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ABSTRACT

Background. Hospitalized patients with hypokalemia are heterogeneous and cluster analysis, an unsupervised machine
learning methodology, may discover more precise and specific homogeneous groups within this population of interest.
Our study aimed to cluster patients with hypokalemia at hospital admission using an unsupervised machine learning
approach and assess the mortality risk among these distinct clusters.

Methods. We performed consensus clustering analysis based on demographic information, principal diagnoses,
comorbidities and laboratory data among 4763 hospitalized adult patients with admission serum potassium ≤3.5 mEq/L.
We calculated the standardized mean difference of each variable and used the cutoff of ±0.3 to identify each cluster’s
key features. We assessed the association of the hypokalemia cluster with hospital and 1-year mortality.

Results. Consensus cluster analysis identified three distinct clusters that best represented patients’ baseline
characteristics. Cluster 1 had 1150 (32%) patients, cluster 2 had 1344 (28%) patients and cluster 3 had 1909 (40%) patients.
Based on the standardized difference, patients in cluster 1 were younger, had less comorbidity burden but higher
estimated glomerular filtration rate (eGFR) and higher hemoglobin; patients in cluster 2 were older, more likely to be
admitted for cardiovascular disease and had higher serum sodium and chloride levels but lower eGFR, serum
bicarbonate, strong ion difference (SID) and hemoglobin, while patients in cluster 3 were older, had a greater comorbidity
burden, higher serum bicarbonate and SID but lower serum sodium, chloride and eGFR. Compared with cluster 1, cluster
2 had both higher hospital and 1-year mortality, whereas cluster 3 had higher 1-year mortality but comparable hospital
mortality.

Conclusion. Our study demonstrated the use of consensus clustering analysis in the heterogeneous cohort of
hospitalized hypokalemic patients to characterize their patterns of baseline clinical and laboratory data into three
clinically distinct clusters with different mortality risks.
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INTRODUCTION
Hypokalemia, defined as a serum potassium level ≤3.5 mEq/L,
is a common clinical problem detected in 2–3% of outpatient
encounters [1–3] and up to 21% of hospitalized patients [3–5].
Hypokalemia promotes cardiac arrhythmias by reducing repo-
larization reserve and increasing intracellular Ca2+ in cardiac
myocytes [6]. This effect paradoxically increases the excitabil-
ity of cardiac myocytes, predisposing to ventricular arrhythmias
[6]. Even mild asymptomatic hypokalemia (defined as a serum
potassium of 2.5–3.4 mEq/L) has been associated with adverse
clinical outcomes, including increased cardiovascular events,
hospital mortality and 1-year mortality [1, 4, 7, 8].

Studies have demonstrated that certain subgroups of hospi-
talized hypokalemic patients carry an even greater risk of mor-
tality regardless of cause, such as patients with cardiovascular
diseases (CVDs) or chronic kidney diseases (CKDs) [4, 9]. How-
ever, not all patients with CVD or CKD have similar character-
istics, and there are many important patient-associated factors
and coexisting illnesses that may affect patient survival [10]. Pa-
tients with CVD or CKD are a heterogeneous group with variable
risk associationswith cardiovascular events andmortality. Stud-
ies have demonstrated that machine learning (ML) cluster anal-
ysis may identify meaningful disease subtypes and/or groups
of related phenotypic variables, even in a highly selected group
of patients [11, 12]. Given that hospitalized patients with hy-
pokalemia are heterogeneous [4, 7], cluster analysis, an unsuper-
vised ML methodology, may discover more precise and specific
homogeneous groups within this population of interest [13, 14].
The clustering approach can identify subgroups/clusters of pa-
tients with homogeneous values incorporating all variables, not
just the target variable [15–18]. Thus the utilization of clustering
analysis on a large hospitalized patient cohortwith hypokalemia
may enable us to identify clusters of patients sharing different
phenotypic and clinicopathological features, which may be
associated with different clinical outcomes including mortality.

