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Abstract
RNA editing is one of the post- or co-transcriptional processes that can lead to amino acid

substitutions in protein sequences, alternative pre-mRNA splicing, and changes in gene

expression levels. Although several methods have been suggested to identify RNA editing

sites, there remains challenges to be addressed in distinguishing true RNA editing sites

from its counterparts on genome and technical artifacts. In addition, there lacks a software

framework to identify and visualize potential RNA editing sites. Here, we presented a soft-

ware − ‘RED’ (RNA Editing sites Detector) − for the identification of RNA editing sites by

integrating multiple rule-based and statistical filters. The potential RNA editing sites can be

visualized at the genome and the site levels by graphical user interface (GUI). To improve

performance, we used MySQL database management system (DBMS) for high-throughput

data storage and query. We demonstrated the validity and utility of RED by identifying the

presence and absence of C!U RNA-editing sites experimentally validated, in comparison

with REDItools, a command line tool to perform high-throughput investigation of RNA edit-

ing. In an analysis of a sample data-set with 28 experimentally validated C!U RNA editing

sites, RED had sensitivity and specificity of 0.64 and 0.5. In comparison, REDItools had a

better sensitivity (0.75) but similar specificity (0.5). RED is an easy-to-use, platform-inde-

pendent Java-based software, and can be applied to RNA-seq data without or with DNA

sequencing data. The package is freely available under the GPLv3 license at http://github.

com/REDetector/RED or https://sourceforge.net/projects/redetector.

Introduction
RNA editing is one of the post- or co-transcriptional processes with modification of RNA
nucleotides from their genome-encoded sequence [1]. In humans, the major types of RNA
editing are adenosines to inosines (A!I editing) and cytidine to uracil (C!U), mediated by
ADAR enzymes and APOBEC1 cytidine deaminase. Since I and U are interpreted as guanosine
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(G) and thymine (T) during splicing and translation, these changes in protein-coding
sequences may lead to codon changes, and thus alter functional properties of the proteins [2].
In addition, RNA editing in the introns can affect alternative splicing, and hyper-editing of
untranslated regions (UTRs) can lead to retention of mRNA inside the nucleus.

RNA editing has been linked to a wide range of human diseases, including cancer, neurolog-
ical disorders, metabolic diseases, viral infection, and autoimmune disorder [3]. Paz-Yaacov
et al. [4] suggested that A!I RNA editing may serve as an additional epigenetic mechanism
relevant to cancer development and progression. In a recent report, Chen et al. [5] found that
an A!I RNA editing of AZIN1, leading to a non-synonymous substitution (ser367gly) of
AZIN1, is increased in hepatocellular carcinoma specimens. It was noted that the frequency of
AZIN1 RNA editing increases during progression from cirrhosis and primary liver cancer to
advanced hepatocellular carcinoma with recurrence and metastasis [5]. The edited form of
AZIN1 has a stronger affinity to antizyme, and the resultant higher AZIN1 stability promotes
cell proliferation. Sharma et al. [6] identified transcripts of hundreds of genes undergoing site-
specific C!U RNA editing in monocytes in response to hypoxia and interferons.

The events of RNA editing can be detected by target-specific RNA sequencing, comparison
of genomic DNA with RNA [7], and transcriptome sequencing (RNA-seq) [8, 9]. With the
advent of next-generation sequencing, a comprehensive set of several hundred human RNA
editing sites has been detected by comparing genomic DNA with RNA from seven tissues of a
single individual [10]. Using RNA-seq data alone from multiple samples, RNA editing sites can
be called with high confidence [11]. However, there still remains challenges in identifying RNA
editing sites at the genome scale in that true RNA editing sites need to be discriminated from
its counterparts on genome, as well as technical artifacts (e.g., sequencing or read-mapping
errors) [12, 13].

