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México, 2 Laboratorio de Inmunologı́a y Biologı́a Celular y Molecular, Facultad de Ciencias Quı́micas,

Universidad Autónoma de San Luis Potosı́, San Luis Potosı́, México, 3 Laboratorio de Biotecnologı́a
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Abstract

The MERS-CoV, SARS-CoV, and SARS-CoV-2 are highly pathogenic viruses that can

cause severe pneumonic diseases in humans. Unfortunately, there is a non-available effec-

tive treatment to combat these viruses. Domain-motif interactions (DMIs) are an essential

means by which viruses mimic and hijack the biological processes of host cells. To disentan-

gle how viruses achieve this process can help to develop new rational therapies. Data min-

ing was performed to obtain DMIs stored as regular expressions (regexp) in 3DID and ELM

databases. The mined regexp information was mapped on the coronaviruses’ proteomes.

Most motifs on viral protein that could interact with human proteins are shared across the

coronavirus species, indicating that molecular mimicry is a common strategy for coronavirus

infection. Enrichment ontology analysis for protein domains showed a shared biological pro-

cess and molecular function terms related to carbon source utilization and potassium chan-

nel regulation. Some of the mapped motifs were nested on B, and T cell epitopes,

suggesting that it could be as an alternative way for reverse vaccinology. The information

obtained in this study could be used for further theoretic and experimental explorations on

coronavirus infection mechanism and development of medicines for treatment.

Introduction

Coronaviruses (CoV) are enveloped single-stranded, positive-sense RNA viruses, responsible

very often for mild upper respiratory infections in humans. Nevertheless, remarkably
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pathogenic CoVs to humans have been reported. The first one appeared in 2003 in Guang-

dong, China, leading to an epidemic of severe acute respiratory syndrome (SARS) and this

virus was named SARS-CoV [1]. In 2012, another CoV arose in Middle Eastern countries,

causing pneumonic syndrome, called MERS-CoV [2]. At the end of 2019, a new CoV emerged

in Wuhan, China, causing severe pneumonia [3] and was named SARS-CoV-2 due to its geno-

mic similarity with the past SARS-CoV [4]. This is the first CoV that caused a pandemic dis-

ease termed COVID-19. These three CoVs are zoonotic, and its primary origin was traced to

bats and other animals [4, 5]. We are still suffering from SARS-CoV-2. This is a serious public

health concern, especially for the aged people with increased risk for complications such diabe-

tes mellitus (DM), hypertension, and severe obesity, which cause the high morbidity-mortality

rates of COVID-19 [6]. Humans infected by SARS-CoV-2 could be also asymptomatic, but

they may transmit the virus [6]. Although numerous efforts are currently underway to develop

drugs and vaccines to combat those viruses, there is no effective treatment available yet.

The study on molecular interactions of host-pathogen helps to find new targets for drug

discovery or antigens for vaccine development. Host-pathogen relation is mainly explored

through protein-protein interaction (PPI) studies. These studies can be experimentally and

computationally aided [7]. The computational studies could be preliminary but quick to guide

the rational selection of data for experimental confirmations. Experimental approaches have

been carried out for SARS-CoV, MERS-CoV [8, 9], and recently for SARS-CoV-2 [10]. A

detailed literature mining that surveys experimental and predicted PPIs for several coronavi-

ruses, including the viruses studied herein, was recently published [11]. Also, several computa-

tion-aided researches focused on predicting PPI of host and SARS-CoV-2 [7, 12, 13]. Such

predictions provided valuable information to help the rational design of treatments against

these viral infections.

