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Many individuals tested for inherited cancer susceptibility at the BRCA1 gene locus are discovered to have variants of
unknown clinical significance (UCVs). Most UCVs cause a single amino acid residue (missense) change in the BRCA1
protein. They can be biochemically assayed, but such evaluations are time-consuming and labor-intensive.
Computational methods that classify and suggest explanations for UCV impact on protein function can complement
functional tests. Here we describe a supervised learning approach to classification of BRCA1 UCVs. Using a novel
combination of 16 predictive features, the algorithms were applied to retrospectively classify the impact of 36 BRCA1
C-terminal (BRCT) domain UCVs biochemically assayed to measure transactivation function and to blindly classify 54
documented UCVs. Majority vote of three supervised learning algorithms is in agreement with the assay for more than
94% of the UCVs. Two UCVs found deleterious by both the assay and the classifiers reveal a previously uncharacterized
putative binding site. Clinicians may soon be able to use computational classifiers such as those described here to
better inform patients. These classifiers can be adapted to other cancer susceptibility genes and systematically applied
to prioritize the growing number of potential causative loci and variants found by large-scale disease association
studies.
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Introduction

The BRCA1 gene encodes a large multifunction protein
involved in cell-cycle and centrosome control, transcriptional
regulation, and in the DNA damage response [1–3]. Inherited
mutations in this gene have been associated with an increased
lifetime risk of breast and ovarian cancer (6–8 times that of
the general population) [4]. There are several thousand
known deleterious BRCA1 mutations that result in frame-
shifts and/or premature stop codons, producing a truncated
protein product [5]. In contrast, the functional impact of
most missense variants that result in a single amino acid
residue change in BRCA1 protein is not known. The Breast
Cancer Information Core database (http://research.nhgri.nih.-
gov/bic/), a central repository of BRCA1 and BRCA2mutations
identified in genetic tests, currently contains 487 unique
missense BRCA1 variants (April 2006), of which only 17 have
sufficient genetic/epidemiological evidence to be classified as
deleterious (Clinically Important) and 33 as neutral or of little
clinical importance (Not Clinically Important). As genetic
testing for inherited disease predispositions becomes more
commonplace, predicting the clinical significance of missense
variants and other UCVs will be increasingly important for
risk assessment.

Because most UCVs in BRCA1 and BRCA2 occur at very low
population frequencies (,0.0001) [6], direct epidemiological
measures, such as familial cosegregation with disease, are
often not sufficiently powerful to identify the variants
associated with cancer predisposition. A promising approach
is to supplement epidemiological and clinical analysis of
UCVs with indirect approaches such as biochemical studies of

protein function and bioinformatics analysis [6–8]. In the
future, physicians and genetic counselors may be able to rely
on all these sources of information about UCVs when
counseling their patients.
Previous bioinformatics analysis of BRCA1 UCVs has

depended primarily on measures of evolutionary conserva-
tion in multiple sequence alignments of human BRCA1 and
related proteins from other organisms [9–11]. Two groups
have attempted to include information about BRCA1 protein
structure. Williams et al. predicted the impact of 25 missense
variants in BRCA19s C-terminal BRCT domains by consider-
ing both conservation and location of variant amino acid
residues in an X-ray crystal structure [12]. Variants were
predicted deleterious if their properties were similar to
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properties of biochemically characterized deleterious var-
iants in Escherichia coli Lac Repressor and bacteriophage T4
lysozyme. Mirkovic et al. developed a set of hierarchical rules
(Rule-based decision tree) based on the conservation, variant
structural location, and amino acid residue physiochemical
properties of 30 deleterious and seven neutral biochemically
characterized BRCA1 missense variants [7].

We have developed a novel combination of 16 predictive
features that describe conservation, impact of mutation on
protein structure, and amino acid residue properties, and
used them as input to computational supervised learning
algorithms. These algorithms are trained to learn a generic
classification of amino acid residue substitutions and posi-
tional contexts. The training set is composed of 618 missense
variants in the transcription factor TP53 biochemically
characterized as functional or nonfunctional in a trans-
activation assay [13]. TP53 is a tumor suppressor gene that is
inactivated in the majority of human cancers.

Our validation set is composed of 36 missense variants in
BRCA19s BRCT domains that were biochemically character-
ized with a transactivation assay [14]. These 36 variants were
selected because they occur in individuals from families with
breast or ovarian cancer in which no other deleterious
mutation in BRCA1 or BRCA2 was found and were function-
ally tested under the same protocols and conditions, yielding
standardized measurements of each variant’s transactivation
activity with respect to wild-type. We use the validation set to
assess the supervised learners and compare them with
algorithms based on evolutionarily allowed amino acid
residues or empirically derived rules. The algorithms with
greatest correlation between assay and computational pre-
dictions are the supervised learners Naı̈ve Bayes [15], Support
Vector Machine [16], and Random Forest [17].

Given a protein X-ray crystal structure, the supervised
learning approach can quickly and accurately predict the
outcome of our BRCA1 transactivation assay with greater
than 94% accuracy on tested missense variants in the BRCT
domains. We have applied the best performing supervised
learners to blind prediction of the functional impact of 54
UCVs found in BIC and occurring in the BRCA1 BRCT
domains. For each of these UCVs, we produce a consensus
prediction and, where possible, a molecular explanation for
the impact of the variant.

Next, we describe the protocol used to train and validate
the supervised learning algorithms, the selection of 16

features used to represent each missense variant to the
algorithms, implementation details of each algorithm, and
performance assessment criteria (Methods). We then show
how a combination of sequence- and structure-based features
in a supervised learning setting obviates some of the
problems with evolutionary analysis and empirically derived
rules, providing specific examples of the strengths and
weaknesses of each approach (Results, Discussion). We show
that two of the variants found to be deleterious by both the
assay and the classifiers may be at a previously uncharac-
terized protein binding site and that electrostatic changes at
the site may weaken the interactions of BRCA1 and protein
partners that are important for its functions (Discussion).
Finally, we discuss the generalizability of our methods to
other cancer susceptibility genes and to large-scale disease
association studies (Discussion).

Methods

Training Set
We trained four supervised learning algorithms to discrim-

inate between a set of 398 deleterious/nonfunctional and 220
neutral/functional TP53 missense variants, biochemically
characterized in a transactivation assay [13]. The variants
were downloaded from the IARC TP53 website (http://
www-p53.iarc.fr). We only used variants capable or incapable
of activating transcription for all eight of the TP53 promoters
tested in the transactivation assay and located in the core
DNA binding domain of TP53.

