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Abstract
Background: Although artificial insemination (AI) technique is an established biotech-
nology for bovine reproduction, the results of AI (conception rates) have a tendency to 
decline gradually. To our annoyance, moreover, AI-subfertile bulls have been occa-
sionally found in the AI centers. To resolve these serious problems, it is necessary to 
control the sperm quality more strictly by the examinations of sperm molecules.
Methods: We reviewed a number of recent articles regarding potentials of bovine 
sperm proteins as the biomarkers for bull AI-subfertility and also showed our unpub-
lished supplemental data on the bull AI-subfertility associated proteins.
Main findings: Bull AI-subfertility is caused by the deficiency or dysfunctions of vari-
ous molecules including regulatory proteins of ATP synthesis, acrosomal proteins, nu-
clear proteins, capacitation-related proteins and seminal plasma proteins.
Conclusion: In order to control the bovine sperm quality more strictly by the molecular 
examinations, it is necessary to select suitable sperm protein biomarkers for the male 
reproductive problems which happen in the AI centers.
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1  | INTRODUCTION

In mammals, including the human, male infertility and subfertility 
are due to defects in testicular spermatogenesis, epididymal sperm 
maturation, sperm transportation through the male reproductive 
tract, functions of the sperm molecules or other functions of the 
male reproductive organs. Males with one of these dysfunctions suf-
fer from obstructive azoospermia, non-obstructive azoospermia, 
oligozoospermia, varicocele, asthenospermia, absent vas deferens, 
pyospermia, retrograde ejaculation, erectile dysfunction, or other dis-
eases.1–5 In the human, infertile men can undergo medical treatments 
with conventional and advanced biotechnologies, including artificial 

insemination (AI) by husband, conventional in vitro fertilization (IVF), 
intra-cytoplasmic sperm injection (ICSI), and micro-testicular sperm 
extraction.6–12 Henceforth, it might become important to argue that 
the use of novel findings and techniques (for instance, in vitro genera-
tion of male germ cells and gene therapy) in assisted reproductive tech-
nology should be used to overcome male infertility or subfertility.13–17

Meanwhile, the infertile or subfertile males in cattle rarely undergo 
these treatments, are not selected as sires for animal production, and 
are finally culled.18 However, there is a history that conventional bio-
technologies were originally devised to improve the efficiency of bo-
vine production in farms and subsequently they were applied to the 
clinical treatment of infertile humans. For example, it was discovered 
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that glycerol works well as a cryoprotectant in the semen extender 
and cryopreservation techniques were established for bull spermato-
zoa.19 Since this breakthrough, the AI technique with cryopreserved 
spermatozoa has been used intensively for the production of bovine 
offspring in many countries and has made a large contribution to the 
industrial development of bovine production. In Japan, this repro-
ductive technique is essential for the wide use of high-performance 
sires and it has enabled the production of a large number of bovine 
offspring with excellent genetic traits. Moreover, it has allowed a de-
crease in the number of sires and the cutting of costs for the feeding 
and transportation of sires. For several decades, bovine reproduction 
generally has been conducted by using the AI technique with cryopre-
served spermatozoa.

