applying Lemma 2, we further have

Ŝ(XA|B)ρ ≤ Ŝ(A|B)ρ + log dX . (28)

Substituting Equation (27) into the above inequality (28), we can obtain the first
inequality of Theorem 1.
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We will replace ρB with σB to analyze the case of the alternative BS relative entropy in
the same way, i.e.,

Tr
[

ρXAB log
(

ρ
1
2
XAB IXA ⊗ σ−1

B ρ
1
2
XAB

)]
= −H(X) + ∑

x
p(x)D̂(ρx

AB‖IA ⊗ σB),

taking the optimization of σB for the above equality and combining the definition of
Equation (15). We then obtain the desired result.

From the above results, we know that there are two additional terms H(X) and log dX
on each side of the inequality (24), which are different from the concavity of the quantum
conditional entropy S(A|B)ρ. To make a distinction, we call it the weak concavity of the BS
conditional entropy given by Theorem 1.

Combining the above fact with Theorem 1, we can establish the relationship between
Ŝ(A|XB)ρ and Ŝ(XA|B)ρ. Using the direct sum property of the BS relative entropy (Propo-
sition 4.54 in [29]), we have

Ŝ(A|XB)ρ = −∑
x

p(x)D̂(ρx
AB‖IA ⊗ ρx

B). (29)

We cannot determine the order relations between ρx
B with ρB, but one can always

compare D̂(ρx
AB‖IA ⊗ ρx

B) with D̂(ρx
AB‖IA ⊗ ρB). For the case that the former is less than

the latter, we have

Ŝ(A|XB)ρ ≥ −∑
x

p(x)D̂(ρx
AB‖IA ⊗ ρB). (30)

Applying Equation (26), we can obtain

Ŝ(XA|B)ρ − log dX ≤ Ŝ(A|XB)ρ. (31)

In addition, as a special case of the inequality (20), we can easily obtain that
Ŝ(A|XB)ρ ≤ Ŝ(A|B)ρ. Therefore, it holds that

Ŝ(XA|B)ρ − log dX ≤ Ŝ(A|XB)ρ ≤ Ŝ(A|B)ρ. (32)

Otherwise, for the case of D̂(ρx
AB‖IA ⊗ ρx

B) ≥ D̂(ρx
AB‖IA ⊗ ρB), we then obtain

H(X) + Ŝ(A|XB)ρ ≤ Ŝ(XA|B)ρ. (33)

For the quantum conditional entropy of Equation (10), we know that any bipartite
pure states are entangled if and only if S(A|B) < 0. Here, we are also interested in the BS
conditional entropy. Without a loss of generality, let |ψ〉AB = ∑i λi|i〉A|i〉B be any bipartite
pure state, where λi represents non-negative real numbers satisfying ∑i λ2

i = 1, known as
Schmidt coefficients, and |i〉A and |i〉B are orthonormal states for A and B, respectively. The
number of non-zero values λi is called the Schmidt number for the pure state |ψ〉AB [17].
We have

Ŝ(A|B)ψ = −Tr
[

ψAB log
(

ψ
1
2
AB IA ⊗ ρ−1

B ψ
1
2
AB

)]
= −Tr

[
ψAB log

(
IA ⊗ ρ

− 1
2

B ψAB IA ⊗ ρ
− 1

2
B

)]
(34)

= − log r,

where r is the Schmidt number of |ψ〉. We remark that the bipartite pure state is entangled
if the Schmidt number is greater than 1.
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3.2. Belavkin–Staszewski Mutual Information

The quantum mutual information is another important measure in quantum informa-
tion theory, which can describe total correlations in the bipartite quantum subsystems, and
there are important applications in quantum channel capacity, quantum cryptography, and
quantum thermodynamics [17,35]. Based on the property of the quantum relative entropy,
there are four equal definitions for the quantum mutual information, i.e.,

I(A; B)ρ = D(ρAB‖ρA ⊗ ρB)

= min
σB

D(ρAB‖ρA ⊗ σB)

= min
σA

D(ρAB‖σA ⊗ ρB) (35)

= min
σA ,σB

D(ρAB‖σA ⊗ σB),

where the minimums are taken over all density operators σA and σB on quantum systems
HA andHB, respectively. However, for other general relative entropies, these equalities do
not hold in general, such as max-information [24]. In this section, we will consider a new
mutual information via the BS relative entropy, Similar to Equation (35), we define four
different BS information terms as follows.