In this study we aimed to explore the clustering of patients
with hypokalemia on hospital admission and assess themortal-
ity risk among these distinct clusters.

MATERIALS AND METHODS

Patient population

The Mayo Clinic Institutional Review Board approved this study.
We used our hospital’s database to identify all adult pa-
tients (≥18 years) admitted to the Mayo Clinic Hospital from
1 January 2011 to 31 December 2013. If patients had more
than one hospital admission during the study period, we an-
alyzed only the first admission. We included patients who
had hypokalemia at hospital admission. We defined admission
hypokalemia as the first serum potassium measured within
24 hours of hospital admission ≤3.5 mEq/L. We excluded pa-
tients who did not have a serum potassium measurement
within 24 hours of hospital admission and patients who did not
provide research authorization.

Data collection

We abstracted pertinent clinical characteristics and labora-
tory data from our hospital’s electronic database, using a
previously validated method [4, 7, 19, 20]. In brief, the Mayo

Clinic Life Science System database contains demographic
characteristics, hospital admissions information, diagnosis and
procedure codes, laboratory test results and flow sheet data of
inpatients and outpatients. Principal diagnoses were grouped
based on International Classification of Diseases, 9th Revision
(ICD-9) codes at admission (Supplementary data, Table S1). The
Charlson comorbidity index was calculated to determine the
comorbidity burden at the time of admission. The comorbid
conditions were extracted from clinical notes contained within
the electronic medical record using an automated electronic
search algorithm [21]. Glomerular filtration rate (GFR) was
estimated using the Chronic Kidney Disease Epidemiology
Collaboration (CKD-EPI) equation based on age, sex, race and
admission serum creatinine [22]. The anion gap (mEq/L) was cal-
culated by serum sodium-(serum chloride + serum bicarbonate)
[23]. The strong ion difference (SID; mEq/L) was calculated by
(serum sodium + serum potassium)-serum chloride [23].

As our goal was to group hospitalized hypokalemic patients
into clusters based on their hospital admission’s demographic
information, principal diagnoses, comorbidities and laboratory
data, we only utilized data that were available within 24 hours
of hospital admission for clustering analysis. We selected the
first laboratory value within this 24-hour time frame if there
weremultiple measurements.We excluded variables with >20%
missing data. If variables hadmissing data accounting for <20%,
we imputed missing data through multiple imputations using
random forest before their inclusion in clustering analysis.

Clustering analysis

We applied an unsupervised ML approach to develop clinical
phenotypes of hospitalized patients with hypokalemia by con-
ducting unsupervised consensus clustering [13]. We used a pre-
specified subsampling parameter of 80% with 100 iterations and
assigned the number of potential clusters (k) to range from 2
to 10 in order to avoid producing an excessive number of clus-
ters that would not be clinically useful. The optimal number of
clusters was determined by examining the consensus matrix
(CM) heat map, cumulative distribution function (CDF), cluster-
consensus plots in the within-cluster consensus scores and the
proportion of ambiguously clustered pairs (PAC) [24, 25]. The
within-cluster consensus score, ranging between 0 and 1, is de-
fined as the average consensus value for all pairs of individuals
belonging to the same cluster [25]. A value closer to 1 indicates
better cluster stability [25]. PAC, ranging between 0 and 1, is cal-
culated as the proportion of all sample pairs with consensus val-
ues falling within the predetermined boundaries [24]. A value
closer to 0 indicates better cluster stability [24]. We calculated
the PAC using two criteria: the strict criteria consisting of a pre-
determined boundary of (0, 1), where a pair of individuals who
had a consensus value >0 or <1 was considered ambiguously
clustered, and the relaxed criteria consisting of a predetermined
boundary of (0.1, 0.9), where a pair of individuals who had a con-
sensus value>0.1 or<0.9was considered ambiguously clustered
[24]. This study’s detailed consensus cluster algorithms are pro-
vided in the online supplementary data.