In cattle, high-grade ejaculates (which are collected from the sires 
with excellent genetic traits and then which completely pass the ex-
amination of general characteristics [volume, color, and pH of the 
semen and concentration, motility, morphology, and acrosome integ-
rity of the spermatozoa]) usually are used for the production of cryo-
preserved spermatozoa. In brief, the ejaculates are diluted with the 
extender and slowly cooled to 4-5°C. Next, they are further diluted 
with the cold extender containing glycerol, pulled into the straws, rap-
idly frozen in the gas that evaporates from the liquid nitrogen, and 
then stocked in the liquid nitrogen. Dozens-to-several hundreds of 
semen straws are produced from one ejaculate. Before use for AI, 
several testing straws are rapidly thawed in warm water and frozen-
thawed spermatozoa are used for the motility assessment to examine 
the sperm’s tolerance to cryopreservation (freezability). The straws 
with the same lot number as the testing straws that passed this final 
examination are preserved in the liquid nitrogen until use for AI. When 
a cow becomes in an optimum condition of the estrus cycle for AI, 
one of the cryopreserved straws is thawed and subsequently frozen-
thawed spermatozoa are injected into the uterine body of the cow. 
Thus, only the cryopreserved spermatozoa with excellent genetic 
traits and good motility are actually used for AI in cattle. However, the 
conception rates in bovine AI programs have been gradually declin-
ing in Japan and other countries for the last 20 years.20,21 Moreover, 
there are large variations in the AI results (conception rates) among 
individual bulls22 and especially the AI-subfertile bulls (males with low 
AI results) that are found occasionally in farms.23–26 For the purpose 
of resolving these severe problems, various efforts have been made 
to determine the relationship between hormones and male reproduc-
tive traits and to predict the AI fertility of bulls by the examination of 
sperm characteristics.18,27 For instance, many previous reports26,28–31 
showed that conventional examinations of the plasma membrane, mo-
tility, morphology, and acrosome in cryopreserved spermatozoa could 
be fairly contributive to the evaluation of sperm quality and predic-
tion of bull AI fertility. In addition, there is an interesting report that 
implies that bull spermatozoa with a morphologically abnormal head 
are less capable of swimming up to the ampulla of the oviduct than 
morphologically normal spermatozoa, but that the spermatozoa with 
vacuoles in the head can reach oocytes in vivo, as well as morpholog-
ically normal spermatozoa.32 For examinations of the sperm genome 
for the prediction of bull AI fertility, the sperm chromatin structure 

assay with acridine orange staining,33,34 evaluation of DNA damage 
by the terminal deoxynucleotidyl transferase-mediated dUTP nick end 
labeling (TUNEL) assay,35 and sperm DNA methylation analyses36 are 
available for cattle. Moreover, one of the well-working assays is the 
superovulation/AI embryo-collection test, which was designed for 
Japanese Black cattle by Fukushima et al. Detailed methods of this 
test are shown in the authors’ previous report.26 However, it is neces-
sary to devise new examinations of sperm molecular characteristics in 
order to evaluate bull AI fertility exactly in a short time. In this review, 
the potential of bovine sperm proteins as the biomarkers for bull AI 
subfertility is described. Moreover, unpublished supplemental data 
also are shown on the bull AI subfertility-associated proteins that are 
currently under the authors’ investigation.

2  | SPERM PROTEOMICS

In order to screen for the protein biomarkers of male AI fertility, 
detergent-extracted proteins of bovine spermatozoa were compared 
by proteomic analysis between bulls with different AI fertility rates. 
A study showed the proteome profiles of spermatozoa from high-
AI-fertile (3569 kinds of proteins) and low-AI-fertile (3799 kinds of 
proteins) bulls (Holstein) and reported that 51 and 74 sperm proteins 
were included more largely in the spermatozoa from the bulls with 
higher and lower AI fertility rates, respectively.37 Further analyses 
that used GO slim and ingenuity pathway analysis indicated that the 
former proteins were probably functional in energy metabolism, cel-
lular movement, cellular interaction, the cell cycle, or spermatogen-
esis and that the latter proteins might be involved in cell death or 
reproductive system disease. Specifically, the epidermal growth factor 
signaling cascade, platelet-derived growth factor signaling cascade, 
oxidative phosphorylation pathway, and pyruvate metabolism path-
way were prominent in the spermatozoa from the bulls with higher AI 
fertility rates. In the spermatozoa from the bulls with lower AI fertility 
rates, the signaling cascades for the cell cycle (G2/M) DNA damage 
check point regulation and apoptosis tended to be more functional.37

In another proteomic analysis, adenylate kinase isoenzyme 1 (AK1) 
and phosphatidylethanolamine-binding protein 1 (PEBP1) were de-
tected abundantly in the spermatozoa from the bulls (Holstein) with 
higher AI fertility rates.38 In contrast, the T-complex protein 1 sub-
units ε and θ (CCT5 and CCT8), epididymal sperm-binding protein E12 
(ELSPBP1), proteasome subunit α type-6, and binder of sperm 1 (BSP1) 
were predominately abundant in the spermatozoa from the bulls with 
lower AI fertility rates. The results regarding AK1, PEBP1, ELSPBP1, 
and BSP1 were confirmed by Western blotting analyses. Moreover, 
the relationship between the AI fertility rates and the abundance of 
these proteins was analyzed by using the linear regression model. This 
model established that CCT5 and AK1 explained a significant propor-
tion of the variation in the AI fertility rates.