Validation Set
The 36 BRCA1 BRCT missense variants described in our

companion paper [14] were used as an independent
validation set for the supervised learners. These variants
were also classified by sequence-analysis methods based on
evolutionarily allowed amino acid residues: Align Grantham
Variation Grantham Deviation (Align-GVGD) [18], Sorting
Intolerant from Tolerant (SIFT) [19], Ancestral Sequence
[9,11], and empirically derived rules encoded in a decision
tree (Rule-based decision tree) [7]. Each method was
evaluated by its agreement with the BRCA1 transactivation
assay on the validation set, according to accuracy (fraction of
all variants correctly classified), sensitivity or true positive
rate (fraction of all nonfunctional variants correctly classi-
fied), specificity or true negative rate (fraction of all
functional variants correctly classified), Matthews correlation
coefficient [20], and coverage (fraction of variants for which a
prediction was made) (Table 1). Matthews correlation
coefficient is defined as

MCC ¼ ðTP TNÞ � ðFP FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTP þ FPÞðTP þ FNÞðTN þ FPÞðTN þ FNÞ

p ð1Þ

and ranges from�1.0 (worst) to 1.0 (best). A coefficient of 0 is
equivalent to a random prediction, and less than 0 indicates a
worse than random prediction. TP is the number of correctly
classified nonfunctional variants, TN the number of correctly
classified functional variants, FP the number of incorrectly
classified nonfunctional variants, and FN the number of
incorrectly classified functional variants.
For the Naı̈ve Bayes, Support Vector Machine, Random

Forest, Decision Tree, Align-GVGD, and SIFT classifiers, we
computed a receiver operating characteristic (ROC) curve
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Author Summary

A significant number of breast and ovarian cancers are due to
inherited mutations in the BRCA1 and BRCA2 genes. Many women
who receive genetic testing for these mutations are found to have
variants of the genes that result in changed amino acids in the
BRCA1 or BRCA2 proteins. The effect of these variants on cancer risk
is not well-understood, posing a problem for patients and their
health providers. We describe computational biology methods that
predict and analyze the impact of 36 BRCA1 variants on protein
function. The predictions are validated by biochemical assays of
BRCA1 in yeast and mammalian cell cultures. The speed and
accuracy of the computational methods is well-suited to rapid
evaluation of large numbers of variants in genes that predispose to
inherited diseases.
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that quantifies the tradeoff between coverage of detected
nonfunctional variants (true positive rate) and misclassified
functional variants (false positive rate ¼ 1 � specificity). ROC
analysis was not possible for the Rule-based decision tree and
Ancestral Sequence algorithms, which predict the class of a
missense variant but do not provide an associated score.

Feature Selection
The supervised learning algorithms (Naı̈ve Bayes, Support

Vector Machine, Random Forest, Decision Tree) were trained
by associating each amino acid residue substitution in the
TP53 training set with 16 carefully selected predictive
features (Table 2). A vector of features for a single
substitution is denoted as ~X . The features describe properties
of variant and wild-type residues: local structural environ-
ment; physiochemical attributes; and evolutionary conserva-
tion. To compute the features, we used DSSP (a program that
calculates a variety of geometrical properties for each amino
acid residue in a protein structure) [21], MODELLER for
comparative protein structure modeling [22], SAM-T2K for
protein sequence alignments and hidden Markov models [23],
and in-house PERL code.

We began with a core set of 13 features selected by a
correlation analysis between features and classes (functional
or nonfunctional) of the TP53 variants, as described
previously [24] (Table S3). An additional 18 candidate
features were evaluated by adding them to the core set and
doing 10-fold cross-validation tests of Support Vector
Machine performance. Three features were found to improve
performance and were added to the optimal feature set; the
others were rejected (Tables S4 and S5). Next we evaluated
Support Vector Machine performance with each of the best
16 features held out. In each case, the 10-fold cross-validation
test yielded decreased performance.

Protein Modeling
We used X-ray crystal structures from the Protein Data

Bank [25] for the BRCA1 BRCT domains (1t29 chain A in
complex with BACH1 peptide) [26] and the DNA binding
domain of TP53 (1kzy) [27]. We performed in silico mutations
on the structures with the MUTATE_MODEL routine of

MODELLER (available as a Python script at http://salilab.org/
modeller/wiki/Mutate_model). MUTATE_MODEL substi-
tutes the wild-type amino acid residue at a position of
interest with a variant amino acid residue, and optimizes the
coordinates of the variant’s backbone and sidechain atoms
with an initial conjugate gradient minimization, molecular
dynamics optimization with simulated annealing, and a final
conjugate gradient minimization (E. Feyfant, 2004, private
communication).

Protein Sequence Alignments
The amino acid residue sequences of human TP53 (P04637)

and BRCA1 (P38398) were downloaded from UNIPROT [28],
and each was used as a seed sequence for the SAM-T2K
iterative alignment-building algorithm [23]. For BRCA1, only
amino acid residues in the BRCT domains (1649–1859) were
aligned. We used the SAM w0.5 program to apply sequence
weighting and regularization with Dirichlet mixtures [29] to
each resulting alignment and to produce a profile hidden
Markov model [30]. The TP53 and BRCA1 alignments and
hidden Markov models are available upon request.

Support Vector Machine
We trained a soft margin Support Vector Machine classifier

with a radial basis kernel using the e1071 package in R [31].
The Support Vector Machine algorithm optimizes a vector of
weights ~a (one weight for each training example) and a bias
parameter b. The parameters g (radial basis kernel width) and
C (penalty for violating the soft margin) were optimized on
the training set with grid search using default parameters.
Each of the 28 missense variants ~Xwas then scored with the
discriminant function

gð~X ; ~XiÞ ¼
X=
i¼1

yiaikð~X ; ~XiÞ þ b ð2Þ

where l is the number of examples in the training set, yi is the
class label of each example in the training set (for deleterious/
nonfunctional variants yi ¼ �1 and for neutral/functional
variants yi ¼ 1), and Kð~X ; ~XiÞ is the value of the radial basis
kernel function given ~Xand training example ~Xi. Variants are

Table 1. Classification Performance of Nine Computational Methods for UCV Classification, According to Agreement with the BRCA1
Transactivation Assay of 36 Missense Variants

Computational

Method

Information Method Accuracy True Positive

Rate

True Negative

Rate

Matthews Correlation

Coefficient

Coverage

Naı̈ve Bayes Structure/sequence Supervised learning 0.97 1.00 0.89 0.93 1.00

Support Vector Machine Structure/sequence Supervised learning 0.94 1.00 0.78 0.85 1.00