Several tools have been designed to detect high throughput RNA editing sites. Picardi and
Pesole [14] provided a suite of python scripts in ‘REDItools’ to investigate RNA editing using
next-generation sequencing data. REDItools was a command line tool and included several fea-
tures: it requires input in binary sequence alignment/map (BAM) format, detects RNA editing
candidates by comparing pre-aligned RNA-seq and DNA sequencing reads, explores the RNA
editing potential of RNA-seq experiments by looking at known events, and performs the de
novo detection of RNA editing candidates using only RNA-seq data. Distefano et al. [15] pre-
sented a web-based tool of ‘VIRGO’ that maps A!Gmismatches between genomic and
expression sequence tag sequences as candidate A!I editing sites. The rddChecker (http://ccb.
jhu.edu/software/rddChecker/) program is a Perl tool for predicting RNA-DNA differences
that might be caused by post-translation editing of the RNA. Short read alignments were ana-
lyzed to detect variable sites and then a variety of filters were employed to remove potential
sequencing and alignment artifacts, as well as known SNPs. However, the program depends on
both RNA-seq and DNA sequencing data, therefore, potential RNA-editing sites cannot be
identified in RNA-seq alone. RCARE [16] is a web-based tool for searching, annotating, and
visualizing RNA-DNA difference sites based on current knowledgebase on RNA-editing, and
thereby provides evidence for improving the reliability of identified RDD sites. However, the
RCARE cannot be used to identify potentially novel RNA-editing sites. Recently, Zhang and
Xiao [17] presented a rigorous method (GIREMI) by calculating the mutual information of the
mismatch pairs identified in the RNA-seq reads to distinguish RNA editing sites and SNPs,
and a generalized linear model (GLM) was trained to achieve enhanced predictive power for
identifying RNA-editing sites using RNA-seq data alone. However, a computational software
(or tool) for the identification and visualization of RNA editing sites has yet to be released.

Here, we present a Java-MySQL software −‘RED’− to detect and visualize potential RNA
editing sites. Using RNA-seq data alone (i.e., de novomode), or using both RNA-Seq and DNA
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sequencing data (i.e., DNA-RNAmode), RED can identify potential RNA editing sites by inte-
grating multiple rule-based and statistical filters. All potential RNA editing sites were shown at
the genome levels, and a given site was visualized in its sequence context. We demonstrated the
validity and utility of RED by analyzing two data sets: 1) C!U RNA editing sites in Sharma
et al. [6], and 2) a RNA-seq data and whole-exome sequencing data in the liver normal tissue
from a patient of hepatocellular carcinoma. The application is suitable to next-generation
sequencing data related to the identification and visualization of RNA editing sites.

Design and Implementation
The framework for the design and development of ‘RED’ was shown in Fig 1. We incorporated
multiple rule-based and statistical filters [13] to remove spurious RNA editing sites, and pro-
vided a graphical user interface (GUI) to visualize RNA editing sites at the genome and the site
levels. RNA editing sites can be detected using the de novomode or the DNA-RNAmode if
DNA sequencing data is available. RED can also be used in a non-GUI/command line mode.

The input required for RED are in pre-aligned BAM file and variant calling format (VCF)
file. For example, the recommended workflow in GATK for RNA-central variants calling
(https://www.broadinstitute.org/gatk/guide/article?id=3891) includes pre-processing and vari-
ant discovery. The pre-processing of RNA-seq reads for generating a recalibrated bam file
includes mapping to reference, marking duplicates, splitting ‘N’ Trim, indel realignment, and
base recalibration. Then, analysis-ready RNA-seq reads were processed to generate a VCF file
by the ‘HaplotypeCaller’ walker using RNAseq mode and then raw variants were filtered in
RNAseq-specific settings. If DNA sequencing data is available, genotypes could be emitted for
all sites using the ‘UnifiedGenotyper’ in GATK [18, 19]. At the latest release of RED, the input
can be multiple bam files and VCF file with multiple samples calling.

In RED, the BAM file was used for the visualization purpose, and the VCF file including var-
iants information was used for detecting potential RNA-editing sites by the core algorithm.
However, it should be noted that RED can be performed without BAM file.

In addition, RED requires several files to be loaded for filtering purpose, including a repeat
region masked file by RepeatMasker (hg19.fa.out, http://www.repeatmasker.org), a gene anno-
tation file in gtf format (genes.gtf, http://genome.ucsc.edu), a VCF file containing all known
SNPs (dbsnp_138.hg19.vcf, http://www.ncbi.nlm.nih.gov/SNP), and a file containing known
RNA editing sites (from DARNED [20] and from RADAR [21]).

Rule-based filters
We used multiple rule-based filters to remove spurious sites caused by errors in construction of
RNA-seq library and sequencing, incorrect sequence reads mapping, and germline variants in
the genome. Users can view and adjust the specific filter settings when applying filters (Table 1).

1. RNA editing type filter: the type of RNA editing can be selected at user’s preference. In this
paper, we focused on two major types: 1) A!G change which is mediated by ADAR
enzymes; and 2) C!U change (e.g., mediated by APOBEC1 cytidine deaminase).