Statistical analysis

After cluster identification, we performed analyses to ex-
plore differences among the clusters. We tested differences in
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FIGURE 1: (A) CDF plot displaying consensus distributions for each number of clusters (k). (B) Delta area plot reflecting the relative changes in the area under the CDF
curve. (C) Consensus matrix heat map depicting consensus values on a white to blue color scale of each cluster. The square demonstrates largest changes in area

occurred between k = 3 and k = 4.

baseline characteristics among the identified clusters using the
analysis of variance (ANOVA) test for continuous variables and
chi-squared test for categorical variables. To examine cluster
profiles, we calculated and graphically displayed the standard-
ized mean differences of baseline characteristics between each
cluster and the overall population.We considered variables with
an absolute standardized mean difference >0.3 as key features
for each cluster. We hypothesized that valid, clinically distinct
clusters would havemeasurable differences in outcomes. Hence
we compared hospital mortality and 1-year mortality as out-
comes of interest across the clusters. We also examined the
association of clusters with hospital mortality using logistic
regression and 1-year mortality using Cox proportional haz-
ards regression. We used cluster 1 as the reference group for

outcome comparison, as this cluster was associated with the
lowest mortality. We did not adjust for between-group differ-
ences in baseline characteristics because these variables were
used to develop the clusters through unsupervised ML. We per-
formed all analyses using R version 4.0.3 (RStudio, Boston, MA;
http://www.rstudio.com/), with the packages of ConsensusClus-
terPlus (version 1.46.0) [25] for consensus clustering analysis and
the missForest package for missing data imputation [26].

RESULTS

There were 147 358 hospital admissions during the study pe-
riod. Of these, 31110 were excluded due to no admission serum
potassium and 39552 due to readmission. As such, there were

http://www.rstudio.com/
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FIGURE 2: (A) The bar plot represents the mean consensus score for different numbers of clusters (k ranges from 2 to 10). (B) The PAC values using the strict criteria (red
line) with the predetermined boundary of (0, 1) and the PAC values using the relaxed criteria (black line) with the predetermined boundary of (0.1, 0.9) as the definition

for ambiguously clustered pairs.

76696 unique hospitalized patients with available admission
serum potassium. We included a total of 4763 hospitalized
patients with admission hypokalemia. The mean age was
60 ± 19 years and 39% were male. The mean estimated GFR
(eGFR) was 80 ± 24mL/min/1.73m2 and 19% had CKD. Themean
admission serum potassium was 3.2 ± 0.3 mEq/L.

The CDF plot displayed consensus distributions for each
potassium level (Figure 1A). The delta area plot shows the rel-
ative change in the area under the CDF curve (Figure 1B). The
largest changes in area occurred between k = 3 and k = 4, at
which point the relative increase in area became noticeably
smaller.As shown in the CMheatmap (Figure 1C; supplementary
data, Figures S1–S9), the ML algorithm identified cluster 2 and
cluster 3 with clear boundaries, indicating good cluster stability
over repeated iterations. The mean cluster-consensus score was
comparable between the scenario 2 and 3 clusters (Figure 2A).
Favorable low PACs by both strict and relaxed criteria were
demonstrated for three clusters (Figure 2B). Thus, using base-

line variables at hospital admission, the consensus clustering
analysis identified three clusters that best represented the data
pattern of our hospitalized hypokalemic patients.

