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Abstract

The Bateson-Dobzhansky-Muller model posits that hybrid incompatibilities result from genetic changes that accumulate
during population divergence. Indeed, much effort in recent years has been devoted to identifying genes associated with
hybrid incompatibilities, often with limited success, suggesting that hybrid sterility and inviability are frequently caused by
complex interactions between multiple loci and not by single or a small number of gene pairs. Our previous study showed
that the nature of epistasis between sterility-conferring QTL in the Drosophila persimilis-D. pseudoobscura bogotana species
pair is highly specific. Here, we further dissect one of the three QTL underlying hybrid male sterility between these species
and provide evidence for multiple factors within this QTL. This result indicates that the number of loci thought to contribute
to hybrid dysfunction may have been underestimated, and we discuss how linkage and complex epistasis may be
characteristic of the genetics of hybrid incompatibilities. We further pinpoint the location of one locus that confers hybrid
male sterility when homozygous, dubbed ‘‘mule-like’’, to roughly 250 kilobases.

Citation: Chang AS, Bennett SM, Noor MAF (2010) Epistasis among Drosophila persimilis Factors Conferring Hybrid Male Sterility with D. pseudoobscura
bogotana. PLoS ONE 5(10): e15377. doi:10.1371/journal.pone.0015377

Editor: Jeff Demuth, University of Texas Arlington, United States of America

Received August 6, 2010; Accepted September 2, 2010; Published October 27, 2010

Copyright: � 2010 Chang, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding was provided by National Science Foundation award 0715484 and National Institutes of Health awards GM076051 and GM086445. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: noor@duke.edu

Introduction

Hybrid dysfunction (e.g., sterility and inviability) in animals

evolves in part as a pleiotropic by-product of genic divergence when

populations become isolated and subsequently accumulate changes

as a result of selection or genetic drift. The Bateson-Dobzhansky-

Muller (BDM) model [1,2,3] describes how, when these genetically

differentiated populations hybridize, genes that evolved in one

genomic context fail to function in the background of the other

genome, leading to decreased fitness of the hybrid offspring. Much

effort has been directed toward identifying genes that contribute to

hybrid incompatibilities and other forms of reproductive isolation.

Elucidation of the identity and molecular function of incompat-

ibility genes may eventually reveal the types of changes that lead to

reproductive isolation. However, understanding the nature of the

evolution of reproductive isolation also requires answers to other

long-standing and fundamental questions: How many loci are

necessary and sufficient to produce hybrid dysfunction? For example,

can an allele at a single locus cause sterility when placed in a foreign

genetic background (i.e., are there ‘‘single factors of large effect’’)? Is

epistasis between foreign, introgressed alleles important? What is the

linkage relationship between loci causing hybrid problems?

Studies in Drosophila and other systems have provided some early

insights: hybrid male sterility (HMS) between some species results from

complex epistasis between alleles at multiple loci; single factors of large

effect on HMS as considered in the basic BDM model appear rare or

absent [4,5,6,7,8,9,10,11] but see [12]. A recent study of yeast spore

failure in hybrids further suggests that postzygotic isolation may also

rely on complex interactions between multiple loci [13], but other

studies of incompatibility in yeast hybrids have not detected such

complexity [14]. In some instances, introgression of multiple linked

factors is necessary to produce infertile hybrid males [11,15]. However,

we are far from being able to generalize the number of loci, or the

pattern of epistasis between them, that underlies hybrid sterility.

Mapping factors that cause hybrid dysfunction often employs

methodology similar to those for mapping quantitative traits, but

because hybrid sterility is studied as a binary (or categorical) and

threshold trait, two distinctions are important. First, in most

studies, individuals are classified as ‘‘sterile’’ or ‘‘fertile’’ (or

sometimes with 3–4 categories based on sperm or offspring

number), such that quantitative reductions in fertility are generally

not measured. Second, once an individual is sterile, further

‘‘sterility’’ effects cannot be observed. These problems become

especially acute because specific alleles at several loci may interact

to cause sterility and these interactions can vary in complexity. For

instance, multiple independent sterility-conferring interactions

may exist: alleles at loci A and B can interact to cause sterility,

and a separate interaction between loci C and D may also be

sufficient. Alternatively, a single interaction involving alleles at A,

B, C, and D may be necessary. Many standard backcross mapping

studies do not distinguish between these scenarios.

To overcome the limitations of backcross analyses, much

progress in identifying and counting hybrid sterility loci has thus

come from introgression analyses [5,7,8,11,16,17,18,19]. Such

analyses allow the evaluation of the contributions of individual or

groups of genetic factors, as well as the interactions between them.

Alleles from one species that are introgressed into another species

background necessarily interact with the native alleles present.