Random Forest Structure/sequence Supervised learning 0.94 1.00 0.78 0.85 1.00

Ancestral Sequence Sequence Sequence analysis 0.92 1.00 0.67 0.77 1.00

Align-GVGD Spur Sequence Sequence analysis 0.83 0.85 0.78 0.59 0.92

Align-GVGD Tnig Sequence Sequence analysis 0.83 0.89 0.67 0.56 0.92

SIFT Sequence Sequence analysis 0.78 0.78 0.78 0.50 1.00

Rule-based decision tree Structure/sequence Human rules 0.81 0.93 0.44 0.43 1.00

Decision Tree Structure/sequence Supervised learning 0.72 0.89 0.22 0.14 1.00

Results are sorted by Matthews correlation coefficient (bold). Shown are four supervised machine learning methods, trained on 618 biochemically characterized missense variants in the
human transcription factor TP53. Accuracy, fraction of all variants correctly classified. True Positive Rate, fraction of correctly classified deleterious variants. True Negative Rate, fraction of
correctly classified neutral variants. Coverage, fraction of the 36 mutants classified.
doi:10.1371/journal.pcbi.0030026.t001

PLoS Computational Biology | www.ploscompbiol.org February 2007 | Volume 3 | Issue 2 | e260270

Predicting the Impact of Missense Variants



classified as deleterious/nonfunctional if gð~X ; ~XiÞ, 0 and
neutral/functional if gð~X ; ~XiÞ.0.

Naı̈ve Bayes
The Naı̈ve Bayes algorithm estimates the probability that

each variant belongs to deleterious or neutral classes
C 2 fD;Ng by applying the Bayes rule:

PðCj~XÞ}Pð~X jCÞPðCÞ ð3Þ

where the prior class probability P(C) is the fraction of
deleterious (or neutral) missense variants in the training set
and each feature Xi is assumed to be conditionally independ-
ent of the k� 1 other features, given its class membership, so
that

Pð~X jCÞ ¼ Pk
i¼1Pð~XijCÞ ð4Þ

where P(Xi j C) is estimated from the training set. We used the
Naı̈ve Bayes method in R’s e1071 package. Each feature was
approximated to be normally distributed and no smoothing
was applied to the feature distributions.

Decision Tree
We used the rpart package in R [32] to train a Decision

Tree with the following parameters: minsplit ¼ 20 (minimum
number of observations required at a tree node before a split
is attempted) and cp ¼ 0 (no pruning of tree regardless of
whether a split will improve model fit). To reduce overfitting,
we pruned the resulting tree using the standard heuristic ‘‘1
Standard Error rule’’ [33] and 10-fold cross-validation.
According to the 1 Standard Error rule, the pruned tree

with best generalization properties has a cross-validation
error on the training set 1 Standard Error worse than the tree
with the lowest cross-validation error. The pruning process
yielded a reduced set of features: U and W mainchain dihedral
angles, normalized solvent accessibility of wild-type, Gran-
tham difference, volume change, relative entropy, and
positional hidden Markov model conservation score.

Random Forest
We used the randomForest package in R [34] to train a

Random Forest, an algorithm based on a majority vote of a
large number of decision trees, in which the candidate
features at each tree node are randomly sampled [17]. The
user-defined input parameters to randomForest are total
number of trees in the forest and mtry (number of randomly
sampled features considered as candidates for a split at each
tree node). Both were selected with grid-search optimization
as described for the Support Vector Machine [31].

Log Likelihood Ratios
Predictions of Naı̈ve Bayes, Decision Tree, and Random

Forest are in the form of class conditional probabilities,
where the two classes are D (deleterious/nonfunctional) and N
(neutral/functional). For each example, the classifiers report
P(D j~X ) (probability that the variant is deleterious, given
feature vector ~X ) and P(N j~X ) (probability that the variant is
neutral, given feature vector ~X ). To evaluate accuracy, true
positive rate, true negative rate, and Matthews correlation
coefficient, we classified variants as deleterious if P(D j~X ) .

Table 2. Predictive Features Describing Evolutionary Conservation, Impact of Mutation on Protein Structure, and Amino Acid Residue
Properties Used as Input to the Computational Supervised Learning Algorithms

Feature Category Feature Description

Structural Solvent Accessiblity of wild-type amino acid residue (Å2)

Solvent Accessibility of wild-type residue normalized by maximum exposed Sol-

vent Accessibility of that residue type in a GLY-X-GLY tripeptide, using values gi-

ven by Rose et al. [80]

Solvent Accessibility of variant residue

Normalized Solvent Accessibility of variant residue

Number of methyl(ene) groups within 6 Å of the variant sidechain [81]

Number of unsatisfied spatial restraints in the MODELLER objective function after

in silico mutation and simulated annealing refinement of the varianta

U and W backbone dihedral angles at the mutated position

Whether the mutation results in buried charge

Physiochemical differences between wild-type and variant amino acid

residues

Change in formal charge

Change in volume (Å3) [82]

Change in polarity [83]

Grantham difference [37]

Evolutionary conservation of amino acid residues in protein orthologs Relative entropy estimated by amino acids in the variant’s alignment column [84]

Positional hidden Markov model conservation score based on the probabilities of

the wild-type, variant, and most probable amino acid residue in the variant’s

alignment columnb [24]

aViolated restraints suggest that the mutated sidechain introduced steric clashes or unusual geometries into the protein model. Examples of violated restraints include extreme values of
the Lennard-Jones 6–12 potential [85], bond angle potential, bond length potential, sidechain dihedral angle restraints, and nonbonded restraints. Two thresholds are used to identify
violated restraints yielding two features.
bThe probabilities are estimated by a hidden Markov model built with SAM-T2K and the w0.5 script [23].
PHC¼ log(jp(Wild-type) – p(Variant)j) þ log(p(Wild-type)) þ log(P(Most Probable)) – log (p(Variant))
The features were computed for 618 TP53 missense variants, 36 BRCA1 BRCT missense variants biochemically characterized in our companion paper [14], and 54 BRCA1 BRCT UCVs found
in BIC.
doi:10.1371/journal.pcbi.0030026.t002
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0.5 and neutral otherwise. To compute ROC curves, we used
the log likelihood ratio

LLR ¼ Log
PðNj~XÞ
PðDj~XÞ

 !
ð5Þ

as the output score of Naı̈ve Bayes, Decision Tree, and
Random Forest.