However, the analysis of domain-motif interaction (DMI) has paid less attention to those

CoVs. Domains in proteins are the functional units involved in the signaling networks

within a cell [14]. Its length is up to 200 amino acids, and its folding patterns are indepen-

dent of the rest of the whole protein [15]. In contrast, motifs are short plastic linear

sequences with a length of 3 to 15 amino acids. DMIs are the preferential molecular mecha-

nism by which viruses interact with host cells [16]. Motifs are employed by the viruses to

mimic and hijack the host cell’s essential process for its survival [17]. Currently, two studies

have approached the role of motifs present on essential host proteins for SARS-CoV-2 infec-

tion. The research of Mészáros et al. [18] consisted in the prediction of motifs retrieved from

Eukaryotic Linear Motif (ELM) resource that were mapped onto the angiotensin-converting

enzyme 2 (ACE2) and integrins of the human host. They found conserved motifs on the

cytoplasmatic tails of ACE2 and integrin β3 that interacts with several critical regulatory

protein domains. This motif information was tested later on experimental binding affinity

measurements [19] and found that NHERF3 PDZ1, SHANK1 and SNX27 PDZ domains

bind to synthetic peptides of the ACE2, and to the synthetic ATG8 domains, MAP1LC3s

and GABARAPs, of integrin β3. Those studies exemplify the utility of motif predictions to

guide experimental proposals.

Here contrariwise to the previous researches, we focused on the motifs mapped on the

MERS-CoV, SARS-CoV, and SARS-CoV-2 proteomes linked to human protein domains. The

frequently matched motifs were compared among the coronaviruses. The motif functionality

was inferred through enrichment ontology analysis of its partner domains. The based-motif

information obtained could be used as the starting point to develop new therapies to combat

these viruses in the future.
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Materials and methods

Protein sequence retrieval

The SARS-CoV (taxid:694009) and SARS-CoV-2 (taxid:2697049) sequences were retrieved

from the NCBI virus repository (accessed on 01 September 2020) [20] using available prede-

fined filters, such as human for host, length of proteins, and the completeness option for

sequences. These sequences were firstly filtered based on its report date; then, sequences before

2019 were put on the SARS-CoV dataset. The redundant amino acid sequences were removed

with the perl program “fasta_uniqueseq.pl” obtained from FASTA Tool list web page (http://

www.ncbi.nlm.nih.gov/CBBresearch/Spouge/html.ncbi/fasta/list.html). The sequences for

MERS-CoV were retrieved from the virus variation database [21], using the options as human

host, sequence completeness, and collapse for removing redundant sequences. The final num-

ber of each viral protein in the datasets ordered by its arrangement on the genome are shown

in Table 1. The SARS-CoV protein sequences were grouped together with the SARS-CoV-2

dataset for the analysis due to its small number after eliminating the redundant sequences.

Domain-motif data mining process

Our data mining process is based on our previous reported methodology [22], adapted to the

data retrieved for the MERS-CoV and SARS-CoV/CoV-2 viruses. It includes three main steps.

1) Literature search. First, we obtained the human genes associated to the SARS-CoV/CoV-2

and MERS-CoV related diseases with pubtator [23]. This tool allows searching in a straightfor-

ward manner the reporting genes related to the infections by these viral pathogens in the

PubMed literature. These gene names were compared and unified with the information from a

recent research published by Perrin-Cocon et al., [11] to form a list of unique gene names.

This list was submitted into the UniProt database [24] to obtain the human UniProt IDs that

match our query for the next process. 2) Pfam database [25] mining for human protein

domains: From the Pfam we downloaded the latest version of the files “Pfam-A.regions.tsv”

and “Pfam-A.clans.tsv”. The obtained UniProt IDs that match on the Pfam-A.regions.tsv file

were extracted to mine the Pfam-A.clans file. Thereby, it was obtained the Pfam accession,

clan ID, Pfam ID, and Pfam description columns that contain information associated with our

Table 1. The total number of non-redundant viral protein sequences for analysis.