However, the foreign (i.e., introgressed) factors may also interact

with each other: we [20] previously showed that some foreign
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factors can be introgressed with no detectable reduction in fertility,

but exhibit strong sterility effects when in combination, even when

all are heterozygous. Introgression analyses searching for hybrid-

sterility-conferring alleles often ignore this type of epistasis.

This study builds on the results from our previous studies and

further dissects two individual QTL that confer hybrid male

sterility when introgressed from Drosophila persimilis into a

D. pseudoobscura bogotana genetic background. These two species

diverged approximately 0.5 to 1 million years ago [21,22] and are

distinguished by four chromosomal inversions: two on the

X chromsome, one on the 2nd-chromosome, and one on the 3rd-

chromosome. The QTL examined in this study resides outside the

inverted region on chromosome-2 [23].

In this study, we show that, between D. persimilis and D. p.

bogotana, what appeared to be a single QTL in fact had 2–3 tightly

linked loci conferring sterility. Hence, epistasis between more loci

than could be estimated from a standard QTL mapping design

confers infertility of backcross hybrid males. Furthermore, we

observed that at least one of these loci is ‘‘sufficient’’ to confer

complete sterility if made homozygous in a foreign background.

Materials and Methods

Fly stocks and culture conditions
Drosophila pseudoobscura bogotana carrying a white eye mutation

were used in the crosses described below, as the white locus is

linked to an inversion that distinguishes between D. p. bogotana

and D. persimilis. The D. p. bogotana white strain is a subculture of the

D. p. bogotana El Recreo line collected in 1978 (provided by H. A.

Orr). The D. persimilis MSH1993 line was derived from females

collected at Mt. St. Helena, California in 1993 [24]. All crosses

were performed on standard sugar/yeast/agar medium at

2061uC and 85% relative humidity.

Fine-mapping of sterility factors within the
chromosome-2 QTL

Following the methods described in Chang and Noor [20],

introgression lines were created to break up the previously

described chromosome-2 QTL (hereafter Q2). Briefly, interspecies

F1 females were backcrossed to D. p. bogotana males for ten

generations to purge the background of D. persimilis alleles at

regions other than those coinciding with the focal Q2 QTL.

During this process, the D. p. bogotana chromosomal arrangements

were selected for the two inversions on the X-chromosome and the

one inversion on the 2nd-chromosome that differentiate the two

species. This ensures that the mapping results obtained here

recapture effects detected in the original QTL-mapping study

[23]. Selection for the foreign introgressed Q2 segment and for the

rearrangements was completed by microsatellite genotyping of

markers delineating the QTL and the rearrangements. The final

line bore only the Q2 segment from D. persimilis in a D. p. bogotana

genetic background (see Figure 1). Marker sequences are available

in Table S1.

For each introgressed D. persimilis QTL region, we sought to

generate recombinant segments and assay their fertility alone

and in combination with the other QTL. Additional mapping

lines were created by repeatedly crossing females of the Q2

introgression line to D. p. bogotana males. Recombination between

the D. persimilis and D. p. bogotana genomes within each QTL

generated multiple independent lines; additional microsatellite

markers were designed to differentiate between these lines.

Because we previously identified an interaction between the

QTL on each of the three major autosomes as necessary for

complete sterility [20,23], females from mapping lines were then

crossed to males heterozygous for the chromosome-3 and either the

chromosome-4 or the chromosome-2 QTL. Male flies heterozygous

for one portion of the Q2 QTL (Recombinant lines 1–4: see

Figure 1) and heterozygous for the other two QTL (Q3 and Q4) were

assayed for fertility following the methods of [25].

Finally, we assayed the homozygous fertility effect of one of the

smallest of the individual introgressed Q2 recombinants by

crossing males and females from the line and assaying sperm

motility in the homozygous offspring (not bearing D. persimilis

alleles at Q3 or Q4). We further backcrossed this recombinant line

to D. p. bogotana to generate a smaller recombinant line, and this

newer line was also assayed for fertility as above.

