
molecules

Article

How Do Aromatic Nitro Compounds React with
Nucleophiles? Theoretical Description Using
Aromaticity, Nucleophilicity and
Electrophilicity Indices

Kacper Błaziak 1,2,* , Witold Danikiewicz 3 and Mieczysław Mąkosza 3
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Abstract: In this study, we present a complete description of the addition of a model nucleophile
to the nitroaromatic ring in positions occupied either by hydrogen (the first step of the SNAr-H
reaction) or a leaving group (SNAr-X reaction) using theoretical parameters including aromaticity
(HOMA), electrophilicity and nucleophilicity indices. It was shown both experimentally and by
our calculations, including kinetic isotope effect modeling, that the addition of a nucleophile to
the electron-deficient aromatic ring is the rate limiting step of both SNAr-X and SNAr-H reactions
when the fast transformation of σH-adduct into the products is possible due to the specific reaction
conditions, so this is the most important step of the entire reaction. The results described in this paper
are helpful for better understanding of the subtle factors controlling the reaction direction and rate.
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1. Introduction

Nucleophilic aromatic substitution of halogens in halonitroarenes is one of the fundamental
processes of organic chemistry widely used for industrial and laboratory organic synthesis [1–3].
The reaction proceeds via the addition of nucleophiles to the aromatic rings at positions occupied
by halogen X to form σX-adducts followed by spontaneous departure of X− anions to give the
substitution products. The addition is connected with dearomatization of the rings, whereas
formation of the product by departure of X− results in rearomatization, thus, as a rule, the addition
is the slow, rate limiting step of the reaction. This mechanism, formulated by J.F. Bunnett [4,5],
was confirmed in numerous mechanistic studies and presently is generally accepted [6]. It has
been also confirmed by numerous quantum chemical calculations of the reaction pathways between
halonitrobenzenes and nucleophiles [7–18]. These calculations showed that depending on the structure
of the reactants—nitroarenes and nucleophiles—the σX-adduct can either be an intermediate, i.e., is
located in a local energy minimum on the potential energy surface (PES) of the reaction, or a transition
state [19].

The nitro group in halonitrobenzenes activates three positions of the ring (two ortho and one para
position) towards nucleophilic addition, thus the nucleophiles can add also at positions occupied by
hydrogen. Indeed, there are a few old reports of reactions that proceed via addition of nucleophiles
to p- and o-chloronitrobenzenes at positions occupied by hydrogen and further conversions of
the produced σH-adducts, such as von Richter reaction [20] or formation of benzisoxazoles [21].
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Some years ago, it was shown that the addition of nucleophiles to halonitroarenes at positions occupied
by hydrogen proceeds faster than at those occupied by halogens and that there are a few general
ways of conversion of the initially formed σH-adducts into products of nucleophilic substitution of
hydrogen SNAr-H, such as oxidation [22,23], vicarious nucleophilic substitution (VNS) [24,25], etc.
(Scheme 1). In fact, oxidative nucleophilic substitution of hydrogen, ONSH, vicarious nucleophilic
substitution of hydrogen, VNS, and some other variants of SNAr-H are presently well recognized and
widely used processes in organic synthesis [3,26–32]. On the basis of these results, it was concluded
that classical SNAr-X of halogens is a secondary process preceded by fast and reversible formation of
the σH-adducts [33].
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However, even in recent publications on the mechanism of SNAr reactions this situation was not
taken into account [3,34]. Moreover, in all quantum chemical calculations of the energy profiles of the
addition of nucleophiles to halonitrobenzenes only the addition at positions occupied by halogens
has been considered [7–18,34]. It is really surprising, because calculations of a reaction between two
reactants should look for the pathways that proceed via transition states (TS) of the lowest free energies,
thus they have ignored faster addition at positions occupied by hydrogen.

Previously we have presented results of DFT calculations of the reactions between a model
nucleophile: carbanion of chloromethyl phenyl sulfone 1 and three model nitroarenes: nitrobenzene 2,
p-fluoro- and p-chloronitrobenzenes 3 and 4 for the gas phase and DMF solutions. These calculations
have shown that the addition at positions occupied by hydrogen proceeds via TS of lower free energy
than at those occupied by halogens (Figure 1); thus, they are in agreement with the experimental
results. On this basis, a real, corrected mechanism of nucleophilic aromatic substitution has been
formulated [35–37]. The model nucleophile (chloromethyl phenyl sulfone anion) has been chosen as
an example, which, due to its nature, is much less affected by the solvent’s effects contrary to the other
most common protic or polar nucleophiles [35].