2. Quality control (QC) filter: two measures of base quality (Q) and depth of coverage (DP)
were used in the QC filter. For example, a given site would be removed if it was of a low
quality (e.g., Q< 20) or with a low depth of coverage (e.g., DP< 6).

3. Repeat regions filter: variants that were within repeat regions were excluded. However, sites
in SINE/Alu regions were remained since A!I RNA editing is pervasive in Alu repeats
[13, 22] and it has been implicated in human diseases such as breast cancer and Ewing’s sar-
coma [23].
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Fig 1. A computational framework to design RED. If DNA-sequencing data is available, potential RNA-editing sites can be identified by DNA-RNAmode;
otherwise by de novomode. Rule- and statistical-based filters were integrated in the framework.

doi:10.1371/journal.pone.0150465.g001
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4. Splice-junction filter: variants that were within ±k bp (e.g., k = 2) of the splice junction,
which were supposed to be unreliable [24], were excluded based on the gene annotation file.

5. Known SNP filter: RNA-seq variants that were known SNPs at DNA level were excluded for
eliminating germline variants based on the VCF file containing all known SNPs.

6. DNA-RNA filter: RNA-seq variants where its counterparts in genomic DNA is not refer-
ence homozygote (e.g., AA) would be excluded if DNA sequencing data is available.

Statistical filters
To reduce the errors in detecting RNA editing sites caused by technical artifacts (e.g., sequenc-
ing errors), we incorporated two statistical filters in RED: likelihood ratio (LLR) test [25] and
Fisher’s exact test. We used the A!G change for illustration purpose, and it can be used in
other types of RNA editing.

First, we integrated a likelihood ratio (LLR) test for detecting RNA editing sites [25]. For a
potential RNA-editing site, we denoted n(A) as ‘A’ nucleotides, and n(G) as ‘G’ nucleotides of
observed data. Likelihood ratio (LLR) test [25] is a probabilistic test incorporating error proba-
bility of bases (i.e., sequencing errors) for detecting RNA editing sites if DNA sequencing data is
available. The likelihood of observing n(A) and n(G) at a candidate RNA editing sites in the
observed sequence data D would be given by the binomial probability of P(D|f) = fn(A)(1 − f)n(G),
where f is the unedited fraction of RNA species. The maximum likelihood estimate of f is given
by fML = n(A)/(n(A) + n(G)). ifmaxf P(D|f) is much greater than P(D|f = 1), i.e., the likelihood
of the observed data (D) without RNA editing, we have a strong evidence for an RNA editing
event [10]. We need to take into consideration of the probability of sequencing error in estimat-
ing P(D|f = 1), which can be computed using Phred base error probabilities in DNA sequencing
reads. The log likelihood ratio (LLR) was defined as: LLR = log10[maxf P(D|f)/P(D|f = 1)]. Varia-
tion sites with LLR<m were excluded, wherem is self-defined andm = 4 is suggested. The
LLR� 4 indicated that the probability of editing event happened is 104 times more than that of
non-editing in reality.

In addition, we assessed the significance for a given RNA editing site by comparing its
expected editing levels. The expected number of n(A) and n(G) for the given site was calculated
based on the known RNA editing sites from the DARNED [20] and RADAR database [21].
These numbers (expected/observed) were then used through the Fisher’s exact test to calculate
the p-value of the given RNA editing sites. For correction for multiple testing, all p-values were
adjusted by false discovery rate (FDR) using the method of Benjamini & Hochberg [26].

Table 1. Measures used for filtering spurious RNA editing sites.

Filters Sites excluded

QC filter Sites were 1) Q < 20; or 2) depth of coverage (DP< 6)

Repeat region filter Sites were in repeat regions (except for SINE/Alu)

Splice-junction filter Sites were within ±2 bp of the splice junction

Known SNP filter Sites were known SNPs

DNA-RNA filter Sites whose genomic counterparts was not reference homozygote (i.e., AA)

Fisher’s exact test and FDR FDR (q value) > 0.05

FDR: false discovery rate

doi:10.1371/journal.pone.0150465.t001
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Visualization with GUI
RED is designed to visualize and explore potential RNA editing sites with GUI at the genome
and the site levels (Fig 2). The distribution of all potential RNA editing sites can be shown in a
karyogram overview. With the idea implemented in the vigorous tool of Integrative Genomics
Viewer (IGV) [27], a potential RNA editing site is highlighted in the regions of RNA-seq reads
with annotation. If DNA sequencing data is available, it could be compared with its counter-
part on the genome. The main window of RED consists of five panels:

1. Toolbar panel: provides a convenient way to access commonly used functions, which can be
accessed via the main menu or keyboard shortcuts.