Cluster 1 had 1150 (32%) patients, cluster 2 had 1344 (28%)
patients and cluster 3 had 1909 (40%) patients. Table 1 shows
the baseline characteristics of the three identified clusters.
The distribution of all baseline variables was significantly dif-
ferent between the three clusters. Of note, the mean admis-
sion serum potassium was numerically comparable across the
three clusters {3.2 [standard deviation (SD) 0.2], 3.1 [SD 0.3]
and 3.2 [SD 0.3] mEq/L for cluster 1, 2 and 3 respectively}, al-
though there was a statistically significant difference (P < 0.001).
Figure 3 shows the plot of the standardized mean difference
to visualize the key features for each cluster. Cluster 1 pa-
tients were younger, with a lower comorbidity burden and a
higher eGFR and hemoglobin. Cluster 2 patients were older,
more likely to be admitted for cardiovascular diagnosis and had
higher serum sodium and chloride levels but lower eGFR, serum



Subtyping admission hypokalemia 257

Table 1. Clinical characteristics at hospital admission according to clusters in hospitalized patients with hypokalemia

Patient characteristics Overall (n = 4763) Cluster 1 (n = 1510) Cluster 2 (n = 1344) Cluster 3 (n = 1909) P-value

Age (years), mean ± SD 59.9 ± 18.7 40.9 ± 13.4 66.8 ± 14.0 70.0 ± 13.1 <0.001
Male sex, n (%) 1880 (39) 659 (44) 498 (37) 723 (38) <0.001
Race, n (%) <0.001

White 4308 (90) 1262 (84) 1244 (93) 1802 (94)
Black 142 (3) 94 (6) 23 (2) 25 (1)
Others 313 (7) 154 (10) 77 (6) 82 (4)

BMI (kg/m2), mean ± SD 28.5 ± 7.3 27.5 ± 7.0 28.5 ± 6.5 29.3 ± 7.9 <0.001
Principal diagnosis, n (%) <0.001

Cardiovascular 993 (21) 137 (9) 484 (36) 372 (19)
Endocrine/metabolic 227 (5) 58 (4) 39 (3) 130 (7)
Gastrointestinal 628 (13) 204 (14) 134 (10) 290 (15)
Kidney and urinary 142 (3) 37 (2) 33 (2) 72 (4)
Hematology/oncology 413 (9) 73 (5) 150 (11) 190 (10)
Infectious disease 337 (7) 114 (8) 96 (70) 127 (7)
Respiratory 242 (5) 65 (4) 39 (3) 138 (7)
Injury/poisoning 852 (18) 428 (28) 191 (14) 233 (12)
Other 929 (20) 394 (26) 178 (13) 357 (19)

Charlson comorbidity score, mean ± SD 1.7 ± 2.4 0.6 ± 1.2 1.9 ± 2.4 2.5 ± 2.7 <0.001
Comorbidities, n (%)

Coronary artery disease 277 (6) 26 (2) 94 (7) 157 (8) <0.001
Congestive heart failure 358 (8) 29 (2) 127 (9) 202 (11) <0.001
Peripheral vascular disease 133 (3) 2 (0.1) 46 (3) 85 (4) <0.001
Dementia 68 (1) 1 (0.1) 22 (2) 45 (2) <0.001
Stroke 378 (8) 16 (1) 117 (9) 245 (13) <0.001
COPD 399 (8) 31 (2) 101 (8) 267 (14) <0.001
Diabetes mellitus 823 (17) 86 (6) 281 (21) 456 (24) <0.001
Cirrhosis 150 (3) 32 (2) 51 (4) 67 (4) 0.02
Chronic kidney disease 894 (19) 7 (0.5) 387 (29) 500 (26) <0.001
End-stage kidney disease 120 (3) 7 (0.5) 51 (4) 62 (3) <0.001

Laboratory tests, mean ± SD
eGFR (mL/min/1.73 m2) 80 ± 24 102 ± 16 69 ± 19 69 ± 19 <0.001
Sodium (mEq/L) 138 ± 5 138 ± 4 140 ± 4 136 ± 6 <0.001
Potassium (mEq/L) 3.2 ± 0.3 3.2 ± 0.2 3.1 ± 0.3 3.2 ± 0.3 <0.001
Chloride (mEq/L) 102 ± 7 103 ± 5 109 ± 5 97 ± 6 <0.001
Bicarbonate (mEq/L) 25 ± 5 24 ± 4 22 ± 4 28 ± 4 <0.001
Anion gap (mEq/L) 10 ± 4 11 ± 4 9 ± 4 11 ± 4 <0.001
Strong ion difference (mEq/L) 38.4 ± 5.0 37.6 ± 3.5 34.6 ± 4.4 41.8 ± 4.2 <0.001
Hemoglobin (g/dL) 12.0 ± 2.2 12.8 ± 2.1 10.7 ± 2.0 12.3 ± 2.1 <0.001