Protein MERS-CoV SARS-CoV SARS-CoV-2

ORF1ab 162 4 4003

ORF1a 140

S 98 5 1135

ORF3a 25 3 421

NS4a 22

NS4b 36

NS5 21

E 6 1 45

M 18 6 125

ORF6 1 73

ORF7a 1 149

ORF8 18 1 146

N 44 1 539

ORF10 1 35

TOTAL 590 24 6671

https://doi.org/10.1371/journal.pone.0246901.t001
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UniProt ID list. 3) The domain-motif information was mined from the databases of three-

Dimensional Interacting Domains (3DID) [26] and ELM [27]. The motif information for

3DID was retrieved from the 3DID-DMI flat 2019 version. From this file, the Pfam IDs,

domain-motif name, and the regular expressions (regexp) were extracted and stored in local

files which was used as the target file to draw out the information associated with the Pfam IDs

previously obtained. In the ELM database, the information came from the files “elm_interac-

tion_domains.tsv” and “elm_classes.tsv”. The first file was the target file to match the Pfam

accessions IDs and was then used to take out the domain-motif name, Pfam accession, and the

associated regexp from the elm_classes.tsv file. Each regexp was used to match motif amino

acid sequences in the protein datasets with the patmatch software [28]. We used linux terminal

for each query with the bash command “for ID in ‘cat file_of_IDs.txt‘; do grep $ID target_file.

txt; done> extracted_info_file.txt”. The obtained files were also checked manually for concor-

dance with the query IDs.

Identification of potential functional host-like viral motifs

The potential functional motif identification was based on the percentage of regexp that

matches a specific amino acid sequence. To this end, we followed 70% cut-off match as in

the previous study [29]. For example, a total of 4003 ORF1ab non-redundant sequences

were retrieved for SARS-CoV-2; consequently, a regexp present in more than 70% of

ORF1ab proteins signifies that a specific motif matched more than 2802 sequences. Those

frequent motifs were also queried on shuffled sequences versions of each protein dataset that

was produced with the “shuffleseq” function from the EMBOSS suite programs [30]. If those

inferred motifs were found scarcely on the randomized sequences, it reinforces as functional

motifs.

Protein domain enrichment analysis

The protein domain enrichment analysis was carried out with the dgOR package [31] for R sta-

tistical language. For this analysis, the Pfam accession numbers were used as input data and

the first ten significant (p < 0.05) ontologies based on the hypergeometric test related to gene

ontology biological process (GOBP) and Gene ontology molecular function (GOMF) were

analyzed.

Identification of motifs as immune epitopes

The immune epitope database (IEDB) [32] was manually queried for motif sequences with� 5

amino acids, setting the blast parameter of identity more than 70%, and selecting the options

“human host”, “all assay types”, and the disease option “COVID-19 and Severe acute respira-

tory syndrome” as filters. This query analysis was omitted for the MERS-CoV because there is

not available information for this pathogen on the IEDB.

Statistics

The statistics rests on descriptive statistics of the frequent motifs. The obtained information

was analyzed by its conjunction and disjunction relationships based on the matching patterns.

This analysis was carried out with the help of the web tool for the calculation and drawing of

custom Venn diagrams (http://bioinformatics.psb.ugent.be/webtools/Venn/).
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Results

Literature mining

After removing duplicate gene names among the reviewed publications (data in S1 File), 497

human genes for SARS-CoV/CoV-2 and 65 for MERS-CoV infection were found involved in

pathogenesis (Table 2, data in S2 File). The comparison of our mined information with Per-

rin-Cocon et al [11] showed overlapped gene information (n = 124), and the newly acquired

(n = 438), especially for the MERS-CoV viruses. After eliminating the duplicated the rest are

theunique gene names (data in S2 File), which were used to search its corresponding UniProt

IDs to mine the Pfam, 3DID, and ELM databases for the subsequent regexp match analysis.

Identification of functional viral protein motifs

The functional regions of proteins are either structured or disordered. However, the proteins

of coronaviruses were found mainly ordered according to IUPRED (S1 Fig) [33]. For example,

most amino acids of the largest protein ORF1ab and the spike (S) protein were found below

the 0.5 score. However, few regions of viral protein were disordered, such as the nucleocapsid

(N) protein. In this study, the whole regexp lists obtained from the 3DID and ELM databases

(data in S3 File) were mapped on the whole viral protein sequences. The frequent (>70%)

regexps that matched amino acid motifs are shown in Table 3 and the data in S4 File.