Definition 3. For any quantum state ρAB ∈ S=(HAB), the BS mutual information terms are
defined as

Î1(A; B)ρ = D̂(ρAB‖ρA ⊗ ρB), (36)

Î2(A; B)ρ = min
σB

D̂(ρAB‖ρA ⊗ σB), (37)

Î2′(A; B)ρ = min
σA

D̂(ρAB‖σA ⊗ ρB), (38)

Î3(A; B)ρ = min
σA ,σB

D̂(ρAB‖σA ⊗ σB). (39)

Notice that, for Î2(A; B)ρ and Î2′(A; B)ρ, they can be thought of as swapping the
positions of the optimization operators σA and σB, so we will consider only one of them.
Intuitively, the remaining three definitions of the BS mutual information Îi(A; B)ρ decreases
with i, i.e.,

Î3(A; B)ρ ≤ Î2(A; B)ρ ≤ Î1(A; B)ρ. (40)

Additionally, recalling the inequality (7), we can obtain that there is not less BS mutual
information than there is quantum mutual information, i.e.,

I(A; B)ρ ≤ Îi(A; B)ρ. (41)

From the monotonicity of the BS relative entropy, it follows that discarding quantum
systems does not increase the BS mutual information, i.e.,

Îi(A; B)ρ ≤ Îi(A; BC)ρ. (42)

Subsequently, for the quantum mutual information (35), it holds that

I(A; B)ρ = S(ρA)− S(A|B)ρ

= S(ρB)− S(B|A)ρ. (43)

The above two relations are called chain rules for the quantum mutual information.
Chain rule can be regarded as a ‘bridge’ between conditional entropy with mutual informa-
tion in information theory. We are also interested in exploring chain rules for the BS mutual
information for bipartite classical-quantum systemHXB (for all quantum scenarios, further
discussion is needed as a remaining issue). It is well-known that the classical-quantum
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state only possesses classical correlation, and there is no quantum correlation, which leads
us to find some significative and interesting results. We first give the following result before
discussing the chain rules for the BS mutual information.

Lemma 3. For any bipartite classical-quantum states ρXB, we have

Îi(X; B)ρ = min
σB

∑
x

p(x)D̂(ρx
B‖σB), (44)

where i = 2, 3.

Proof. The proof is similar to the proof of Lemma 1, thus we omit some calculation steps.
We first consider the case Î3(X; B)ρ. Let σX = ∑x q(x)|x〉〈x|, for any quantum state σB,
we have

Tr
[

ρXB log
(

ρ
1
2
XBσ−1

X ⊗ σ−1
B ρ

1
2
XB

)]
= Tr

[
∑
x

p(x)|x〉〈x| ⊗ ρx
B · log

(
∑
x

p(x)q(x)−1|x〉〈x| ⊗ (ρx
B)

1
2 σ−1

B (ρx
B)

1
2

)]
(45)

= Tr

[
∑
x

p(x) log p(x)q(x)−1|x〉〈x| ⊗ ρx
B

]
+ ∑

x
p(x)Tr

[
ρx

B log(ρx
B)

1
2 σ−1

B (ρx
B)

1
2

]
= D(p(x)‖q(x)) + ∑

x
p(x)D̂(ρx

B‖σB).

Taking the minimum optimization for both sides of Equation (45) about σX and σB,
respectively, we then have,

Î3(X; B)ρ = min
σX ,σB

[
D(p(x)‖q(x)) + ∑

x
p(x)D̂(ρx

B‖σB)

]
= min

σX
D(p(x)‖q(x)) + min

σB
∑
x

p(x)D̂(ρx
B‖σB)

= min
σB

∑
x

p(x)D̂(ρx
B‖σB).