The third report showed that five proteins (enolase 1 [ENO1, α-
ENO], adenosine triphosphate [ATP] synthase H+ transporting mito-
chondrial F1 complex β subunit, apoptosis-stimulating of p53 protein 
2, α-2-HS-glycoprotein, and phospholipid hydroperoxide glutathione 
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peroxide) and three proteins (voltage-dependent anion channel 2 
[VDAC2], ropporin-1, and ubiquinol-cytochrome-c reductase complex 
core protein 2 [UQCRC2]) were more largely included in the sperma-
tozoa from the bulls (Hanwoo; Korean native cattle) with higher and 
lower AI fertility rates, respectively.39 Among these proteins, ENO1, 
VDAC2, and UQCRC2 were significantly correlated with individual 
AI fertility rates. According to the another report,40 moreover, sperm 
ENO1 was down-regulated in the lower-AI-fertile bulls.

All of these reports suggest that ATP synthesis-related molecules 
are more largely included in the spermatozoa from bulls with higher AI 
fertility rates. This suggestion is supported by the observation that the 
measurement of total ATP formation in bull cryopreserved spermato-
zoa has been positively correlated with the results of AI.41 These indi-
cate that the lower activity of the sperm pathways for ATP synthesis 
is one of the causal factors of bull AI subfertility. The ATP is indispens-
able for the initiation, regulation, and maintenance of the progressive 
motility of bull spermatozoa, which is required for successful AI.42–46 
Thus, it is important to conduct an objective investigation of the mo-
tility of bull cryopreserved spermatozoa before use in AI with a micro-
scopic image recorder or computer-associated sperm analyzer.30,31,47

3  | ACROSOMAL PROTEINS

The mammalian spermatozoon is composed of a head and a flagel-
lum that are connected with each other at the neck.48 As mentioned 
above, bull AI subfertility that is caused by dysfunctions of ATP 
synthesis-related pathways in the sperm flagellum is probably detect-
able by an objective examination of the progressive motility of the 
cryopreserved spermatozoa. However, the authors’ question is why 
AI-subfertile bulls are found occasionally on farms where only cryo-
preserved spermatozoa with good motility are used for AI. Thus, the 
focus has been on the examination of the acrosomal proteins of the 
sperm head.

The sperm head is divided into the acrosomal and postacrosomal 
regions; furthermore, the acrosomal region is subdivided into the mar-
ginal, principal, and equatorial segments.48 The equatorial segment 
contains a unique compartment called the “equatorial subsegment.”49 
The bovine spermatozoon with the spatulate shape (like a Japanese 
rigid fan) possesses a relatively larger acrosomal principal segment 
and a smaller equatorial segment, compared with the mouse sper-
matozoon with the falciform (falx-like) shape.48 However, the triple-
membrane structures (plasma, outer-acrosomal, and inner-acrosomal 
membranes) and protein components in the acrosomal regions are 
conserved among many species of mammals.48,50 In this section, the 
authors’ data regarding bovine sperm acrosomal proteins, which are 
potentially bull AI-subfertility biomarkers, are shown.

3.1 | Acrosomal tyrosine-phosphorylated proteins

The tyrosine-phosphorylated proteins of the sperm head of 
bulls (Japanese Black cattle) are localized mainly in the acroso-
mal principal segment and equatorial subsegment.25 One of the 

tyrosine-phosphorylated proteins is a sperm acrosome-associated 1 
(SPACA1) protein in boar spermatozoa.51,52 This also was observed 
in bull (Japanese Black cattle) spermatozoa by the double-staining 
(upper sperm head of Fig. 1A) and immunoprecipitation–Western 
blotting (Fig. 1B) with anti-phosphotyrosine (anti-pY) antibody and 
anti-SPACA1 protein antibody. The SPACA1 proteins originally were 
found as human sperm antigens, the “sperm acrosomal membrane-
associated protein 32”, with molecular masses from 32 to 34 kDa 
that were produced restrictedly in the testes.53 In the mouse testis, 
the SPACA1 proteins were shown to play indispensable roles in the 