Table 2. The total number of human gene names obtained from the PubMed literature and compared with Per-

rin-Cocon et al. [11].

Present study Present study \ Perrin-Cocon et al., Perrin-Cocon et al.,

MERS-CoV 55 10 7

SARS-CoV/CoV2 383 114 352

�\means the intersection in the conjunction-disjunction analysis.

https://doi.org/10.1371/journal.pone.0246901.t002

Table 3. Total number of motifs frequently matched by regexp.

3DID ELM

Protein M-CoV M-CoV \ S-CoV/CoV-2 S-CoV/CoV-2 M-CoV M-CoV \ S-CoV/CoV-2 S-CoV/CoV-2

ORF1ab 65 148 31 8 78 5

S 47 50 38 11 44 12

ORF3a 4 6 24 1 13 28

NS4a 14 25

NS4b 46 35

NS5 20 28

E 19 0 5 6 5 4

M 9 5 15 11 18 9

ORF6 4 18

ORF7a 20 27

ORF8 23 1 14 8 7 15

N 23 27 31 9 27 14

ORF10 2 12

TOTAL 270 237 184 142 192 144

�\means the intersection in the conjunction-disjunction analysis.

https://doi.org/10.1371/journal.pone.0246901.t003
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The ORF1ab, S, and N sequences were matched by the regexp more than the other proteins

from databases. A high number of motifs were shared among three CoVs in the ORF1ab

(n = 148 and 78), followed by the S (n = 50 and 44) and the N (n = 27 and 27). The regexp

motifs were redundant among the proteins or viral proteomes (data in S4 File); for example,

the ORF1ab and S shared the same motifs (Fig 1A); and a high number of motifs shared

between the MERS-CoV and SARS-CoV/CoV-2 after removing the redundant (Fig 1B, data in

S5 File). Most of these motifs were scarcely on the shuffled sequences; thus, all were considered

in the subsequent analysis.

Protein domain enrichment analysis for non-redundant motifs

First, it was examined the conjunction-disjunction relationships for the total number of Pfam

accessions associated with non-redundant motifs described above. A total of 78 non-redun-

dant domains were shared for MERS-CoV and SARS-CoV/CoV-2 irrespective of the database

source, and few were specific to MERS-CoV (n = 8) and SARS-CoV/CoV-2 (n = 9) (Fig 2A,

data in S5 File). Protein domain enrichment analysis of the 78 shared domains for GOBP iden-

tifies general terms related to metabolic and cellular processes. Five GOBP significant terms

were related to energy reserve and glycogen biosynthesis metabolism (Fig 2B, data in S6 File).

GOMF analysis also identifies five important terms related to channel regulation in which

potassium channel regulator activity was the most significant (Fig 2C, data in S6 File). The

study of specific domains for MERS-CoV and SARS-CoV-2 also showed terms associated with

the same biological processes and molecular functions of the 78 shared domains. Thus, those

domains could be the primary targets for molecular mimicry generated by MERS-CoV and

SARS-CoV/CoV-2 to manipulate the host cell machinery.

Analysis of significant domains present on distinct host proteins

The analysis described above allows us to identify specific proteins linked to the domains

involved with significant ontology terms. Four domains (Pfam accession ID: PF00656,

PF00026, PF00082, PF00089) related to the glycogen biosynthetic process were present in 26

proteins that matched our gene lists. Among them, the PF00089 related to trypsin domain

function is the more promiscuous present on most of the proteins (Fig 3A). This domain was

associated with the protease TMPRSS2, an endothelial cell surface protein involved in the

entry and spread of CoVs and influenza virus [34], so that this protein has been proposed as a

potential drug target to combat those viruses. It was also found the domains associated with

the potassium channel regulator activity (Fig 3B).