SIFT
The SIFT algorithm [19] predicts the probability that a

missense mutation occurs at a given alignment position.
Variants that occur at conserved alignment positions are
expected to be tolerated less than those that occur at diverse
positions. The algorithm uses a modified version of PSI-
BLAST [35] and Dirichlet mixture regularization [29] to
construct a multiple sequence alignment of proteins that can
be globally aligned to the query sequence and belong to the
same clade. We used the SIFT server (http://blocks.fhcrc.org/
sift/SIFT.html), with PSI-BLAST search set to the Swissprot-
TrEMBL protein sequence database [36]. Both the full-length
human BRCA1 sequence (amino acid residues 1–1863) and
the BRCT C-terminal domain sequence only (amino acid
residues 1649–1859) were submitted to the server. For the
full-length sequence, SIFT reported low confidence predic-
tions for 34 out of 36 missense variants. Consequently, we
based our SIFT predictions on the C-terminal domain
sequence. To compute accuracy, true positive rate, true
negative rate, and Matthews correlation coefficient, we used
the binary class predictions of the SIFT server (deleterious or
neutral), based on the default SIFT threshold (tolerated
mutation probability . 0.05). For ROC analysis, we used the
raw SIFT probabilities, which range from 0 to 1.

Ancestral Sequence
The Ancestral Sequence classifications were computed as

described [9,11]. Each position in an alignment of eight
mammalian BRCA1 orthologs identified as giving best results
by Pavlicek et al. was categorized as fixed (completely
conserved), conserved (substitution of similar amino acid
residues), or nonconserved (dissimilar amino acid residues or
gaps). Any substitution at a fixed position and any non-
conservative substitution at a conserved position is classified
as deleterious. Amino acid residue similarity is based on the
Gonnet PAM250 score (i.e., the likelihood that amino acid
residue A has mutated into amino acid residue B in a pair of
sequences that have diverged by 250 mutations per 100 amino
acid residues of sequence) [37].

Align-GVGD
The Align-GVGD method calculates two scores for each

amino acid residue substitution, Grantham Deviation (GD)
and Grantham Variation (GV), based on a modified Gran-
tham distance measure [18,38]. The scores define four
categories of missense variants: ‘‘Enriched deleterious 1’’
variants occur at invariant alignment positions for which the
substitution is outside the range of variation observed at the
position (GV¼ 0, GD . 0); ‘‘Enriched deleterious 2’’ occur at
variable alignment positions containing physiochemically
similar amino acid residues where the substitution is outside
the range of observed variation (0 , GV , 61.3, GD ¼ 0);
‘‘Enriched neutral 1’’ occur at variable positions containing

physiochemically similar amino acid residues where the
substitution is inside the range of variation (GV . 0, GD ¼
0); and ‘‘Enriched neutral 2’’ occur at variable positions
containing dissimilar amino acid residues where the sub-
stitution is slightly outside the range of variation (GV . 61.3,
0 , GD , 61.3). We classified variants using first an alignment
of placental mammals, a marsupial (gray short-tailed oppo-
sum), chicken, frog, and the pufferfish Tetraodon (‘‘Align-
GVGD Tnig’’), and second an alignment that also includes the
sea urchin Strongylocentrotus purpuratus (‘‘Align-GVGD Spur’’).
Accuracy, true positive rate, true negative rate, and Matthews
correlation coefficient were evaluated by reducing the four
categories to deleterious/nonfunctional or neutral/functional.
Variants may have GV and GD values that do not match any
of the four categories (e.g., a variant with GV¼ 80 and GD¼
80), which lowers coverage, Matthews correlation coefficient,
true positive, and false positive rates. For ROC analysis,
rather than fixing thresholds on GV and GD at 61.3 for each
substitution, we considered the number of true positives and
false positives over a range of thresholds, from the smallest to
largest values of GV and GD in our dataset (0 to 215).

Rule-Based Decision Tree
A Rule-based decision tree is a classification tree with

human-designed rules that uses both structure- and se-
quence-based information, implemented in PERL [7]. Rule-
based Decision Tree classifies a missense variant as either
deleterious/nonfunctional or neutral/functional, but does not
compute numerical scores.

Structural Variant Analysis
The structural models of all BRCA1 BRCT missense

variants were visually compared with the wild-type structure
(1t29) using the molecular graphics program Chimera [39].
We explored changes in hydrogen bonding patterns and
geometric properties of the molecular surface with Chimera’s
FindHBond and MSMS routines. To visualize the distribution
of amino acid residue conservation on the protein surface,
the RenderByAttribute routine was used, with coloration
defined by percent conserved in a hand-edited SAM-T2K
alignment of BRCA1 orthologs. Species used in this align-
ment were Homo sapiens (AAA 73985), Pan troglodytes
(AAG43492), Gorilla gorilla (AAT44835), Pongo pygmaeus
(AAT44834), Macaca mullata (AAT44833), Canis familiaris
(AAC48663), Bos taurus (AAL76094), Monodelphis domestica
(AAX92675), Mus musculus (AAD00168), Rattus norvegicus
(AAC36493), Gallus gallus (AAK83825), Xenopus laevis
(AAL13037), and Tetraodon nigroviridis (AAR89523).
A highly conserved surface patch was identified as a

possible binding site and subjected to further analysis. We
used DELPHI [40] to compute the electrostatic surface
potential at the putative binding site for the wild-type
structure and for models of two solvent-exposed variants
characterized as deleterious in our functional assays (T1685A
and R1753T) [14]. The solvent relative dielectric constant was
set to 4.0, the protein relative dielectric constant to 20.0, and
ionic strength to the physiological value of 0.2 mM. Charges
were estimated with the united atom AMBER model [41]. The
proteins were prepared for DELPHI by adding heavy atoms
missing from the 1t29 crystal structure with MODELLER’s
COMPLETE_PDB routine and adding hydrogens with
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REDUCE [42], then visualized in Chimera with a GRASP
surface representation [43].

Results

We compared the transactivation activity of the wild-type
LexA DBD-BRCA1 or GAL4DBD-BRCA1 fusion construct in
both yeast and mammalian cells with the activity of constructs
containing 36 single missense variants in the BRCT domains
[14]. Variant constructs presenting 50% or more of wild-type
activity are characterized as neutral and those with 45% or
less are characterized as deleterious, thresholds that are in
agreement with available genetic evidence. These functional
characterizations were used as a standard to evaluate the
reliability of nine computational classifiers (Figure 1). We also
provide a post-prediction analysis of these variants (Table
S1). Three classifiers with the highest correlation to the
functional assay were applied to predict the impact of 54
UCVs in the BRCT domains currently listed in the Breast
Information Core database.