F IGURE  1  Immunodetection of tyrosine-phosphorylated 
proteins and sperm acrosome-associated 1 (SPACA1) proteins in 
the spermatozoa that were collected from Japanese Black bulls. A, 
Tyrosine-phosphorylated proteins (green fluorescence) and SPACA1 
proteins (red fluorescence) were detected in the cauda epididymal 
spermatozoa by double immunostaining (a representative of six 
replicates). The cauda epididymal spermatozoa were washed with a 
phosphate-buffered saline that contained polyvinyl alcohol (PBS-
PVA) three times, treated with mouse anti-phosphotyrosine (pY) 
monoclonal antibody or guinea pig anti-SPACA1 polyclonal antibody, 
and subsequently with fluorescein isothiocyanate-conjugated 
or tetramethylrhodamine-conjugated secondary antibodies, as 
described previously.25,56 An arrow indicates the distribution of 
the acrosomal tyrosine-phosphorylated proteins in the equatorial 
subsegment. B, A tyrosine-phosphorylated form of the SPACA1 
proteins in the lysates from the ejaculated spermatozoa was detected 
by immunoprecipitation (IP)–Western blotting (WB) (a representative 
of three replicates). The ejaculated spermatozoa were washed with 
PBS-PVA three times and then used for the IP-WB, as described 
previously.25 Ig, immunoglobulin
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acrosomal formation of spermatids during spermiogenesis.54 The au-
thors showed that SPACA1 proteins were produced in bull (Japanese 
Black cattle) testes (Fig. 2A,B) and localized in the acrosomal part of 
the bull spermatids (Fig. 2C), suggesting that the bull SPACA1 pro-
teins could have the same functions in spermiogenesis as the mouse 
SPACA1 proteins. Moreover, the authors observed that the bull 
SPACA1 proteins exhibited changes in their molecular masses and 
were translocated to the acrosomal principal segment during sperm 
transit through the epididymis (Fig. 2D). Likewise, the tyrosine-
phosphorylated proteins were translocated to the acrosomal principal 
segment during bull sperm maturation.55

In the head of bull (Japanese Black cattle) mature spermatozoa, 
the tyrosine-phosphorylated proteins usually were distributed in the 
acrosomal principal segment and the equatorial subsegment (upper 
sperm head of Fig. 1A, normal distribution [mature pattern]) and 
at least an aliquot of them was a 42 kDa tyrosine-phosphorylated 
SPACA1 protein (Fig. 1B). However, some of the bull spermatozoa 
apparently were lacking in these proteins of the acrosomal principal 
segment (lower sperm head of Fig. 1A, abnormal distribution [imma-
ture pattern]25). In the authors’ investigation of 20 bulls,55 their ejac-
ulates had normal general characteristics of spermatozoa (progressive 
motility, morphological normality, and acrosome integrity) but they 
showed large individual variations in the percentages of spermatozoa 
with a normal distribution pattern (mature pattern) of the acrosomal 

tyrosine-phosphorylated proteins of between 4% and 99%. Similar 
results were obtained for the cauda epididymal spermatozoa and 
cryopreserved spermatozoa. Moreover, these indices on the acroso-
mal phosphoproteins of the epididymal, ejaculated, and cryopreserved 
spermatozoa were positively correlated with the conception rates in AI 
and the percentages of cryopreserved spermatozoa with morpholog-
ically normal acrosomes.26,55 These results suggest that a lack of the 
acrosomal phosphoproteins (one of the main components is probably 
the 42 kDa tyrosine-phosphorylated SPACA1 protein) in ejaculated 
spermatozoa with normal general characteristics is linked to bull AI 
subfertility and lower sperm freezability. However, molecular analyses 
of these proteins are required for disclosing how the SPACA1 proteins 
can protect the acrosomes during the cryopreservation process and 
consequently maintain their sperm-fertilizing ability.