The aim of this paper is to present a full mechanistic picture of nucleophilic aromatic substitution
in halonitroarenes and nitrobenzene embracing such subtle features as changing aromaticity of the
nitroarenes as well as electrophilicity of nitroarenes and nucleophilicity of the carbanion in the addition
process, kinetic isotope effects and effects of substituents on the rates of the addition on the basis of
DFT calculation and experimental results.
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Figure 1. Potential energy profiles for the limiting step of SNAr-H (left) and SNAr-X (right) reactions
between model nuclephile 1 and para substituted halonitrobenzenes constructed based on our previous
computation results published elsewhere [35].

2. Results and Discussion

As the model nucleophile in our calculations, we have used the carbanion of chloromethyl phenyl
sulfone 1 that was used in experimental mechanistic studies of SNAr-H reaction. It was also used in the
previous calculations of the energy profiles of the reaction with nitrobenzene 2, p-fluoronitrobenzene 3
and p-chloronitrobenzene 4 (Scheme 2).
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2.1. Aromaticity

Nucleophilic addition to the nitroaromatic rings, regardless of positions of the addition,
is connected with dearomatization. In fact, the intermediate adducts, particularly σH-adducts,
are relatively stable entities and have the structure of cyclohexadienenitronate anions [38]. It is therefore
of great interest to follow the change of the aromaticity in the course of the reaction.

The results of experimental studies, particularly rates of the reactions, can clarify some key
elements of the mechanism. In the case of SNAr-X and SNAr-H, they can be interpreted in terms of
changes of aromaticity in the reaction course. Nonaromatic structure of σH-adduct to p-substituted
nitrobenzenes was directly determined by observation of its 1H NMR spectra [38].

These experimental results provide information about the key steps of the reaction. Changes of
aromaticity in the course of nucleophilic addition can be followed by quantum chemical calculations.
In order to follow electronic reorganization during this process, calculations based upon the Harmonic
Oscillator Model of Aromaticity (HOMA) [39] were performed. When the nucleophile approaches
the nitroarene ring and the distance between them decreases, the excess of negative charge affects the
shape of the ring. Figure 2 shows the HOMA aromaticity index as a function of the progress of the
reaction between our model nucleophile, the anion of chloromethyl phenyl sulfone 1 and 2, 3 and 4. In
all cases the addition to the ring at positions occupied by hydrogen: ortho- and para- of 2 and ortho-
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of 3 and 4, size of the ring increases and it loses planarity. The circumference of the ring increases
in all these cases by about 2% (see Supplementary Materials: S6, S7). It is therefore evident that the
loss of aromaticity in the case of the σH-adducts is the largest, in agreement with experiments. It is
a different situation in the case where the nucleophile adds to p-halonitrobenzenes at the position
occupied by halogen. The addition at the position occupied by fluorine in 3 results in formation of
the σF-adduct, located in a minimum of the free energy on the reaction profile. This adduct possesses
higher aromaticity than σH-adduct and circumference of the ring increases by ca. 1.7%, perhaps
because the electron withdrawing fluorine atom accepts a partially negative charge of the ring.
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Figure 2. The Harmonic Oscillator Model of Aromaticity (HOMA) aromaticity index for the addition
to the ortho (left) and para position (right), calculated at PBE1PBE/6-31 + G(d) level of theory (PSNAr

stands for the product of the SNAr reaction).

The addition of 1 at position para of 4 occupied by chlorine results in the formation of the structure
identical to the σCl adduct, however, it is not located at the local minimum of ∆G on the reaction
path but at the saddle point, thus it is the transition state (Figure 3). This phenomenon has been
discussed in recent reports by Fernández et al. [19] and earlier in the case of electrophilic reactions by
Gwaltney et al. [40]. Additionally, the observation that the σCl-adduct is the transition state structure
was omitted in a very innovative work by Ormazábal-Toledo et al. [16] in which the authors introduce
the calculation methodology used by us in the next parts of the present work. The lowest aromaticity
of the system is observed after the transition state when the rearomatization process starts with the
departure of the chloride anion. The negative charge is removed from the ring with the leaving group
and the nitrobenzene ring relaxes into the symmetric planar shape. The circumference of the ring
increases by 1.9% when the σCl-adduct is formed as the transition state.
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This part of the investigation shows clearly that the SNAr reaction substitution of fluoride proceeds
fastest because during the reaction there is the smallest aromaticity loss, so the atomic system has the
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best possibility to recover aromaticity. The replacement of chloride is slower because the larger loss
of aromaticity is observed during the reaction. The σCl-adduct is not a stable intermediate product,
which is why the SNAr reaction between p-chloronitrobenzene and the nucleophile is irreversible.
These observations based on the aromaticity are in agreement with the kinetics. Finally, the addition at
positions occupied by hydrogen smoothly leads to the highest aromaticity loss and the formation of
stable intermediate σH-adducts, which can be transformed into the final SNAr-H product by several
ways under the appropriate reaction conditions [24–28,41–45].