COPD, chronic obstructive pulmonary disease; BMI, body mass index.

bicarbonate, SID and hemoglobin. Cluster 3 patients were older,
had a higher comorbidity burden, serum bicarbonate and SID
but lower serum sodium, chloride and eGFR.

Hospital mortality was 1.9% for cluster 1, 4.2% for cluster 2
and 2.3% for cluster 3 (P < 0.001) (Figure 4A). Cluster 2 {odds ratio
[OR] 2.34 [95% confidence interval (CI) 1.48–3.71]}, but not clus-
ter 3, was significantly associated with higher hospital mortality
compared with cluster 1 (Table 2). One-year mortality was 8.0%
for cluster 1, 21.4% for cluster 2 and 21.9% for cluster 3 (P < 0.001)
(Figure 4B). Both cluster 2 [OR 2.87 (95% CI 2.24–3.67)] and cluster
3 [OR 2.94 (95% CI 2.33–3.71)] were significantly associated with
increased 1-year mortality compared with cluster 1 (Table 2).

DISCUSSION

In this study we divided hospitalized patients with hypokalemia
into three distinct subgroups by applying unsupervised consen-
sus clustering analysis. This resulted in identification of differ-
ent phenotypic features and prognostic differentiation, includ-
ing hospital mortality and 1-year mortality. Hospital mortality
and 1-year mortality varied among the clusters: 1.9% and 8.0%

in cluster 1, 4.2% and 21.4% in cluster 2 and 2.3% and 21.9% in
cluster 3, respectively.

The practice of medicine is advancing to more personalized
care. ML methods, such as cluster analysis, offer the ability to
more efficiently analyze large volumes of data to identify and
classify groups of patients based on phenotypic features, thus
allowing the development of targeted interventions to improve
patient outcomes. In this study we successfully demonstrated
the ability to identify clinically important groupings by unsuper-
vised ML consensus clustering, whichmay have potential impli-
cations for the management of hospitalized patients with hy-
pokalemia.

Hypokalemic patients in cluster 2 had the highest in-hospital
mortality among the three groups. Furthermore, patients in this
group also had reduced 1-year survival when compared with
cluster 1. Characteristics of hypokalemic patients in cluster 2
included older age, principal diagnosis of CVD, anemia, reduced
GFR, hyperchloremic metabolic acidosis and hypernatremia
(Figure 3). Previous studies with traditional statistics have
demonstrated that hypokalemia is associated with increased
risks of in-hospital mortality, ventricular arrhythmias and
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FIGURE 3: The standardized differences across three clusters for each of the baseline parameters. The x axis is the standardized differences value and the y axis shows

baseline parameters. The dashed vertical lines represent the standardized differences cutoffs of <−0.3 and >0.3. AG, anion gap; BMI, body mass index; Cl, chloride;
CHF, congestive heart failure; COPD, chronic obstructive pulmonary disease; CVA, cerebrovascular accident; DM, diabetes mellitus; ESKD, end-stage kidney disease; GI,
gastrointestinal; Hb, hemoglobin; ID, infectious disease; HCO3, bicarbonate; K, potassium; MI, myocardial infarction; Na, sodium; PVD, peripheral vascular disease.

cardiac arrest, especially among CVD and CKD patient pop-
ulations [4, 7, 27–32]. In addition to CKD and CVD, additional
phenotypic features of patients in cluster 2 included anemia,
hyperchloremic metabolic acidosis and hypernatremia. Given
that patients with these phenotypes carried higher in-patient
and 1-year mortality, future studies are needed to identify
strategies to identify those at risk to improve outcomes among
this patient population.