According to investigations of human spermatozoa from in-
fertile patients,56 human SPACA1 proteins might not be tyrosine-
phosphorylated, unlike bovine SPACA1 proteins. However, their 
distribution patterns in the acrosomal principal segment are varied 
among human spermatozoa, as with bovine SPACA1 proteins, and 
could be classified into three grades. In the previous experiment, the 
surplus of sperm samples that were prepared for the clinical treat-
ments of conventional IVF were used for the immunostaining of the 
SPACA1 proteins. The spermatozoa were graded according to the dis-
tribution pattern of the SPACA1 proteins and the obtained SPACA1 

F IGURE  2 Detection of sperm acrosome-associated 1 (SPACA1) proteins in the testes, epididymides, and spermatozoa that were collected 
from Japanese Black bulls. A, Bull SPACA1 messenger RNA expression was examined in the testes (T), epididymides (1, central caput; 2, 
distal caput; 3, cauda), and livers (L) by reverse-transcription polymerase chain reaction (PCR), as described previously62 (a representative 
of three replicates). The PCR products were separated in agarose gel containing ethidium bromide. Glycerol-3-phosphate dehydrogenase 
(G3PDH) was amplified as the control in every experiment. B, The SPACA1 proteins were detected in the testes (T, testicular tissue extracts), 
epididymides (1, central caput tissue extracts; 2, distal caput tissue extracts; 3, cauda tissue extracts, and 3S, cauda epididymal sperm extracts) 
by Western blotting (WB) (a representative of three replicates), as described previously.25,62 After the WB, each membrane was stained 
with Coomassie Brilliant Blue G-250 (CBB). C, The SPACA1 proteins were detected in the frozen sections of the paraformaldehyde-fixed 
testes by indirect immunofluorescence (a representative of three replicates). After immunostaining with the anti-SPACA1 protein antibody 
and tetramethylrhodamine-conjugated secondary antibody (red fluorescence), each preparation was counterstained with 4′,6-diamidino-
2-phenylindole (blue fluorescence). The SPACA1 proteins were detected in the early spermatids in the lower photograph and in the late 
spermatids in the upper photograph, but not in the spermatocyte with the asterisk in the upper photograph. D, The distribution patterns of the 
SPACA1 proteins were observed in the immunostained epididymal spermatozoa25,62 and the percentages of the spermatozoa that exhibited a 
mature (normal distribution) pattern of SPACA1 proteins were calculated, as described.55 There were significant differences between the values 
with different letters (P<.05). C-Cap, central caput; D-Cap, distal caput; Cor, corpus; Cau, cauda
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indices were largely varied among the patients by between 13 and 199 
points (full marks: 200 points). These indices were highly correlated 
with the results of conventional IVF (developmental rates of embryos 
to blastocysts), suggesting that the SPACA1 indices could be valid as 
biomarkers that can predict the effectiveness of conventional IVF for 
human infertile patients.

3.2 | IZUMO1

An acrosomal protein, “IZUMO1,”57–59 was discovered in mouse sper-
matozoa as an essential mediator of the interaction and fusion with 
oocytes. This sperm-specific transmembrane protein possesses the 
IZUMO-specific domain and immunoglobulin domain. Further obser-
vations showed that this protein is originally distributed in the acroso-
mal principal segment of mature spermatozoa, is translocated to the 
surface of the equatorial segment during the acrosome reaction,60 and 
that subsequently the IZUMO1 of the equatorial segment binds to 
its receptor “JUNO” of the oocyte plasma membrane in the perivitel-
line space and mediates sperm fusion with the oocyte plasma mem-
brane.61 In the bovine testes (Japanese Black cattle), an ortholog of 
mouse Izumo1 gene was expressed.62 Its translation product (a 52 kDa 
precursor form) was localized along the border between the acrosomal 
principal and equatorial segments and underwent maturation-related 
changes to a 45 kDa form during sperm transit through the epididymis. 
Moreover, multiple staining with anti-IZUMO1 antibody and fluores-
cein isothiocyanate–peanut agglutinin revealed that bovine IZUMO1 
was localized along the border between the acrosomal principal and 
equatorial segments, not merely in freshly ejaculated spermatozoa 
(spermatozoa with intact acrosomes) but also in the spermatozoa that 
were undergoing the acrosome reaction (spermatozoa with severely 
damaged acrosomes), and that it became detectable in the equatorial 
segment in the spermatozoa after the acrosome reaction (spermato-
zoa without acrosomes). This suggests that the accomplishment of the 
acrosome reaction might be necessary for the translocation of bovine 
IZUMO1 to the equatorial segment.