Figure 1. Fraction of males that were sterile when heterozygous for the specified D. persimilis chromosome 2 segment (black bars)
as well as D. persimilis QTL onp, chromosomes 3 and 4. Grey bars indicate areas of uncertainty of origin because they lie between genotyped
markers. The positions noted are based on the complete D. pseudoobscura genome sequence assembly [26] of chromosome 2 (see bottom of figure,
black circle indicating centromere), and are presented in megabases (e.g., 27.92 indicates assembly position 27,920,000). Fertility for Rec5 is not
presented because it was assayed in homozygous form and without the QTL on chromosomes 3 and 4.
doi:10.1371/journal.pone.0015377.g001
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Results

Fine-mapping dominant chromosome-2 factors
underlying hybrid male sterility

Using introgressions generated by recombination between the

D. persimilis and D. p. bogotana genomes (see Materials and

Methods), we assessed the effect on hybrid male sterility of four

regions within the chromosome-2 QTL (recombinants 1–4 in

Figure 1: hereafter referred to as Rec 1, Rec 2, etc.), which spans

almost 2 Mb near the centromere. A D. persimilis allele of each of

these regions was introgressed into a D. p. bogotana background

along with a copy of the D. persimilis alleles of Q3 and Q4, as

sterility is manifest only upon co-introgression of all three QTL

[20]. We first assessed the male fertility effects of the recombinant

segments in heterozygous state using flies also heterozygous Q3

and Q4.

Introgression of a D. persimilis segment of approximately 1.5 Mb

(Rec 1 in figure 1) resulted in high (,70%) hybrid male sterility.

However, introgression of an overlapping segment between

0.5 Mb and 0.8 Mb in size (Rec 2 in figure 1) dramatically

decreased the proportion of sterile males to approximately 17%,

suggesting that at least one sterility factor resides between positions

26,680,000 and 27,790,000 of chromosome 2. This factor is

necessary for causing near-complete sterility, as its absence had a

significant effect on the proportion of sterile males (compare Rec 1

to Rec 2 and Rec 3). Furthermore, two smaller but overlapping

introgressions that span the length of recombinant 2 exhibited

,10% male sterility in Rec 3 and no sterility of all males with

recombinant 4. The difference in sterility between Rec 2 and 3 is

suggestive albeit not statistically significant, suggesting the

presence of at least two and potentially three sterility-conferring

loci within the overall Q2 region. At this smaller genomic scale

(within a single autosomal QTL), we still observe multiple factors

contributing to the resultant hybrid male sterility.

A single D. persimilis locus conferring complete hybrid
male sterility when homozygous in a D. p. bogotana
genetic background

Our previous work [20] demonstrated that dominance of hybrid

male sterility alleles can be increased by interactions with

heterozygous alleles at loci on other chromosomes. Further, some

regions showing heterozygous hybrid sterility effects in combina-

tion with other alleles are ‘‘individually sufficient’’ to cause

complete hybrid sterility if made homozygous. To potentially localize

such a sufficient sterility-conferring allele with higher resolution,

we examined one of the smallest of our recombinant regions,

recombinant 3 (hereafter, Rec3), for its homozygous fertility effect.

Like the full Q2 region [20], Rec3 also produces complete hybrid

male sterility when homozygous, even in the absence of the

D. persimilis Q3 and Q4 alleles. However, males heterozygous for

Rec3 but lacking the D. persimilis Q3 and Q4 alleles are fully fertile.

Hence, Rec3 is recessive in its sterility effect when introgressed

alone yet can produce complete hybrid male sterility when

homozygous.

We generated a small recombinant within Rec3 to attempt to

pinpoint one hybrid-sterility-conferring allele’s location (designat-

ed Rec5). We attempted to generate many more recombinants in

this region, and while we identified at least 3 independent ones,

they all spanned exactly the same Rec5 window and are

considered here together. In contrast to Rec3, males homozygous

for Rec5 were fully fertile. Hence, at least one factor causing

homozygous male sterility lies between the right end of Rec5 and

the right end of Rec3 in Figure 1. By further defining the ends of

the Rec3 and Rec5 introgressions, we infer that a D. persimilis

hybrid male sterility allele resides between D. pseudoobscura

assembly [26] positions 27.95 Mb and 28.21 Mb: a region of

under 250 kb. We name this factor ‘‘mule-like.’’

Discussion

In our previous study [20], we showed that hybrid male sterility

between Drosophila persimilis and D. pseudoobscura bogotana results

from highly specific epistasis involving three autosomal QTL

alleles derived from D. persimilis as well as an unknown number of

alleles from D. p. bogotana. Epistasis involving multiple loci leading

to hybrid sterility has been documented before [5,6,7,11,15,27].

However, because few studies have dissected the individual QTL

contributing to hybrid sterility, the minimum number of genetic

factors that underlie this form of intrinsic postzygotic isolation

remains unclear.

By fine-mapping the sterility loci residing within one of these

QTL, we show that the sterility phenotype in this hybridization

results from interactions involving more foreign genetic factors

than previously inferred (a minimum of 4) and that some of these

factors are tightly linked to one another. Further, these four

D. persimilis alleles all contribute to this phenotype along with an

unknown number of D. p. bogotana alleles to cause hybrid male

sterility. Finally, one of these four D. persimilis alleles rests within an

inverted region on chromosome 3 and could therefore easily have

multiple factors contributing to this same interaction. Hence, we

have just begun to understand the complexity associated with

hybrid male sterility, in this system or in general.