Cluster 3 consists of older patients with a high comorbidi-
ties burden and an eGFR that falls between cluster 1 and clus-
ter 2. These patients also had high SID (increased HCO3

− or
decreased H+), which usually occurs in the settings of serum
chloride loss or serum sodium gain. Since serum sodium in
this cluster is lower than in other clusters, these hypokalemic
patients in cluster 3 likely had phenotypes of metabolic al-
kalosis with chloride depletion. This phenotype of metabolic
alkalosis with chloride depletion was not identified in the other
clusters. Clinically this is often observed in the setting of vom-
iting/nasogastric suction, bulimia, chloruretic effect of diuretics

and post-hypercapnic state [33, 34].Despite not reaching statisti-
cal significance, patients in cluster 3 had a higher hospital mor-
tality rate compared with patients in cluster 1 (which is com-
prised of younger adult patients with the lowest comorbidities
burden and highest eGFR among the three clusters). These pa-
tients in cluster 3 had reduced 1-year survival compared with
patients in cluster 1, but comparable to that of patients in cluster
2. Thus hypokalemic patients with phenotypic features of clus-
ter 3 may require close post-hospitalization follow-up to reduce
1-year mortality risk.

There were some limitations to our current study. First,
although we used a large dataset, the data from our study are
from a single center. Hence the clustering may be unique to
our patient population (which is predominantly non-Hispanic
white). Second, we performed ML clustering at the time of
hospital admission. The workup for hypokalemic patients
in the outpatient setting or throughout their hospitalization
may include studies that evaluate for potassium transcellular
shifts versus urinary loss versus gastrointestinal loss. This
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FIGURE 4: (A) Hospital mortality among different clusters of admission hypokalemia. (B) One-year mortality among different clusters of admission hypokalemia.

Table 2. Mortality outcomes according to clusters

Cluster Hospital mortality, % OR (95% CI) 1-year mortality, % HR (95% CI)

1 1.9 1 (ref) 8.0 1 (ref)
2 4.2 2.34 (1.48–3.71) 21.4 2.87 (2.24–3.67)
3 2.3 1.25 (0.77–2.02) 21.9 2.94 (2.33–3.71)

HR, hazard ratio.

testing includes, but is not limited to, plasma aldosterone and
renin levels, serum magnesium and calcium levels, spot urine
samples for the ratio of urine potassium to urine creatinine or
urinary chloride and 24-hour urine studies [35, 36]. Given that
these laboratory investigations were not commonly performed
on admission (even serum magnesium levels were missing

in >20% of patients), these data were limited and thus were
not included in our ML clustering algorithm. However, our
clustering approach at the time of hospital admission may
provide potential implications for the early management of
hospitalized patients with distinct phenotypes of hypokalemia.
Lastly, data on electrocardiograms and medications that are
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common causes of hypokalemia, such as thiazide and loop
diuretics, were limited in our database. Thus future studies are
needed to assess whether these variables could have improved
the discriminatory ability of the groupings we identified.

In summary, we present the first clustering analysis of
hospitalized patients with hypokalemia performed to date.
The findings of our study allow selection of phenotypic and
clinicopathological features in three unique clusters that may
be of consequence for the development of hypokalemia and its
associated survival outcomes. Cluster 2 identified hypokalemic
patients with a phenotype of older age, principal diagnosis of
CVD, anemia, reduced GFR, hyperchloremic metabolic acidosis
and hypernatremia that had increased in-hospital and 1-year
mortality. Patients in cluster 3 had higher 1-year mortality but
comparable hospital mortality compared with cluster 1. These
findingsmay potentially help classify hospitalized patients with
hypokalemia on admission, thus translating to an improved
personalized precision medicine approach.
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