The authors also investigated the acrosome morphology and dis-
tribution pattern of IZUMO1 in ejaculated spermatozoa from 10 bulls 
(Japanese Black cattle) by multiple staining and found that most of the 
spermatozoa possessed a normal acrosome and showed the normal 
distribution pattern of IZUMO1 (along the border between the acro-
somal principal and equatorial segments) in almost all of the samples.62 
Namely, there was no large individual difference in the distribution pat-
terns of IZUMO1 in the ejaculated spermatozoa among bulls. Thus, 
bovine IZUMO1 is unlikely to be a valid biomarker of bull AI subfer-
tility. However, approximately half of the cryopreserved spermatozoa 
with severely damaged acrosomes still showed the normal distribution 
pattern of IZUMO1 and the others possessed IZUMO1 in the equa-
torial segment (like acrosome-reacted spermatozoa) or lost IZUMO1. 
These observations are interpreted as showing the occurrence of 
aberrant translocation and the loss of bovine IZUMO1 in many sper-
matozoa during the process of cryopreservation. It is speculated that 
these defective behaviors of bovine IZUMO1 might reduce the con-
ception rates in the AI program.

4  | NUCLEAR PROTEINS

Mammalian spermatozoa have a mission of transporting the paternal 
haploid genome to the oocytes. For the purpose of protecting the 
sperm genome from damage before fertilization, sperm chromatins 
are hypercondensed. This hypercondensation is made in the process 
of spermiogenesis, during which haploid spermatids are elongated and 
transformed to the spermatozoa in the seminiferous tubules. In the 
nuclei, most of the core histones are substituted transiently by the 
transition proteins and finally by the protamines.63 Many reviews pre-
viously have described the details of the relationship between male 
infertility and epigenetics at the histones and protamines of male 
germ cells.64–68 In this section, information is introduced on bovine 
sperm protamines and their relationship with bull AI subfertility.

4.1 | Protamines

Sperm nuclei contain at least two forms of protamines that are dif-
ferent among species. Protamine 1 is universally detectable in the 
mammalian spermatozoa, while protamine 2 is present in certain pla-
cental mammals, including primates and rodents.69 As bull sperma-
tozoa include only protamine 1, the sperm DNA protamination state 
can be compared among bulls with different AI fertility rates by im-
munodetection of protamine 1 and by the toluidine blue staining of 
the sperm’s remaining histones. Moreover, the DNA fragmentation 
that is associated with histone–protamine transition errors also is de-
tectable by sperm chromatin dispersion tests. In examinations with 
these techniques, one of those showed that the spermatozoa from 
bulls with lower AI fertility rates showed inadequate chromatin pro-
tamination and DNA disintegration at higher rates and suggested that 
the defects in the sperm chromatin condensation is associated with 
the reduction of AI fertility rates.70 Moreover, another study showed 
that the contents of sperm protamines were related closely to the oc-
currence of sperm DNA damage in bulls (Indian cattle) and indicated 
that protamine deficiency might cause the instability and damage of 
sperm DNA, leading to the reduction of bull AI fertility rates.71 Thus, 
the detection of spermatozoa with a lack of protamines is indicative 
of bull AI subfertility. The research regarding Nelore cattle showed 
that the spermatozoa from young bulls had larger head diameters due 
to the lower protamination level and resultant deficiency of chroma-
tin condensation, compared with the spermatozoa from adult bulls.72 
This might account for the cause of unstable results of AI when using 
cryopreserved spermatozoa from young bulls.