The last equality follows from the fact that the relative entropy D(p(x)‖q(x)) is non-
negative; i.e., it holds that

min
σX

D(p(x)‖q(x)) = 0,

for all x, if and only if p(x) = q(x).
For Î2(X; B)ρ, only optimization is required for σB from its definition, so we directly have

Î2(X; B)ρ = min
σB

Tr
[

ρXB log
(

ρ
1
2
XBρ−1

X ⊗ σ−1
B ρ

1
2
XB

)]
= min

σB
∑
x

p(x)D̂(ρx
B‖σB).

Notice that the BS mutual information Î1(X; B)ρ does not involve any optimizations,
so we have

Î1(X; B)ρ = ∑
x

p(x)D̂(ρx
B‖ρB). (46)

This result shows that the BS mutual information Î1(X; B)ρ is identical in form with
the quantum mutual information I(X; B)ρ, while the latter is the well-known Holevo
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information. In addition, if we consider the tripartite classical-quantum state, we can also
obtain a sum form of the BS mutual information for i = 1, i.e.,

Î1(XA; B)ρ = ∑
x

p(x) Î1(Ax; ρB), (47)

where Î1(Ax; ρB) is the BS mutual information between quantum states ρx
AB and ρx

A ⊗ ρB.
Other cases of the BS mutual information are similar, so we will not go into detail. Based
on the above results, we obtain the chain rules for the BS mutual information for bipartite
classical-quantum states as follows.

Theorem 2. For any bipartite classical-quantum state ρXB, we have

Îi(X; B)ρ + Ŝm(X|B)ρ = H(X), (48)

where i = 2, 3.

Proof. The proof of this theorem is similar to the proof of Theorem 1, so we omit some of
the repetition. For any bipartite classical-quantum state ρXB, we have

D̂(ρXB‖IX ⊗ σB) = ∑
x

p(x)D̂(ρx
B‖σB)− H(X). (49)

Employing the definition of Equation (15), we further have

Ŝm(X|B)ρ = H(X)−min
σB

∑
x

p(x)D̂(ρx
B‖σB). (50)

Applying Lemma 3 to Equation (50), we can then complete the proof.

Similarly, for Î1(X; B)ρ, we give a chain rule with respect to the definition of the BS
conditional entropy Ŝ(X|B)ρ as follows.

Corollary 1. For any bipartite classical-quantum state ρXB ∈ S≤(HXB), we have

Î1(X; B)ρ + Ŝ(X|B)ρ = H(X). (51)

Proof. From Definition 2, we can directly obtain that

Ŝ(X|B)ρ = −Tr
[

ρXB log
(

ρ
1
2
XB IX ⊗ ρ−1

B ρ
1
2
XB

)]
= H(X)−∑

x
p(x)D̂(ρx

B‖ρB). (52)

Combining Equation (46) with Equation (52), we then obtain the desired result.

Recalling Holevo information and applying the result of Lemma 1, we further have

I(X; B)ρ = S(ρB)− Ŝ(B|X)ρ

= S(ρB)− Ŝm(B|X)ρ (53)

= S(ρB)− S(B|X)ρ.

This result shows that the BS conditional entropy with classical side information can be
used to describe the Holevo information as well. In addition, employing the inequality (41),
we have

S(ρB)− Ŝm(B|X)ρ ≤ Î3(X; B)ρ. (54)
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Comparing this to Theorem 2, we find that, when the side information is classical, the
equal sign of the chain rule for Î3(X; B)ρ does not hold in general.