Fig 1. Venn diagrams show the redundant or non-redundant regexp motifs among the proteins or viral

proteomes. (A) Venn diagram to show the redundant regexp numbers mapped on the ORF1ab and Spike proteins. (B)

Venn diagram of total non-redundant regexp mapped in MERS-CoV and SARS-CoV-2 obtained from the two

databases.

https://doi.org/10.1371/journal.pone.0246901.g001
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Fig 3. Network representation of significant domains linked to proteins and their gene ontology terms. (A)

Biological processes and (B) Molecular functions. The green light diamonds represent the domains, and the ellipses

represent the protein names associated with the domains. The images were generated with the cytoscape software [35].

https://doi.org/10.1371/journal.pone.0246901.g003

Fig 2. Protein domain enrichment analysis that produced the significant gene ontology terms for non-redundant

motifs. (A) Venn diagram for the non-redundant domains. (B) Gene ontology terms for biological processes and (C)

molecular functions terms of the non-redundant domains. Nodes are colored according to adjusted p-values.

https://doi.org/10.1371/journal.pone.0246901.g002

PLOS ONE The analysis of host-like motifs on the coronavirus

PLOS ONE | https://doi.org/10.1371/journal.pone.0246901 February 17, 2021 7 / 13

https://doi.org/10.1371/journal.pone.0246901.g003
https://doi.org/10.1371/journal.pone.0246901.g002
https://doi.org/10.1371/journal.pone.0246901


Identification of amino acid motif sequences as immune epitopes

The non-redundant motifs� 5 amino acids were searched for a match with epitopes reported

on the IEDB, which were experimentally confirmed. The amino acid sequences of several

motifs matched on epitopes sequences for SARS-CoV/CoV-2 that recognize B and T cells spe-

cific to class I or II MHC (data in S7 File). These motifs had the following main characteristics.

1) The epitope linear motifs contain the nested motifs recognized by both B and T cells. For

example, the motif matched with the regexp [DE]..[IMV].[ST] was found on the B cell and T

cell epitope PKEITVATSRTLSYYK (IEDB ID: 48052) in the M protein [36] of SARS-CoV and

SARS-CoV-2 [37]. 2) Motifs matched by the same regexp are prone to occur in different pro-

tein structural locations. For example, the regexp motif P.{0,1}S.{1,2}K matches the amino acid

sequences PLSETK and PVSMTK locating to varying coordinates on the S protein (Fig 4). 3)

Motifs maintain its crucial amino acids, and little variations occur at neighbor sites. For exam-

ple, the PVSMTK motif nested on the B cell linear epitope ILPVSMTKTSVDCTMYICGD

(IEDB ID:1309493) of SARS-CoV-2 (Fig 4A and 4D) [38] varied a little on the epitope

sequence PVSMAKTSVDCNMYICGDS (IEDB ID: 49968) of the SARS-CoV, maintaining its

main amino acid anchors P,S and K. PVSMAK was found only in one SARS-CoV-2 sequence

(NCBI ID: QKV39263) isolated from Washington, Yakima County.

Discussion

In this work, we employed our previous data mining methodology [22] to identify potential

functional motifs but applied to MERS-CoV and SARS-CoV/CoV-2 viruses. The main advan-

tage of this method is the search restricted to human protein targets involved in the virus path-

ogenesis. The initial step allows us to reduce a priori the query on the 3DID and ELM

databases. As a result, the unsheathed domain-motif information is potentially associated with

human genes related to pathogenesis of the MERS-CoV and SARS-CoV/CoV2. Our approach

is then similar to the methods used by Hagai, T., et al., Becerra, A. et al and Zhang, A et al [29,

39, 40] in predicting functional motifs. These methods include some distinctive features such

as predicting disordered regions on the protein, the high frequency of amino acid motifs in the

Fig 4. Some motifs matched the epitopes on the spike protein. (A) Spike protein of SARS-CoV-2 (PDBID:6XS6). (B)

The regexp. (C) The motif PLSETK. Red balls indicate the PLSETK seqlogo motif mapped at amino acid positions 295

to 300 (D) The motif PVSMTK. Green balls and sticks showed the total length of the epitope ILPVSMTKTSVDCTMY

ICGD, including the PVSMTK seqlogo motif mapped (the balls) at amino acids positions 728 to 733.

https://doi.org/10.1371/journal.pone.0246901.g004
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protein sequences datasets under study, and the scarcity of amino acid motifs on shuffled

sequences. The filters were tailored according to the information obtained in each data mining

process. All those filtered steps guided our analysis to a more specificity that linked the pre-

dicted functional motifs as part of immune epitopes as previously we did for influenza A

viruses [22]. It is distinctive of our prediction approach, because it was used to reduce the high

rate of false positives associated with the computational prediction of motifs [41]. Further-

more, our method could be an alternative for computer-aided reverse vaccinology.