Algorithm Evaluation
Based on ROC analysis, the supervised learners Random

Forest, Support Vector Machine, and Naı̈ve Bayes yield the
most reliable computational classifications of the 36 variants
(Figure 2). The area under the ROC curve (AUC) quantifies

the probability that a classifier will give a randomly drawn
deleterious example a lower score than a randomly drawn
neutral example. AUC is 0.992 for Random Forest, 0.947 for
Support Vector Machine and Naı̈ve Bayes, 0.86 for Align-
GVGD Tnig, 0.852 for Align-GVGD Spur, 0.783 for SIFT, and
0.738 for Decision Tree (Figure 2). The Decision Tree
algorithm appears to overfit the training set and generalizes
less well than the other supervised learners.
Three of the supervised learning algorithms (Naı̈ve Bayes,

Support Vector Machine, and Random Forest) produce the
best classifications of the 36 variants, as measured by
accuracy, true positive rate, true negative rate, Matthews
correlation coefficient, and coverage, using default thresholds
(Table 1). According to these statistical measures, the best
sequence analysis methods are Ancestral Sequence and Align-
GVGD. Random Forest, Naı̈ve Bayes, and Support Vector
Machine are the most accurate scoring predictors, according
to the AUC. The methods rankings are slightly different when
evaluated by threshold-dependent statistics that reduce
predictive scores to deleterious/neutral classes or by the
score-based and threshold-independent ROC statistic of
AUC.

BIC BRCA1 UCVs in BRCT Domains
We applied the top performing algorithms (Naı̈ve Bayes,

Support Vector Machine, and Random Forest) to predict the

Figure 1. Computational Classifications of 36 BRCA1 BRCT Variants Functionally Characterized by the Transactivation Assay

For each variant, the local protein structure environment is represented by secondary structure type and whether the amino acid residue is buried
(normalized solvent accessibility , 0.2) or exposed (normalized solvent accessibility � 0.2). Labels (‘‘1655 S-.F’’) are colored according to whether the
variant was functional in the assays (blue) or nonfunctional (red). Computational classifications in agreement with the assay are indicated by filled
circles. Computational classifications not in agreement with the assay are indicated by outlined circles. Computational classifications yielding
‘‘unclassified’’ are indicated by an outlined black circle. The variant D1692N is fully functional as a transcriptional activator but results in incorrect
splicing in vivo. Results from variant M1775K are unpublished (Foulkes et al.).
A, Ancestral Sequence; B, Rule-based decision tree; D, Decision Tree; F, SIFT; MCC, Matthews correlation coefficient; N, Naı̈ve Bayes; R, Random Forest; S,
Support Vector Machine; T, Align-GVGD Tnig; U, Align-GVGD Spur.
doi:10.1371/journal.pcbi.0030026.g001
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impact of 54 BRCA1 UCVs listed in BIC that (a) are located in
the BRCT domains, and (b) have not been functionally
characterized by our transactivation assays. Based on a
majority vote of the computational predictors, we computed
a ‘‘consensus prediction’’ for each UCV (Figure 3). We
provide structural explanations for the impact of as many
variants as possible, and indicate where the predictions are
supported by biochemical experiments found in the liter-
ature (Table S2).

The predicted deleterious UCVs are predominantly in the
core secondary structure elements of the BRCT domains,
rather than in loops, particularly in the b sheet of BRCT-N
(b1, b3, and b4), and in helix a93 and the turn connecting
helix a91 and strand b92 in BRCT-C (Figure 4).

Binding-Site Prediction
We observed a patch of highly conserved amino acid

residues that form a groove on the BRCA1 surface, on the
opposite face from the known phosphopeptide binding cleft
(Figure 5A–5C). These residues are T1684, T1685, H1686,
K1711, W1712, and R1753. Both T1685 and H1686 have been
shown to be highly sensitive to mutation, and our companion
paper [14] contains new experimental evidence that R1753T
has markedly reduced transactivation activity in both yeast
and mammalian cells. The groove residues form hydrogen
bonds with each other and several other conserved residues,
including S1651, V1687, T1681, G1706, E1731, E1735, and
P1749, producing two hydrogen bonding networks. The first
network is found in BRCT-N (S1651, T1684, T1685, H1686,
V1687, G1706, K1711, W1712, E1731) and the second network
connects BRCT-N residues with the linker region that
connects BRCT-N and BRCT-C (E1735, P1749, R1753) (Figure
5A–5C). All the residues lining this groove are completely
conserved in our alignment of BRCA1 orthologs, except for
T1684, which is conserved in all orthologs except for
Tetraodon (pufferfish), the organism most distant from human
in our alignment (Figure 5A). Previous studies have shown
that G1706 and P1749 are also sensitive to mutation [44,45]
(S. Marsillac, 2006, private communication). The proposed

binding site would be specific to BRCA1, as most of these
positions (except for H1686) are not highly conserved across
tandem BRCT repeats in MDC1, PTIP, BARD1, and 53BP1.
The solvent-exposed missense variant R1753T found at the

proposed binding site has ,20% of the wild-type trans-
activation activity in yeast and ,5% in mammalian cells [14],
suggesting that the wild-type arginine amino acid residue
might be important for binding of BRCA1 to a protein
partner (or nucleic acid ligand). Although the mechanism of
the BRCA1 BRCT domains in transactivation is not known, it
is believed to depend on interactions with a variety of
partners [46,47]. The mutation of R1753 to a threonine
changes the local electrostatic surface potential from
primarily positive and neutral (depicted as blue and white)
to negative (red) (Figure 5D). This change may weaken the
binding of protein partner(s) or nucleic acid ligand(s)
necessary for transactivation.