3.3. Subadditivity for the BS Relative Entropy

It is necessary to study the relationship of entropic measures between a joint system
and its corresponding subsystems, which plays a vital role in estimating channel capacity
bounds and analyzing error exponents. The quantum relative entropy satisfies subadditiv-
ity and superadditivity, both of which are fundamental properties of the quantum relative
entropy [31]. More precisely, for any bipartite quantum states ρAB and a product state
σA ⊗ σB, the superadditivity of the quantum relative entropy is

D(ρA‖σA) + D(ρB‖σB) ≤ D(ρAB‖σA ⊗ σB). (55)

This was extended to a more general setting [36]. This paper does not determine
whether the BS relative entropy holds the same property. However, the following result
shows an opposite relationship for the BS entropy, i.e., the subadditivity. We first give an
equivalent definition of the BS relative entropy for obtaining the desired result.

Lemma 4. For any quantum state ρ ∈ S=(H) and σ ∈ S≤(H), we have

D̂(ρ‖σ) = Tr
[
σ(σ−

1
2 ρσ−

1
2 ) log

(
σ−

1
2 ρσ−

1
2

)]
. (56)

Proof. Let Πσ be the projection onto the support of σ. One can obtain that ρ = ρΠσ = Πσρ
from supp(ρ) ⊆ supp(σ). From Equation (5), we thus have

D̂(ρ‖σ) = Tr
[
ρ log(ρ

1
2 σ−1ρ

1
2 )
]

= Tr
[
ρ

1
2 Πσρ

1
2 log(ρ

1
2 σ−

1
2 σ−

1
2 ρ

1
2 )
]

(57)

= Tr
[
ρ

1
2 σ

1
2 σ−

1
2 ρ

1
2 log(ρ

1
2 σ−

1
2 σ−

1
2 ρ

1
2 )
]
,

where the equalities holds from the fact that Πσ = σ
1
2 σ−

1
2 . Employing Lemma 2.6 in [29],

we have
σ−

1
2 ρ

1
2 log(ρ

1
2 σ−

1
2 σ−

1
2 ρ

1
2 ) = log(σ−

1
2 ρσ−

1
2 )σ−

1
2 ρ

1
2 ,

where ρ
1
2 σ−

1
2 = (σ−

1
2 ρ

1
2 )†. We then have

D̂(ρ‖σ) = Tr
[
ρ

1
2 σ

1
2 log(σ−

1
2 ρσ−

1
2 )σ−

1
2 ρ

1
2

]
= Tr

[
log(σ−

1
2 ρσ−

1
2 )σ−

1
2 ρσ

1
2

]
. (58)

The equality holds from the cyclic property of the trace. Since

log(σ−
1
2 ρσ−

1
2 )σ−

1
2 ρσ−

1
2 = σ−

1
2 ρσ−

1
2 log(σ−

1
2 ρσ−

1
2 ),

we have

D̂(ρ‖σ) = Tr
[
log(σ−

1
2 ρσ−

1
2 )σ−

1
2 ρσ−

1
2 σ
]

= Tr
[
σ−

1
2 ρσ−

1
2 log(σ−

1
2 ρσ−

1
2 )σ
]
. (59)

Finally, we obtain the desired result by applying the cyclic property of the trace
again.
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Theorem 3. For any quantum state ρAB ∈ S=(HAB), σA ∈ S≤(HA), or σB ∈ S≤(HB),
we have

D̂(ρAB‖σA⊗σB)≤λ
[
logλ+D̂(ρA‖σA)+D̂(ρB‖σB)

]
, (60)

where λ = 2Dmax(ρAB‖ρA⊗ρB).

Proof. Let Dmax(ρAB‖ρA ⊗ ρB) = log λ for suppρAB ⊆ supp(ρA ⊗ ρB), which implies that
ρAB ≤ λρA ⊗ ρB. For any quantum state σA or σB that satisfies suppρA ⊆ suppσB and
suppρA ⊆ suppσB, respectively, applying Lemma 4, we have

D̂(ρAB‖σA⊗σB)

= Tr
[
(σA ⊗ σB)

(
σ
− 1

2
A ⊗ σ

− 1
2

B ρABσ
− 1

2
A ⊗ σ

− 1
2

B

)
· log

(
σ
− 1

2
A ⊗ σ

− 1
2

B ρABσ
− 1

2
A ⊗ σ

− 1
2

B

)]
. (61)

Employing the basic operator inequalities of Lemma 2.13 in [29], we have

σ
− 1

2
A ⊗ σ

− 1
2

B ρABσ
− 1

2
A ⊗ σ

− 1
2

B ≤ λσ
− 1

2
A ⊗ σ

− 1
2

B ρA ⊗ ρBσ
− 1

2
A ⊗ σ

− 1
2

B .