2.2. Electrophilicity and Nucleophilicity

The concepts of nucleophilicity and electrophilicity are an inseparable part of nucleophilic
substitution processes. Over the years, many attempts to determine their absolute and relative values,
both experimentally [46–56] and theoretically [16,18,57–60], have been reported. In the particular case
of nucleophilic aromatic substitution of halogens (SNAr-X) and hydrogen (SNAr-H), in which the initial
step is nucleophilic addition to the electron-deficient ring, electrophilicity is the factor deciding the
rate of addition.

Thus, the effect of substituents on the rate of the addition can be considered as the effect on
electrophilicity of the ring. Although, as a rule, the addition is the rate limiting step of SNAr reaction,
the effect of substituents on the rate of substitution of halogen in halonitrobenzenes containing various
substituents cannot be considered as a measure of electrophilicity of the ring, because it depends
on the kind of halogens and, particularly, because it is a secondary reaction preceded by fast and
reversible addition at positions occupied by hydrogen. Thus, real electrophilic activity of substituted
nitroarenes was determined in relation to the rate of the addition reaction at positions occupied
by hydrogen. For technical reasons, relative rates of the addition of the model nucleophile 1 were
determined in relation to the rate of addition at position ortho of nitrobenzene. These experimentally
determined electrophilicities of p-substituted nitrobenzenes are in good correlation with the calculated
electrophilicity indicesω+ of these nitroarenes (Table 1, Figure 4). These data describe electrophilicity
of the nitroarenes before the reaction. Changes of electrophilicity of nitroarenes and nucleophilicity of
1 along the reaction path can be tracked only by computation [60]. Following the reaction coordinates,
calculations of nucleophilicity and electrophilicity were performed (for more details please consult
Supplementary Information, SI) for selected parts of the atomic system16, according to models shown
in Figure 5.
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Table 1. Experimental relative activities [61] and calculated electrophilicity potentialω+ (eV) of para
substituted nitro benzenes.

X tBu H F Cl Br CF3 CN

Relative activities
experimental [61] 0.36 1 50 130 150 640 1050

ω+, calculated (eV) 3.18 3.40 3.45 3.57 3.59 3.93 4.50Molecules 2020, 25, x FOR PEER REVIEW 6 of 11 
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Based on conceptual density functional theory [62,63], the electrophilicity and nucleophilicity
indices for the addition of the selected nucleophile in the ortho position of nitrobenzene derivatives
were calculated, Figure 6.
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and nucleophilicity for permanent group (upper right) and nucleophile (lower right) during the
nucleophilic substitution in the ortho position.

It was proven by the calculated activation barriers [35] (Figure 1) that the rate of σH-adduct
formation is strictly related to substituent effects in the aromatic ring. The electron-withdrawing effect
of the halogen in the para position contributes to the activation of the ortho position towards nucleophilic
attack. In this case the results obtained for p-fluoro-, p-chloro- and unsubstituted nitrobenzene are
very similar. The upper left diagram in Figure 6 shows the calculated electrophilicity of permanent
group (PG). Each nitrobenzene derivative has different electrophilic character, thus the potential to
react with the nucleophile decreases accordingly: p-chloro- > p-fluoro- > unsubstituted nitrobenzene.
The electrophilicity of PG fell rapidly en route to the formation of σH-adducts and it slightly increased
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in the nucleophile atomic system (lower left diagram, Figure 6). The upper right diagram shows that the
calculated nucleophilicity of the permanent group increases during the addition in the ortho position.
Nucleophilicity values of the permanent group are mainly affected by the type of the nucleophile and
its character as a donor of extra electron density. This causes the differences of nucleophilicity between
nucleophile acceptors to be less pronounced.