2. Directory panel: provides a quick overview of accessed objects, including annotation set,
data set, site set and site lists. A site list includes the remaining variants after each step of fil-
tering, which is shown in a hierarchical tree structure.

3. Genome panel: provides an overview of human chromosomes (i.e., chr[1-22, X, Y, M]).
After RNA editing filters were applying, potential RNA editing sites would be shown in a
karyogram overview.

4. Chromosome panel: contains tracks of annotation and data. The annotation track shows
gene features from NCBI RefSeq, and reference sequence. The data track presents all mapped
RNA-seq reads from the BAM file with two different types: genomic interval and base status.

5. Status panel: the left shows related information for a chromosome, a site or a feature when
the mouse is over it, and the right is the usage of memory.

Fig 2. Graphic User Interface of RED. Panel #1, toolbar panel; panel #2, directory panel; panel #3, genome panel; panel #4, chromosome panel; and panel
#5, status panel.

doi:10.1371/journal.pone.0150465.g002
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Implementation based on Java and MySQL
RED was implemented with several key technologies, including: 1) fast data storage/retrieve
and low memory usage with high-throughput next-generation sequencing data and variants
data; 2) diverse filters to detect potential RNA editing sites with an improved performance; 3)
information synchronization among the genome panel, annotation and data track; and 4)
abundant presentation for data analysis and output.

RED is mainly developed using Java programming language, together with MySQL for data
management and R (http://www.r-project.org) for statistical analysis. All functions related to
MySQL and R were automatically executed in RED. RED can run on mainstream computa-
tional platforms, including Windows, Linux and Mac OS X.

To make the computation more efficient, everlasting and faster-saving, a widely used rela-
tional database management system (RDBMS) −MySQL − was employed to manipulate vari-
ants data (i.e., RNA-centric VCF file and DNA VCF file if available), as well as files required
for filtering. RED can speed up filtration by powerful database engine and make a quick query
of the filtering result (i.e., a site list). The Java Database Connectivity (JDBC) was used in RED
to connect a local or remote database.

RED also used functions in R, a language and environment for statistical computing, to per-
form statistical analysis, including FDR. A simple Java library (‘rCaller’) was used to call R
commands and scripts from Java.

RED provides flexible exports for image and text output. Images generated from RED can
be exported in the format of SVG or PNG. The distribution of RNA editing sites according to
its editing type and chromosome were present in graph. Information regarding to all potential
RNA editing sites can be exported to a tab-delimited text file, including chromosome, position,
class ID, reference base, alternative base, quality, editing level, p-value and FDR. In addition, a
RED project file, including potential RNA editing site lists, information of data set and annota-
tion set, and software preference, can be saved at user’s preference.

Results
Sharma et al. [6] identified and experimentally validated C!U RNA editing sites in hypoxic
but not normoxic monocyte-enriched peripheral blood mononuclear cells (MEPs, three sam-
ples per group). We tested the validation of RED and REDItools (version 1.0.3) using these val-
idated C!U RNA editing sites. RNA Sequencing data of six samples were downloaded from
NCBI Sequence Read Archive with accession number SRP040806. We followed the GATK Best
Practices workflow for calling variants in RNA-seq (https://www.broadinstitute.org/gatk/
guide/article?id=3891) with default settings. A Linux server of 256 GB memories and 4 CPU
(40 core, Intel(R) Xeon(R) CPU E7- 8850 @ 2.00GHz) was used for the computation. A detail
of the software and commands used in the analysis is present in the S1 Text.

We first tested 220 C!U (and G!A) sites listed in Supplementary Table S2 in Sharma
et al. [6]. Of 220 potential RNA-editing sites, 167 variants sites were called using the GATK
guideline. RED in de novomode (MySQL (version 5.1.73), Java (version 1.8.0_25), and R (ver-
sion 3.0.2)) detected 129 potential RNA-editing sites (P< 0.05, Fisher’s exact test). REDItools
in de novomode (python version 2.6.6) identified 171 sites (P< 0.05). 121 sites (55%) were
identified in two programs. Then, we tested the presence/absence of 30 potential RNA-editing
sites that affecting amino acid [6]. Of these 30 sites, 28 sites were validated by RT-PCR Sanger
sequencing (Table 1 list in Sharma et al. [6]). We counted the number if a given site was identi-
fied in any one of the three hypoxic samples. RED in de novomode detected 18 out of 28 true
RNA-editing sites (P< 0.05, Fisher’s exact test) and one out of two false RNA-editing sites.
For comparison, the de novomode in REDItools detected 21 out of 28 true RNA-editing sites
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(P< 0.05) and one out of two false RNA-editing sites. The sensitivity and specificity of the two
methods in identifying RNA editing sites are shown in Fig 3, indicating that REDItools had
a better sensitivity but similar specificity. The Venn diagram (Fig 3) indicated that 17 sites
(60.7%) were identified by both software. A validated RNA-editing site (chr2:98409343 in
TMEM131) identified by RED is shown in Fig 4.

