
royalsocietypublishing.org/journal/rsif
Research
Cite this article: Kaurin D, Bal PK, Arroyo M.
2022 Peeling dynamics of fluid membranes

bridged by molecular bonds: moving

or breaking. J. R. Soc. Interface 19: 20220183.
https://doi.org/10.1098/rsif.2022.0183
Received: 7 March 2022

Accepted: 1 June 2022
Subject Category:
Life Sciences–Physics interface

Subject Areas:
biomechanics, biophysics, biomaterials

Keywords:
cell–cell adhesion, peeling, vesicle adhesion
Author for correspondence:
Marino Arroyo

e-mail: marino.arroyo@upc.edu
© 2022 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Electronic supplementary material is available

online at https://doi.org/10.6084/m9.figshare.

c.6039045.
Peeling dynamics of fluid membranes
bridged by molecular bonds: moving
or breaking

Dimitri Kaurin1, Pradeep K. Bal1 and Marino Arroyo1,2,3

1Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
2Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology,
08034 Barcelona, Spain
3CIMNE, 08034 Barcelona, Spain

PKB, 0000-0001-7408-0996; MA, 0000-0003-1647-940X

Biological adhesion is a critical mechanical function of complex organisms.
At the scale of cell–cell contacts, adhesion is remarkably tunable to enable
both cohesion and malleability during development, homeostasis and dis-
ease. It is physically supported by transient and laterally mobile molecular
bonds embedded in fluid membranes. Thus, unlike specific adhesion at
solid–solid or solid–fluid interfaces, peeling at fluid–fluid interfaces can
proceed by breaking bonds, by moving bonds or by a combination of
both. How the additional degree of freedom provided by bond mobility
changes the mechanics of peeling is not understood. To address this, we
develop a theoretical model coupling diffusion, reactions and mechanics.
Mobility and reaction rates determine distinct peeling regimes. In a diffu-
sion-dominated Stefan-like regime, bond motion establishes self-stabilizing
dynamics that increase the effective fracture energy. In a reaction-dominated
regime, peeling proceeds by travelling fronts where marginal diffusion and
unbinding control peeling speed. In a mixed reaction–diffusion regime,
strengthening by bond motion competes with weakening by bond breaking
in a force-dependent manner, defining the strength of the adhesion patch. In
turn, patch strength depends on molecular properties such as bond stiffness,
force sensitivity or crowding. We thus establish the physical rules enabling
tunable cohesion in cellular tissues and in engineered biomimetic systems.
1. Introduction
Cell–cell adhesion is an essential mechanical function that is required to main-
tain tissue integrity under mechanical stress [1–3], disrupted during cancer [4]
and finely tuned during development [5–7] or wound healing [8]. Cell–cell
adhesion needs to manage a contradiction between stability and malleability.
Such versatile and adaptable interfaces avoid unspecific adhesion [9], and
instead rely on the collective effect of weak transmembrane bonds, notably of
the cadherin family [10]. Cell–cell adhesion is a multi-scale and highly regu-
lated function that involves bond clustering, coupling to the cytoskeleton
through mechanosensitive adapter proteins, turnover through endocytosis
[11,12] and Ca2+-mediated control of the molecular properties of the binders
and bonds, including diffusivity [10,13], stiffness [13] and force sensitivity
[14]. The distinguishing physical feature of cell–cell adhesion as compared
with cell–matrix adhesion, and in general compared with conventional specific
adhesion at solid–solid or solid–fluid interfaces, is that both free binders and
bonds are embedded in fluid membranes and hence are laterally mobile. As
a result, the dynamics of adhesion between cells, and more generally between
fluid membranes bridged by transient bonds, depend on binding/unbinding
reactions between partner molecules and on the lateral motion of bonds and
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free binders. Despite this fact being long acknowledged
[9,15–17], its consequences for the dynamics of peeling are
not understood and a mapping of the different dynamical
scenarios of decohesion is lacking.

To isolate the physical aspects of cell–cell adhesion,
previous studies have focused on minimal artificial models
based on lipid membranes decorated with adhesion mol-
ecules [18–24]. While the theoretical understanding of
equilibrium in such systems is established [9,25], adhesion
dynamics under force have been barely studied theoretically
even though the mechanical environment of cell–cell adhe-
sions is fundamentally dynamical. Here, we focus on the
dynamics of unbinding of two vesicles held together by an
adhesive patch made of mobile adhesion molecules forming
transient trans bonds. Our model is also pertinent to the
forced unbinding of adjacent cells, since adhesion molecules
attached to the cortex are still mobile owing to the turnover
of cortical components.