Substituting the above inequality into Equation (61), we then have

D̂(ρAB‖σA⊗σB)

≤ Tr
[
(σA ⊗ σB)

(
λσ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)
· log

(
λσ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)]
= λ · Tr

[
(σA ⊗ σB)

(
σ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)
·
(

log λ + log
(

σ
− 1

2
A ρAσ

− 1
2

A

)
+ log

(
σ
− 1

2
B ρBσ

− 1
2

B

))]
≤ λ log λ + λD̂(ρA‖σA) + λD̂(ρB‖σB).

The equality follows from the linearity of the trace. The last inequality holds based on

Tr
[
(σA ⊗ σB)

(
σ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)]
≤ 1

and

Tr
[
(σA ⊗ σB)

(
σ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)
log
(

σ
− 1

2
A ρAσ

− 1
2

A

)]
= Tr

[
σA

(
σ
− 1

2
A ρAσ

− 1
2

A

)
log
(

σ
− 1

2
A ρAσ

− 1
2

A

)]
= D̂(ρA‖σA).

Similarly,

Tr
[
(σA ⊗ σB)

(
σ
− 1

2
A ρAσ

− 1
2

A ⊗ σ
− 1

2
B ρBσ

− 1
2

B

)
log
(

σ
− 1

2
B ρBσ

− 1
2

B

)]
= D̂(ρB‖σB).

As mentioned above, the geometric Rényi relative entropy converges to the BS relative
entropy when the limit is α→ 1. More generally, we also provide an upper bound for the
geometric Rényi relative entropy.
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Theorem 4. For any quantum state ρAB ∈ S=(HAB), σA ∈ S≤(HA), or σB ∈ S≤(HB),
we have

D̂α(ρAB‖σA ⊗ σB) ≤
α

α− 1
Dmax(ρAB‖ρA ⊗ ρB) + D̂α(ρA‖σA) + D̂α(ρB‖σB).

Proof. Let Dmax(ρAB‖ρA ⊗ ρB) = log λ for suppρAB ⊆ supp(ρA ⊗ ρB). This implies
that ρAB ≤ λρA ⊗ ρB. For σA and σB with suppρA ⊆ suppσB and suppρA ⊆ suppσB,
respectively, employing the relation of Eq. (4.6.21) in [29], we have

Tr
[
(σA ⊗ σB)

(
σ
− 1

2
A ⊗ σ

− 1
2

B ρABσ
− 1

2
A ⊗ σ

− 1
2

B

)α]
= Tr

[
ρAB

(
ρ

1
2
ABσ−1

A ⊗ σ−1
B ρ

1
2
AB

)α−1
]

.

It then holds that

Tr

[
ρAB

(
ρ

1
2
ABσ−1

A ⊗ σ−1
B ρ

1
2
AB

)α−1
]

≤ Tr

[
λ(ρA ⊗ ρB)

(
λρ

1
2
A ⊗ ρ

1
2
B σ−1

A ⊗ σ−1
B ρ

1
2
A ⊗ ρ

1
2
B

)α−1
]

= λαTr

[
(ρA ⊗ ρB)

(
ρ

1
2
A ⊗ ρ

1
2
B σ−1

A ⊗ σ−1
B ρ

1
2
A ⊗ ρ

1
2
B

)α−1
]

= λαTr

[
ρA

(
ρ

1
2
Aσ−1

A ρ
1
2
A

)α−1
]

Tr

[
ρB

(
ρ

1
2
B σ−1

B ⊗ ρ
1
2
B

)α−1
]

.