5  | CAPACITATION-RELATED PROTEINS

Immediately after ejaculation, mammalian spermatozoa cannot pen-
etrate into the oocytes. They become capable of fertilizing oocytes 
during their stay in the site-specific environment that is produced by 
the female reproductive tract.73,74 This process is termed “capacita-
tion” and was discovered by Chang75 and Austin.76,77 Capacitation 
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includes a variety of physiological changes on the sperm surface and 
in the intracellular space. Specifically, the sperm plasma membrane 
becomes unstable from the release of decapacitation factors during 
the early stage of capacitation.78,79 The intracellular signal transduc-
tion systems gradually become active and promote the increase of 
pHi, protein phosphorylation, and membrane hyperpolarization during 
both the early and the late stages in order to induce the entry of the 
external Ca2+ and release of the internal Ca2+ from the store.80,81 In 
the case of considering Chang’s meaning of capacitation, moreover, it 
is preferable to include the Ca2+-triggered events of hyperactivation 
and acrosome reaction in the capacitation process.82

According to a previous article on a certain breed of beef bull 
(Red Angus cattle),83 male infertility might be caused by a failure to 
complete the sperm capacitation process. It has been believed for a 
long time that the progress of the capacitation process is coincident 
with the increase of tyrosine-phosphorylated proteins in mammals, 
including cattle,84–86 although the detailed functions of the tyrosine-
phosphorylated proteins are poorly understood in the fertilization-
related events of bull spermatozoa.87 This event is regulated pivotally 
by the intracellular cyclic adenosine monophosphate (cAMP) signal-
ing cascades that are composed of the bicarbonate/Ca2+-activated 
adenylyl cyclase (a soluble-type of adenylyl cyclase, ADCY10), pro-
tein kinase A (PKA), protein phosphatases, and protein tyrosine 
kinases.81,88–90 Moreover, various ion channels and pumps play reg-
ulatory roles in the multiple changes during capacitation.91–93 Thus, 
a number of sperm functional proteins are involved in the regulation 
of the capacitation process. In this section, information is introduced 
on the relationship of the capacitation-related proteins with bull AI 
subfertility.

5.1 | ADCY10

A soluble type of adenylyl cyclase, “ADCY10,”94–98 is unique in its 
lack of transmembrane domains, independence of G-protein-coupled 
receptors, and direct stimulation by the interaction with bicarbonate 
and Ca2+, compared with the transmembrane types of the adenylyl 
cyclase, “ADCY1-9.” This isoform is synthesized most abundantly in 
mouse testes as either the 189 kDa full-length form or the 48 kDa 
truncated form from the same Adcy10 gene by alternative splicing. 
Although both forms contain two cyclase domains that catalyze the 
conversion from ATP to cAMP, the specific activity of the truncated 
form is 20-fold higher than that of the full-length form. Moreover, 
manipulation of this gene showed that this enzyme is indispensable in 
the progress of the capacitation process and subsequent successful 
fertilization. For bulls (Japanese Black cattle), the authors showed that 
ADCY10 was distributed in the neck and flagellar principal piece of 
the ejaculated spermatozoa and that both messenger RNAs (mRNAs) 
that coded the full-length and truncated forms were expressed in the 
testes by the alternative splicing of exon 11.99 Interestingly, it also 
was found that the splicing error yielded the other variant of ADCY10, 
with the aberrance in the second cyclase domain by retaining the in-
tronic nucleotides (four bases, CCAG) that connect to the initial part 
of exon 10, and that the incidence rates of this splicing error were 

largely varied among individual bulls by between 0% and 54.5%. The 
authors are concerned that such splicing errors in mRNA coding in 
the important capacitation-regulatory protein might cause bull AI 
subfertility.