One interesting result is that the tendency of matched motifs occurred in the most variable

proteins, the ORF1ab, and the S protein of the coronavirus proteomes. The ORF1ab contains

the nonstructural proteins responsible for the translation machinery of viruses in the intracel-

lular environment [42] and the S protein is essential for the virus’s attachment to the host cell

[43]. The tendency of motifs to appear on the proteins involved in virus replication was also

observed in influenza viruses [44]. Thus, the high frequency of host-like motifs in those viral

proteins suggests that such proteins could be the master kidnappers. Another finding is the

high number of shared motifs across the proteome or distinct proteins of a proteome, reflect-

ing the viral motifs to evolve independently in light of acquiring host-like mechanisms for the

success in the invasion of host cells.

The domain enrichment analysis showed that the general biological processes, and molecu-

lar functions could be the consequence of the MERS-CoV and SARS-CoV/CoV-2 mimicry to

hijack the host cell. The most significant ontology terms are the energy-saving and glycogen

biosynthesis metabolism association. This result agrees with that viruses use the infected cells’

carbon sources to achieve viral replication and virion production [45]. It is reasonable that gly-

cogen, a storage form of glucose, is utilized in unexpected, exhausting cell activity [46] as

infected. On the other hand, as this biosynthetic pathway is vital for the viruses’ survival, tar-

geting essential components such as the glycogen synthase kinase could help treat virus infec-

tions. It was reported that the use of two glycogen synthase inhibitors altered the hepatitis C

virus assembly and release [47]. Hence, the proteins we found in the present study could be

used to explore them as drug targets.

In another context, motifs have been suggested as potential immunogens [41]. It took our

attention to search motif that matched with immune epitopes. Indeed we found that some

motifs matched to the epitopes on the IEDB. Some of them were nested on the epitopes of ear-

lier SARS-CoV and also present on those new SARS-CoV-2. It reaffirms the evidence of cross-

reactive immune responses to coronavirus infections by SARS-CoV and SARS-CoV-2 [48–

51]. Additionally, our study identified the epitopes harboring motifs that could interact with

human protein domains. It is quite relevant because such domain-motifs shared in the differ-

ent coronavirus can trigger a common molecular mimicry process that could lead to autoim-

mune diseases. It was demonstrated that antibodies derived from Flu vaccinated patients react

with homologous sequences of the nucleoprotein of influenza A virus and the hypocretin

receptor 2 domain of humans, the latter of which was involved in narcolepsy, an autoimmune

adverse effect attributed to the Flu-vaccine [52]. Influenza immunization is also attributed to

Guillain-Barré syndrome [53], a disease in which its pathogenesis is associated with several

bacterial and viral pathogens’ molecular mimicry [54–56]. Thus, our results are vital to helping

in the currently underway rational vaccine development efforts, mainly because several auto-

immune diseases have been associated with COVID-19 [57].

Conclusions

In conclusion, this study showed that our method’s adaptability and practicality could guide a

rational inference of domain targets and their interacting host-like motifs on the MERS-CoV
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and SARS-CoV/CoV-2 proteomes. A high number of motifs were shared in the different

CoVs, and it could interact with human proteins, indicating that molecular mimicry is a com-

mon strategy for CoVs. The finding of motifs as part of immune epitopes makes our method a

suitable alternative for reverse vaccinology. The obtained information could be the starting

point for future theoretic and experimental studies to develop new drugs and peptidic vaccines

to combat those viruses.
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