On the other hand, the same factors in the form of electrophilicity and nucleophilicity indices for
the SNAr reaction were calculated. The results suggest that the electrophilicity of the permanent group
in the case of para substitution is very similar to the loss of aromaticity and the nucleophilicity trend of
PG is reversed, Figure 7.
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in the para position.

For p-chloronitrobenzene, the electrophilicity decreases until the transition state structure is
formed; after the chloride anion detaches, the potential to accept an electron from the environment
increases. For p-fluoronitrobenzene and nitrobenzene, the trends of the factors are very similar to those
obtained for the reaction in the ortho position. The reactions in the para position of p-fluoronitrobenzene
and nitrobenzene lead to the formation of σF-adduct and σH-adduct, respectively. That observation is
also consistent with the aromaticity changes and the properties of the formed σ-adducts, where the
σF-adduct and the σH-adduct are stable intermediates, and the σCl-adduct is a transition state
structure. The substitution of the chlorine atom as a first order reaction is also visible in the case of
nucleophilicity change trends of the leaving group, where this parameter increases for the chloride ion
after its departure from the nitrobenzene ring. All of the presented trends for SNAr-X and SNAr-H
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reactions seem to reproduce reliably the nucleophilicity and electrophilicity changes along the electron
reorganization path during the bond formation-bond breaking processes between the nucleophile and
the nitrobenzene derivatives.

2.3. Kinetic Isotope Effect

Studies of kinetic isotope effects, KIEs, are an important tool for clarification of mechanisms of
organic reactions. Since differences of rates of reactions in which isotopes are involved are functions of
their mass differences, KIEs of hydrogen 1H vs. 2D are the most often studied. Nevertheless, on the
basis of the KIEs of fluorine 18F vs. 19F, it was shown that in SNAr of fluorine in 2,4-dinitrofluorobenzene
in the reaction with piperidine, the addition or the elimination can be the rate limiting step depending
on the solvent [63,64]. On the other hand, determination of KIEs of hydrogen H vs. D was of great
importance for determination (elaboration) of the mechanism of SNAr-H reactions [65,66]. Thus,
it was shown that the addition of the model carbanion 1 at positions occupied by hydrogen of
4-bromo-2-deuteronitrobenzene proceeds somewhat slower than at identically activated positions
occupied by deuterium, KIE ≈ 0.8. Calculations of the energy profiles for this reaction in the gas phase
by three DFT methods gave the results between 0.62 and 0.82, which are in a good agreement with the
experimental data. These results show that calculation of KIE can be quite useful in studying reaction
mechanisms, especially that it is much simpler compared to the experiment.

3. Conclusions

In conclusion, the detailed mechanistic picture of both variants: SNAr-X and SNAr-H of nucleophilic
aromatic substitution pathways in halonitroarenes was fully described by the reactivity indices and
kinetic isotope effect. The latter shows unequivocally that the addition of the nucleophile to the aromatic
ring is the rate-determining step of all variants of SNAr-X mechanism and of SNAr-H, in specific
conditions where the σH-adduct can be easily transformed to the products. Our results showed
that there is a significant difference between reaction mechanisms of the substitution of chlorine and
fluorine atoms. The first reaction is a single step process, in which the σCl-adduct is a transition
state. In contrast, in the case of the substitution of the fluorine atom, the σF-adduct is an intermediate
product, which is always the case in the SNAr-H reactions. Our results show that the formation of
σH-adducts is preferred and, providing that they can undergo fast further transformations, the SNAr-H
reaction is dominating over the SNAr-X. Fluoronitrobenzene is a special case because both σH- and
σF-adducts are intermediate products so the relative rate of the substitution of fluorine and hydrogen
depends on the reaction conditions. Finally, we have shown that reactivity indices, when used correctly,
are a very useful tool for describing mechanisms of the reactions between aromatic nitro compounds
and nucleophiles.
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25. Mąkosza, M.; Winiarski, J. Vicarious Nucleophilic Substitution of Hydrogen. Acc. Chem. Res. 1987,
20, 282–289. [CrossRef]
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41. Mąkosza, M.; Mortier, J. The Discovery and Development of Metal-Free Arylation Reactions with Unsymmetrical
Diaryliodonium Salts; Mortier, J., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2016; Chapter 11; pp. 269–298.

42. Makosza, M.; Stalinski, K.; Klepka, C. Oxidative Nucleophilic Substitution of Hydrogen in Nitrobenzene
with 2-Phenylpropionitrile Carbanion and Potassium Permanganate Oxidant. Chem. Commun. 1996, 837–838.
[CrossRef]
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