Combining the above result with Definition 1, we have

D̂α(ρAB‖σA ⊗ σB) ≤
1

α− 1
log

[
λαTr

[
ρA

(
ρ

1
2
Aσ−1

A ρ
1
2
A

)α−1
]

Tr

[
ρB

(
ρ

1
2
B σ−1

B ⊗ ρ
1
2
B

)α−1
]]

=
α

α−1
Dmax(ρAB‖ρA ⊗ ρB) + D̂α(ρA‖σA)+D̂α(ρB‖σB).

Similarly, one can define a new mutual information term via the geometric Rényi
relative entropy as

Îα(A; B)ρ = min
σA ,σB

D̂α(ρAB‖σA ⊗ σB). (62)

It is then easy to draw the following conclusion.

Corollary 2. For any quantum state ρAB ∈ S=(HAB), σA ∈ S≤(HA), or σB ∈ S≤(HB),
we have

Îα(A; B)ρ ≤ α
α−1 Dmax(ρAB‖ρA ⊗ ρB) + D̂α(ρA‖σA)+D̂α(ρB‖σB). (63)

Notably, if one considers the classical-quantum state, there is no result as shown in
Lemma 3 for the mutual information defined by the geometric Rényi relative entropy.
Specifically, for α ∈ (0, 1), we have

D̂α(ρXB‖ρX ⊗ ρB) =
1

α− 1
log

[
∑
x

p(x)Tr
[

ρB

(
ρ
− 1

2
B ρx

Bρ
− 1

2
B

)α]]

≤ 1
α− 1 ∑

x
p(x) log

[
Tr
[

ρB

(
σ
− 1

2
B ρx

Bρ
− 1

2
B

)α]]
(64)

= ∑
x

p(x)D̂α(ρ
x
B‖ρB),
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where the inequality comes from the Jensen inequality of − log t. For α ∈ (1, ∞), we obtain
the opposite result, i.e.,

D̂α(ρXB‖ρX ⊗ ρB) ≥∑
x

p(x)D̂α(ρ
x
B‖ρB). (65)

Furthermore, if one considers the conditional entropy defined by the geometric Rényi
relative entropy, for α ∈ (0, 1), we have

D̂α(ρXB‖IX⊗ρB)≤∑
x

p(x)D̂α(ρ
x
B‖ρB)−H(X). (66)

For α ∈ (1, ∞), we then have

D̂α(ρXB‖IX⊗ρB)≥∑
x

p(x)D̂α(ρ
x
B‖ρB)−H(X). (67)

4. Conclusions

This paper investigates the subadditivity of the geometric Rényi and BS relative
entropies and explores the indispensable properties of the BS conditional entropy and
mutual information, especially in classical-quantum settings. The subadditivity of the
geometric Rényi and BS relative entropies can provide new valuable bounds to estimate
channel capacity and analyze the error exponent. As mentioned above, the BS relative
entropy represents a different quantum generalization of classical relative entropy. The
main use of BS relative entropy is in establishing upper bounds for the rates of feedback-
assisted quantum communication protocols. The primary goal of further research on BS
relative entropy is to explore the intrinsic properties of its relevant conditional entropy and
mutual information and to gain a better understanding of their operational relevance. We
hope that the formal tools provided in this paper will be useful for this purpose.

One question worth answering is whether there is a chain rule for the mutual informa-
tion in terms of the geometric Rényi relative entropy, i.e.,

D̂α(ρAB‖ρA⊗ρB)
≥
≤Ŝα(ρA)+D̂α(ρAB‖IA⊗ρB),

or the other forms, where Ŝα(ρA) is the quantum Rényi entropy. Subsequently, the duality
of conditional entropy is an important property for a tripartite pure state system, which
can be effectively applied in random number extraction and channel coding [26]. Further
research will focus on the duality of the BS conditional entropy.
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