Discussion

We have developed an approach to rapid characterization
of inherited missense variants in the BRCT domains of
BRCA1 that is able to retrospectively predict the outcome of a
functional transactivation assay with greater than 94%
accuracy. Our method makes no a priori assumptions about
which predictive features might best inform a classification
algorithm. Rather, we hypothesize that given a large sample of
deleterious and neutral variants, we can quantitatively
measure the most informative predictors and learn to
distinguish between these two functional classes with a
supervised learning algorithm. We discuss (a) how our
approach compares with similar work [7,12,18,19,48–50], (b)
how prediction of deleterious variants can identify putative
binding sites, (c) how computational classifiers can save time
and money required for biochemical assays of many
candidate variants, and (d) the possibilities of generalizing
the methods to large numbers of disease-associated genes.
Supervised learning algorithms have previously been

applied to predicting the functional impact of missense

Figure 2. Sensitivity versus 1-Specificity of Classifiers That Use a Numerical Score to Predict the Functional Impact of 34 BRCA1 BRCT UCVs

Comparison of four supervised machine learning methods, trained on 618 biochemically characterized missense variants in the human transcription
factor TP53 and two sequence analysis methods that consider evolutionary conservation and physiochemical properties of amino acids (SIFT and Align-
GVGD Tnig based on alignment of eight placental mammals, marsupial, chicken, frog, and pufferfish). Align-GVGD Spur, using an alignment that
includes these species plus sea urchin, performs slightly worse than Align-GVGD Tnig in terms of ROC analysis and is not shown. Plot created with ROCR
[86].
DT, decision tree; NB, Naı̈ve Bayes; RF, random forest; SVM, support vector machine.
doi:10.1371/journal.pcbi.0030026.g002
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variants in TP53 with a four-body ‘‘potential’’ based on
Delauney tessellation [51], to engineered variants in E. Coli
Lac Repressor, HIV protease, and T4 bacteriophage lysozyme
[24,52,53], and to large sets of single nucleotide polymor-
phisms [54–56]. Much of this work has been limited by
overfitting problems. Benchmarking of Support Vector
Machines and Decision Trees in several studies has shown
that high numbers of false positive and false negative
classification errors (;0.30) are generated when the learners
are applied to proteins other than those in their training sets
[24,52]. Supervised learning using four-body potentials is
further limited in application, because each missense variant
is represented by a profile of n features (amino-acid residue
potential scores), where n is the number of amino acid
residues in the protein. Supervised learning algorithms
require fixed-length feature vectors; thus, an algorithm
trained on missense variants represented by n features can
only classify missense variants that are represented by n
features. For example, if the training set is composed of
missense variants in Lac Repressor (327 amino acid residues),
the algorithm cannot be used to classify mutants in Lysozyme
(164 amino acid residues).

Here we identify a set of 16 predictive features that, in
combination with Support Vector Machine, Random Forest,
and Naı̈ve Bayes supervised learning algorithms, avoids the
overfitting problem when the training set is composed of
TP53 variants and the validation set is composed of BRCA1
missense variants. Initially, we used 31 deleterious and eight
neutral BRCA1 BRCT variants that had been functionally
tested as our training set. However, this approach yielded
poor classification performance in a cross-validation test,
presumably because of small sample size (unpublished data).
As an alternative, we selected our features and performed

supervised learning with a training set of 600þ artificially
engineered TP53 missense variants. The ability of computa-
tional learning algorithms trained on TP53 variants to classify
BRCA1 missense variants in agreement with the BRCA1
functional assay (94%þ) suggests that mechanisms underlying
structural and functional defects may be similar in TP53 and
BRCA1.
In comparison, an approach based on sequence analysis

and expected frequencies of structural features inferred from
mutagenesis studies of E. Coli lac repressor and T4 lysozyme
resulted in only 75% agreement with a BRCA1 BRCT trypsin
sensitivity assay of 22 variants [12,50]. We find that the best
supervised learners are in greater agreement with the BRCA1
transactivation assay than several sequence analysis methods
and an empirically designed set of rules and thresholds [7].
The sequence analysis methods that incorporate physi-

ochemical properties of amino acid residues as well as
evolutionary conservation (Ancestral Sequence and Align-
GVGD) are more accurate than SIFT, which only considers
evolutionary conservation. A weakness of these methods is
that, for purposes of classifying deleterious variants, there is
no principled way to choose the optimal set of evolutionarily
related sequences to align and analyze. In this work, we used
sets of aligned sequences taken from published work
(Ancestral Sequence) [9], the SIFT and Align GVGD web-
servers [18,57], and a deep alignment (out to the sea urchin
Strongylocentrotus purpuratus) generated by the creators of
Align GVGD. Different sequence sets produce different
classifications of the variants, and choice is biased by available
genomes and decisions about appropriate thresholds of
relatedness. The problem is illustrated with classifications of
the BRCA1 BRCT missense variant V1665M. Align-GVGD
Tnig, Align-GVGD Spur, and Ancestral Sequence incorrectly

Figure 3. Computational Classifications of 54 Uncharacterized Variants Found in BIC

For each variant, the local protein structure environment is represented by secondary structure type and whether the amino acid residue is buried
(normalized solvent accessibility , 0.2) or exposed (normalized solvent accessibility � 0.2). For the 54 uncharacterized variants, labels (‘‘1652 M-.T’’) are
colored according to consensus prediction from Naı̈ve Bayes, Support Vector Machine, and Random Forest. Predictions of each method are indicated by
filled circles (blue, neutral; red, deleterious).
N, Naı̈ve Bayes. R, Random Forest; S, Support Vector Machine.
doi:10.1371/journal.pcbi.0030026.g003
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Figure 4. Spatial Distribution of Predicted Deleterious and Neutral Missense Variants in the BRCA1 BRCT Domains

(A) Ribbon representation of the two domains with labeled helices (a1, a2, etc.) and strands (b1, b2, etc.). Recreation of Figure 1A [64].
(B) BRCA1 BRCT missense variants reported as neutral (blue) and deleterious (red) in the mammalian transactivation assay shown mapped onto the
BRCA1 BRCT X-ray crystal structure (1t29).
(C) Consensus predictions of Random Forest, Naı̈ve Bayes, and Support Vector Machine for 54 BRCA1 BRCT VUS in the Breast Information Core database
(http://research.nhgri.nih.gov/bic/BIC/) mapped onto the same structure, with predicted neutral shown in blue and predicted deleterious in red.
doi:10.1371/journal.pcbi.0030026.g004
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Figure 5. Identification of a Putative Novel Binding Site in BRCA1 BRCT Domains

Two surface variants found to be deleterious to BRCA1 activity in our companion paper (R1753T and T1685I) [14] lie at a highly conserved patch of
amino acid residues, forming a groove on the protein surface, possibly a heretofore uncharacterized binding site of BRCA1 with a protein partner or
nucleotide ligand.
(A) Surface representation of BRCA1 BRCT domains colored by conservation in our multiple sequence alignment of orthologs. Red, 100% conserved;
white, 39% conserved; blue, 0% conserved.
(B) Two hydrogen-bonding networks are shown in ball-and-stick format.
(C) Changes in the electrostatic surface potential of the putative binding site upon mutation of R1753 to T1753. The electrostatic surface potential of
the groove changes from primarily positive (greater than 10 kT) and neutral (0 kT), depicted as blue and white, to negative (less than�10 kT), depicted
as red. This change may weaken the binding of protein partner(s) or nucleic acid ligand(s) necessary for BRCA19s transactivation activity. Electrostatic
surface potential calculated by DELPHI, visualized by CHIMERA in GRASP format [39,40,43].
(D) Multiple sequence alignment of BRCT domains in BRCA1 orthologs. Primary groove residues are shaded in black, and their hydrogen-bonding
partners are shaded in gray.
doi:10.1371/journal.pcbi.0030026.g005
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classify V1665M as deleterious, because valine is completely
conserved in their multiple sequence alignments. In contrast,
SIFT constructs an alignment that includes two Arabidopsis
proteins containing BRCT domains (UNIPROT Q9ZWC2,
Q3E7F4) with a methionine aligned at this position, and thus
correctly classifies the variant as neutral.