5.2 | Na+/K+-ATPase

A model has been proposed for the induction of bull sperm capaci-
tation by the interaction between Na+/K+-ATPase and its inhibitor, 
“ouabain.”100,101 It is likely that the inhibition of the Na+/K+-ATPase 
activity with ouabain promotes an increase of the intracellular Ca2+ (by 
the suppression of the Na+/Ca2+ exchanger activity), PKA activation, 
and tyrosine phosphorylation, leading to capacitation. Moreover, the 
interaction between Na+/K+-ATPase and ouabain might activate the 
extracellular signal-regulated kinases 1/2, phospholipase C, protein 
kinase C and protein tyrosine kinase signaling cascades, leading to 
capacitation. This ion transporter, Na+/K+-ATPase,100,102 is generated 
in the testes and subsequently is localized in the head (postacroso-
mal region) and middle piece of the ejaculated spermatozoa. In the 
experiment in which the testicular temperature was elevated in bulls 
(Holstein) by scrotal insulation,101 its generation was awfully disturbed 
in the testes and its content was largely decreased in the spermatozoa. 
Although the deterioration of the general characteristics (motility and 
morphology) of the ejaculated spermatozoa also was observed in the 
experiment of scrotal insulation, a moderate decrease in the sperm 
contents of Na+/K+-ATPase might cause precocious capacitation in 
the spermatozoa with normal motility and morphology. Moreover, 
there were individual variations in the Na+/K+-ATPase activity of the 
frozen spermatozoa among beef bulls.101 It is expected that a lower 
level of activity of Na+/K+-ATPase is potentially a biomarker for bull AI 
subfertility, owing to the abnormal process of sperm capacitation and 
the consequent failure of fertilization.

6  | SEMINAL PLASMA PROTEINS

At ejaculation, the cauda epididymal spermatozoa are mixed with 
the secretory fluids from the accessary genital glands, including the 
seminal vesicles, prostate, urethral glands and bulbourethral glands. In 
the semen that is collected for cryopreservation, the spermatozoa are 
swimming in the seminal plasma, which contains a variety of proteins 
that is secreted from the epididymides and accessary genital glands 
and that can minimize cryoinjury effects on the sperm viability and 
motility and acrosome integrity.103 In this section, information is in-
troduced regarding the fertility-associated proteins.

6.1 | Fertility-associated proteins

One study discovered the presence of four kinds of fertility-associated 
proteins in bull (Holstein) seminal plasma.104 Two-dimensional elec-
trophoresis showed that osteopontin (55 kDa, pI=4.5)105,106 and 
lipocalin-type prostaglandin D synthase (26 kDa, pI=6.2)107 were more 
abundantly included in the seminal plasma from bulls with higher AI 
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fertility rates. The osteopontin (Ca2+-binding protein) of the seminal 
plasma originates from the epithelial cells of the seminal vesicle and 
ampulla.106 This protein also was detectable in the cauda epididymal 
fluid and the testicular parenchyma homogenates as the 55 kDa form 
and the 25 kDa form, respectively, and was localized as the 35 kDa 
form in the postacrosomal region and middle piece of the ejaculated 
spermatozoa.108 In contrast, the lipocalin-type prostaglandin D syn-
thase was detectable in the elongating spermatids and Sertoli cells of 
the seminiferous tubules, cuboidal epithelial cells of the rete testis and 
efferent ducts, and the epithelial principal cells of the epididymides 
and was localized in the apical ridge of the acrosome on the ejaculated 
spermatozoa.109 In addition, the seminal plasma from the bulls with 
lower AI fertility rates more prominently included two other proteins 
(16 kDa, pI=4.1 and 16 kDa, pI=6.7),104 which might be biomarkers for 
bull AI subfertility.

7  | CONCLUSION

For the purpose of finding out those AI subfertile bulls exactly in a 
short time, it is necessary to evaluate not merely the general char-
acteristics (progressive motility, morphological normality, and acro-
some integrity) but also the molecular characteristics of the protein 
biomarkers in freshly ejaculated and cryopreserved spermatozoa. 
Actually, the authors and their colleagues have been investigating 
the general characteristics and distribution patterns of acrosomal 
tyrosine-phosphorylated proteins (a protein biomarker for bull AI 
subfertility) in freshly ejaculated and cryopreserved spermatozoa 
from most of the sire candidates in the bovine AI center of Hyogo 
Prefecture, Japan.26,55 However, it should be noted that a key point 
is to select suitable protein biomarkers for the sperm problems that 
happen in the AI centers because bull AI subfertility is caused by a 
deficiency or dysfunction of various molecules, including the regula-
tory proteins of ATP synthesis, acrosomal proteins, nuclear proteins, 
capacitation-related proteins, and seminal plasma proteins (Fig. 3). 
In addition, it is emphasized to the readers in the medical field that 
SPACA1 indices are valid as biomarkers that can predict the effective-
ness of conventional IVF for human infertile patients.
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