Fig 3. A comparison of validation for identifying RNA-editing sties using RED and REDItools in an analysis of a sample data-set with 28
experimentally validated C!U RNA editing sites. TP, true positive; FP, false positive; TN, true negative; and FN, false negative.

doi:10.1371/journal.pone.0150465.g003

Fig 4. A RNA editing site (chr2:98409343) in TMEM131 is highlighted in the context of sequenced regions. AG!A change (in the minus strand) was
identified by RNA-seq. The upper panel (Run ID: SRR1213558) indicates a normoxia sample and the lower panel is for hypoxia sample (Run ID:
SRR1213559).

doi:10.1371/journal.pone.0150465.g004
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We noted that different numbers of RNA editing sites were identified between RED and
REDItools, partly due to different number variants used in the programs. The sensitivity of
variants called by GATK ‘HaplotypeCaller’ (used in RED) and ‘samtools mpileup’ (used in
REDItools) differed, as shown in a recent study [28]. Although the procedure of ‘samtools
mpileup’ can identify more true positive SNVs, the identified false positive SNVs were
approximately ten times higher than GATK ‘HaplotypeCaller’ process. It should be noted
that the calling procedure in GATK has taken into account the information about intron-
exon split regions.

The comparison of computation costs for REDItools and RED in analyzing six RNA-seq
samples [6] was shown in Table 2. In a single thread mode for analyzing these samples, the
‘HaplotypeCaller’ in GATK cost 127 hours to obtain VCF file and RED cost 25.5 hours for
identifying RNA editing sites. The time cost of REDitools varied in different samples although
eight threads were assigned in computation for each sample.

We also identified potential RNA editing sites by comparing the RNA-seq and whole exome
sequencing data in the liver normal tissue of a hepatocellular carcinoma patient (http://www.
ncbi.nlm.nih.gov/bioproject/273421) [29] by RED. We used the DNA-RNAmode with the
parameters listed in Table 1. We identified 442 A!G RNA-editing sites and 14% were non-
synonymous sites.

Availability and Future Directions
RED is an integrated GUI for detecting and visualizing potential RNA-editing sites. RED pro-
vides multiple rules to filter out spurious RNA-editing sites and visualize the candidate RNA-
editing sites. In addition, MySQL made the query of the filtering result efficient, and enabled
the storage of RED results for each filtering step, which can be re-analyzed without running fil-
ters again. However, RED depends on three computational frameworks of Java Runtime Envi-
ronment (jre or jdk with 1.6.0_43 or later), MySQL Database Management System (MySQL
5.1.73 or later) and R Environment (R 3.0.1 or later). REDItools requires only Python.

The RED package is freely available under the GPLv3 license at the Git repository web-
based hosting service (github), https://github.com/REDetector/RED or SourceForge, https://
sourceforge.net/projects/redetector.

Table 2. Computation cost in REDItools and RED.

Process/sample REDItools (hrs)1 RED (hrs)2

HaplotypeCaller - 127

Data import - 0.5

SRR1213569 5.3 6.2

SRR1213561 26.2 3.3

SRR1213559 17.3 4.0

SRR1213562 10.5 2.1

SRR1213560 39.9 6.3

SRR1213558 9.9 3.3

1, eight threads were assigned;
2, single thread.

The time to produce the analysis-ready bam files (i.e., alignment and correction for technical biases) was

not included. HaplotypeCaller was used to call variants in a single sample, and the time of 127 hrs is the

total time for six samples.

doi:10.1371/journal.pone.0150465.t002
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Future additions to RED will include: 1) information of each site, including coverage, qual-
ity, position, and editing level, will be present in the chromosome panel; and 2) functional cate-
gories of RNA editing sites will be annotated, and information of chromosome cytoband will
be added.

In conclusion, RED is an effective software for the identification and visualization of RNA
editing sites from next-generation sequencing data. It is highly flexible, including a variety of
filters and stringent statistical assessment, and may provide very reliable sets of RNA editing
candidate sites according to the user’s requirements.
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