SIFT uses Dirichlet mixture pseudocounts to estimate allowed
amino acid residues at each alignment position [29].
Pseudocount approaches compensate for incomplete se-
quence sampling in a multiple sequence alignment by adding
counts for imaginary amino acid residues that are statistically
likely to occur at each position. Our analysis indicates that
several SIFT errors are the result of poorly estimated
pseudocounts (Table S1). Importantly, SIFT is the only
sequence analysis method that includes an automated align-
ment algorithm. The accuracy of Ancestral Sequence and
Align GVGD depends on manual sequence selection, so these
methods cannot automatically be applied to other cancer
susceptibility genes or to whole genome analysis.

Despite their limitations, sequence analysis methods have
the advantage that they can be applied to any position in
BRCA1, whereas our supervised learners require protein
structure information and are thus limited to regions for
which accurate protein structure or structural models are
available. For example, the BRCA1 BRCT missense variant
E1794D is misclassified by Support Vector Machine, Random
Forest, Rule-based decision tree, and Decision Tree. Analysis
of X-ray crystal protein structure quality with MolProbity and
PROCHECK [58,59] indicates that in the 1t29 structure, the
atomic coordinates at this position, may be incorrect. The
corresponding backbone dihedral angles U and W of 143.88

and 112.98, respectively, are statistical outliers. Using
sequence analysis alone, with multiple sequence alignments
in which Tetraodon BRCA1 contains an aspartic acid residue at
this position, Align-GVGD, Ancestral Sequence, and SIFT
correctly classify the variant as neutral.

The empirically designed rules (Rule-based decision tree)
are more accurate than a Decision Tree of rules learned by a
supervised algorithm but not as accurate as Support Vector
Machine, Random Forest, Naı̈ve Bayes, Ancestral Sequence, or
Align-GVGD (Table 1 andFigure 1). It appears that it is difficult
to correctly set thresholds and weigh the relative importance
of empirically designed rules. For example, Rule-based
decision tree classifies A1669S as deleterious, in disagreement
with the functional assay (Figure 1 and Table S1). Rule-based
decision tree uses a ‘‘mutation likelihood’’ rule that would
classify A1669S as neutral because there is a serine in frog
BRCA1 at this position. It also uses a rule that would classify
A1669S as deleterious because the amino acid residue position
is buried in the protein core and close to a buried charged
residue. The order is such that the latter rule dominates the
final decision. In contrast, the supervised learning approach
makes no a priori decisions about thresholds or predictor
ordering, but learns this information implicitly during the
training process. Given an informative training set, such as the
TP53 variants used in the present work, it is able tomake highly
accurate decisions about the BRCA1 variants.

The supervised learning algorithms described here make
classification decisions based on nonlinear combinations of
predictive features and fail to provide rationalizations that
can be understood by humans. To address this issue, we apply
a post-predictive step in which we analyze protein structure

models and alignments. For example, the wild-type arginine
amino-acid residue at position 1753 of BRCA1 forms a salt
bridge with the glutamate at position 1735. The arginine is
found in the linker region that connects the BRCT-N and
BRCT-C domains and the glutamate is found in BRCT-N
(Figure 4). This charge–charge interaction may be important
for the stability of the BRCT homodimer. In our structural
model of the threonine variant, the salt bridge is broken,
potentially destabilizing the homodimer. Both R1753 and
E1735 are completely conserved in our alignment of 13
BRCA1 orthologs (Figure 5), suggesting possible selective
pressure to preserve their pairwise interaction. Such ration-
alizations increase our confidence in the predictions and
suggest ways to test them experimentally—for example, by
site-directed mutagenesis. Fifty-four percent of the variants
can be explained by combining structural and evolutionary
analysis in post-prediction (Tables S1 and S2).

Binding Site
Several studies of the BRCA1 BRCT domains have

suggested that there may be surface patches that interact
with protein partners [60–63]. In previous work, we predicted
that a groove formed by both BRCT repeats (near nonfunc-
tional variants L1657 and K1702) and the ridge that delimits
the groove (near nonfunctional variant E1660) constitutes
such a surface patch [7]. Our prediction was subsequently
confirmed through X-ray crystallographic studies, which
revealed a site where the phosphorylated peptides of BACH1
and CtIP have been found to bind [64,65]. Importantly,
several missense variants were found to disrupt this inter-
action [64,65], suggesting that clustering of deleterious
variants at solvent-exposed amino acid residue positions is
indeed a useful indicator of binding site location. There is a
large literature on the general topic of the relationship
between deleterious mutations and binding sites [66–74].
Two surface variants found to be deleterious to BRCA1

transactivation activity in our companion paper (R1753T and
T1685I) [14] lie on a highly conserved patch of amino acid
residues, forming an exposed groove. The R1753T variant
yields a changed electrostatic surface potential, which may be
sufficient to disrupt the binding of BRCA1 to a protein
partner or nucleic acid ligand important for transactivation.
Following the logic that predicted the BACH1/ CtIP binding
site, we suggest that this groove may be a previously
uncharacterized binding site, whose disruption inactivates
BRCA1 transactivation function. Accordingly, we are cur-
rently testing the binding of several candidate protein
partners to the predicted binding site using site-directed
mutagenesis and a yeast two-hybrid assay.

Prioritizing Variants for Biochemical Testing
Biochemical assays can play an important role in identify-

ing deleterious UCVs in cancer susceptibility genes [75], but
the work is labor-intensive and time-consuming. We estimate
that, on average, an assay for one BRCA1 UCV in a
mammalian cell system costs US$125–US$150 and requires
three weeks of personnel time, from ordering primers to final
results. The time can be reduced by processing the variants in
batches. To assay the 54 uncharacterized BRCT BRCA1
missense variants found in the BIC database (April 2006)
would take approximately 18 months of personnel time.
Accurate computational classification of UCVs can signifi-
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cantly reduce the required time by prioritizing UCVs most
likely to be deleterious. Importantly, while computational
classification and functional assays can contribute to medical
decision making, other factors such as family history, co-
occurrence with known deleterious mutations, and studies of
patient tumor tissue will continue to be important in a
clinical setting.