Epistasis among foreign alleles at multiple loci causes
hybrid male sterility

To date, only a small number of studies have pinpointed genes

that underlie hybrid male sterility between closely related species.

Most of the examples that exist are restricted to the genus

Drosophila [17,28,29,30] but see [31]. The first gene identified,

OdsH, causes a 50% reduction in fertility in hybrid males when the

Drosophila mauritiana allele is introgressed into a D. simulans genetic

background [15]. For complete sterility, OdsH must be co-

introgressed with other closely linked factors; these factors remain

unidentified. More recently, Phadnis and Orr [29] identified

Overdrive, an X-linked gene that causes both hybrid male sterility

and meiotic drive between the two subspecies (USA and Bogota) of

D. pseudoobscura. However, this gene must interact with at least two

other unidentified X-linked loci from the Bogota subspecies for

significant sterility/drive to occur [6]. Thus, between these two

young subspecies, introgression of multiple heterospecific loci

appears necessary for hybrid male sterility, just as we observed for

the D. p. bogotana and D. persimilis hybridization.

However, cointrogression of foreign alleles does not appear to

be universally necessary for hybrid male sterility. Using the

D. simulans and D. mauritiana, Tao et al. [17] identified one region

on the 3rd chromosome (tmy) capable of causing significant sterility

when introgressed on its own.

Beyond just the numbers of alleles contributing to hybrid

sterility, some researchers have suggested that hybrid male sterility

often may be caused by alleles at closely linked loci. For example,

OdsH itself had minimal effect on fertility unless a proximal region

on the X-chromosome of D. mauritiana was co-introgressed with

OdsH into an otherwise D. simulans genetic background [15,32]. In

the D. pseudoobscura species group, the importance of linkage

between heterospecific alleles in causing hybrid male sterility is

unclear and may vary across hybridizations. In the more recent

divergence between the two subspecies of D. pseudoobscura,

close linkage was not observed: Overdrive interacts with loci from

Epistasis and Drosophila Hybrid Male Sterility
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D. p. bogotana on a different chromosome arm to cause sterility in

hybrids [6,29]. However, between the more distantly related

species D. persimilis and D. p. bogotana, multiple closely linked factors

(i.e., within the same QTL region) are needed to cause sterility in

hybrids at least some of the time. (Note that the linked factors

studied here must interact also with each other and with the

factors on other chromosomes for hybrid male sterility to occur.)

Together, these studies and ours here reveal a fundamental gap

in our knowledge of the genetics underlying postzygotic barriers to

gene flow. While the identities, and thus the function, of these

incompatibility genes are becoming available, the nature and

number of interactions among genes that confer these hybrid

dysfunctions remains unknown. Knowledge of the nature of

interactions may provide additional clues to the molecular

underpinnings and evolution of hybrid dysfunction. Addressing

this deficiency is far from trivial, as it requires simultaneous

introgression of, and generating recombinants of, multiple sterility-

conferring QTL regions. The resolution limitations imposed by

the simple mapping techniques generally employed places us just

at the tip of the iceberg.

A fine-mapped sterility-conferring allele from D. persimilis
We have pinpointed the location of a D. persimilis allele

conferring hybrid male sterility when homozygous in a D. p. bogotana

genetic background. This region (Rec3 in Figure 1) extends just

over 500 kilobases. We further identified a recombinant of that

region (Rec5) that does not produce sterility when homozygous.

We can infer that at least one locus necessary for homozygous

hybrid male sterility (‘‘mule-like’’) resides in the region covered by

Rec3 but not Rec5- a region of approximately 250 kilobases.

Given the small size, this could be a single locus ‘‘sufficient’’ to

cause complete hybrid male sterility in a foreign background, but

we cannot rule out that one or more factors within Rec5 are also

required. Further, we cannot rule out until this factor is isolated

that it arose by spontaneous mutation and is not found in naturally

occurring D. persimilis. We are continuing to dissect the Rec3

window to define the exact position of mule-like.

We emphasize that we still know nothing of the interactions

involved in causing hybrid male sterility. The D. persimilis allele at

mule-like may interact with a great many alleles at D. p. bogotana loci.

Further, while we infer mule-like to be a single gene, our results

showing extensive interactions among closely linked loci leading to

sterility may apply to homozygous introgressions as well. As with

much research in speciation genetics, each step forward in data

collection is accompanied by a much smaller step forward in

understanding the underlying complexity.

Supporting Information

Table S1 Raw data from sterility assays and microsatellite

primer sequences used for genotyping.

Found at: doi:10.1371/journal.pone.0015377.s001 (XLS)
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