Generalizability of the Methods
We have applied supervised learners trained on the TP53

variant set to prediction of UCVs in BRCA2, with promising
results (unpublished data). We are currently exploring
whether this training set and our current set of features can
be used to evaluate UCVs in other genes associated with
familial cancer syndromes: MLH1, MSH2, MSH6 (hereditary
nonpolyposis colon cancer), APC (familial adenomatous
polyposis), MYH (MYH adenomatous polyposis), and P16
(melanoma). We have applied a modified version of this
method to classify all human amino-acid changing SNPs found
in the dbSNP database [76] as deleterious or neutral [56]. The
SNPs were classified with a support vector machine trained on
amino acid residue substitutions frommore than 1,500 human
proteins. Because X-ray crystal structures are not available for
most human proteins [77], we built homology models with an
automated modeling pipeline MODPIPE that relies on the
MODELLER package for fold assignment, sequence-structure
alignment, model building, and model assessment [78]. A small
number of these predictions have been validated by bio-
chemical and epidemiological studies found in the literature.

We are exploring the extent to which a decision rule
learned with a training set of variants from one protein, such
as TP53, can be generalized to variants from other proteins.
One possibility is that most deleterious missense mutants do
not affect specific binding interactions, but are instead slightly
destabilizing [79]. If this is true, a training set of missense
variants from a protein with similar stability to the protein of
interest may be the best choice. Other possiblities include
training on a protein sharing GO terms, or from the same fold
family (all-alpha, all-beta, alpha-beta, etc.) as the protein of
interest. We are working on generating large variant datasets
from selected proteins to test these hypotheses.

In summary, we have systematically and comprehensively
evaluated structure- and sequence-based computational pre-
diction methods applied to variants in the BRCA1 BRCT
domainsanddevelopeddetailed structural explanations for the
measured and predicted impact of 49 BRCA1 variants. When
combined with 16 carefully selected predictive features, the
best-supervised learning algorithms are in greater agreement
with experimental results than has been reported previously.

The increased use of sequencing methods to genotype
individuals at risk for inherited cancers and the observation
that sequence variation is greater in ethnic minorities than
in Caucasians highlight the need for improved methods of
UCV risk assessment. Bioinformatics approaches including
supervised learning algorithms, protein structure modeling,
and evolutionary sequence analysis can contribute to an
integrated approach to risk assessment by increasing cover-
age of classified UCVs more rapidly than is possible by
functional assays. In the future, when clinicians counsel
patients about their cancer risk, they will be able to take
advantage of these bioinformatics prediction methods.
Finally, successful generalization of these methods to a large

number of disease-associated genes will play an important
role in reducing the growing number of loci, variants, and
phenotypes that confound modern whole genome disease-
association studies.

Supporting Information

Table S1. Post-Prediction Analysis of BRCA1 BRCT Missense Variants
Characterized by Transactivation Assays

Transcription assay in yeast (Y) or mammalian (M) cells. We used a
50% activity cutoff value. *, neutral/low clinical relevance; �,
deleterious/high-risk variant; red, variant names are colored red if
classification considering both yeast and mammalian assays is
deleterious/high-risk, blue, variant names are colored blue if
classification considering both yeast and mammalian assays are
neutral/low clinical relevance. There is no available post-prediction
analysis for S1715R, T1720A, and P1806A.

Found at doi:10.1371/journal.pcbi.0030026.st001 (135 KB DOC).

Table S2. Structural Explanations for the Impact of BRCA1 BRCT
UCVs Found in BIC (Excluding Those in Table S1 and Those for
Which Definitive Genetic Evidence Exists)

Consensus Classification is majority vote of Random Forest, Naı̈ve
Bayes, and Support Vector Machine classifiers. Red, deleterious; blue,
neutral.

Found at doi:10.1371/journal.pcbi.0030026.st002 (101 KB DOC).

Table S3. Core Set of 13 Predictive Features Identified Using a
Mutual Information Analysis

The mutual information between each feature and the functional/
nonfunctional class of each TP53 missense mutant was computed as
described previously [24].

Found at doi:10.1371/journal.pcbi.0030026.st003 (50 KB DOC).

Table S4. Predictive Features of Missense Mutants That Were Tried
but Failed To Improve Support Vector Machine Performance on the
TP53 Training Set

These were not included in the optimal 16 features selected for use
with the supervised learning algorithms.

Found at doi:10.1371/journal.pcbi.0030026.st004 (40 KB DOC).

Table 3. Accession Numbers

Protein Organism NCBI Entrez ID

BRCA1 H. sapiens AAA73985

BRCA2 H. sapiens NP_000050

BRCA1 P. troglodytes AAG43492

BRCA1 G. gorilla AAT44835

BRCA1 P. pygmaeus AAT44834

BRCA1 Mac. mullata AAT44833

BRCA1 C. familiaris AAC48663

BRCA1 B. taurus AAL76094

BRCA1 Mono. domestica AAX92675

BRCA1 Mus musculus AAD00168

BRCA1 R. norvegicus AAC36493

BRCA1 G. gallus AAK83825

BRCA1 X. laevis AAL13037

BRCA1 T. nigroviridis AAR89523

BRCA1 S. purpuratus EF152287

Lac Repressor E. coli AAM86784

Lysozyme bacteriophage T4 NP_839873

TP53 H. sapiens NP_000537

MDC1 H. sapiens NP_055456

PTIP H. sapiens NP_031375

BARD1 H. sapiens NP_000456

53BP1 H. sapiens NP_005648

F21M11.4 A. thaliana NP_005648

At1g04020 A. thaliana NP_973758

doi:10.1371/journal.pcbi.0030026.t003
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Table S5. Performance of Optimal 16 Features Evaluated with 10-
Fold Cross-Validation Using the TP53 Missense Variant Training Set

Performance was computed with all 16 features, then with each of the
16 features held out. MCC, Matthews correlation coefficient; TNR,
true negative rate; TPR, true positive rate.

Found at doi:10.1371/journal.pcbi.0030026.st005 (63 KB DOC).

Accession Numbers

Accession numbers from the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov) are shown in Table 3.
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