During peeling, an adhesion patch shrinks, possibly until
complete separation. In a tear-out limiting scenario, shrink-
age of the patch may proceed by sequential bond breaking
[15,16,26–30]. When a vesicle with mobile binders adheres
to a substrate with fixed receptors, spreading critically
depends on diffusion of free binders on the vesicle [31–33];
however, for immobile bonds, peeling necessarily proceeds
by tear-out. Peeling by bond breaking has been extensively
studied theoretically [15,34–36]. In a competing limiting scen-
ario, the patch may shrink by lateral motion of bonds leading
to an increasingly crowded patch [16,17], a situation observed
during cell–cell separation in vitro and in developing embryos
[7,37–39]. In general, the dynamics of decohesion may
depend on a combination of bond breaking and bond
motion (or reaction and diffusion), but this interplay has
not been systematically examined [15,16,27,40] despite the
fact that bond mobility has been shown to strongly influence
adhesions in hybrid cell-supported bilayer studies [41] and in
purely artificial systems [21].

To understand the physical principles governing peeling
of an adhesive interface bridged by mobile bonds, we develop
a self-consistent continuum dynamical model capturing the
reaction kinetics of bond formation and dissociation, the
lateral diffusion of adhesion molecules and the mechanics
of the adhesion patch and of the adhering vesicles. We
then identify and characterize distinct regimes pertinent to
(i) long-lived mobile bonds, (ii) short-lived bonds with
reduced mobility such as cadherin molecules linked to the
cell cytoskeleton, and (iii) short-lived mobile bonds such as
cadherins in a lipid bilayer. Each of these regimes exhibits fun-
damentally different dynamics (self-similar, travelling or
mulitphasic) with multi-scale features in space and time. We
further examine the relation between molecular properties of
bonds and the effective behaviour of the adhesive patch.
2. Methods
2.1. Theoretical and computational model
The state of the system is defined by the shape of the adhering
vesicles and the number concentration of bonds on the adhesion
patch, c1, and that of free binders on the entire vesicle, c2. We
assume that the adhering vesicles are identical and are made of
a fluid membrane where bonds and free binders are mobile.
Focusing first on a dilute limit and non-compliant bonds, the
chemical potentials of bonds and free binders take the form
mi ¼ m0

i þ kBT log ci=c0, i ¼ 1, 2, where m0
i is the standard chemi-

cal potential, kBT is the thermal energy scale and c0 is an
arbitrary reference concentration; see [42] for a detailed equili-
brium statistical mechanics treatment. In equilibrium, shape
and concentrations obey chemical and mechanical equilibrium
conditions [25]. Chemical equilibrium requires that μ1 (and
hence c1) is uniform on the adhesion patch, that μ2 (and hence c2)
is uniform on the entire vesicle including the adhesion patch and
that μ1 = 2μ2 over the patch since two free binders react to form a
bond. This last condition implies that

�K ¼ c0c1=c22 ¼ exp
ð2m0

2 � m0
1Þ

kBT

� �
, ð2:1Þ

with �K the non-dimensional equilibrium constant of the binders in
the two-dimensional environment of the adhesion patch [43],
further discussed below. At high membrane tension γ expected
for a mature adhesion patch rich in bonds, the length scale
‘1 ¼

ffiffiffiffiffiffiffiffi
k=g

p
, where κ∼ 10−19 J is the bending stiffness, ismuch smal-

ler than the vesicle size. In this capillary limit, mechanical
equilibrium at the edge of the adhesion patch is formally a
Young–Dupré equation, kBT c1 = 2γ(1− cosθ), where the left-hand
side is the dilute approximation of the osmotic tension of the
bonds in the adhesion patch and θ is the contact angle between
the free part of the vesicle and the symmetry plane [17,25]
(figure 1a). Being commensurate with the osmotic tension of
bonds, we estimate membrane tension for a typical bond concen-
tration of c1 � 4� 103 molecules=mm2 to be γ∼ 1.6 × 10−5 N m−1

and hence ℓ1∼ 70 nm. With the precise parameters considered in
our examples below, ℓ1 is close to 20 nm. Besides justifying the
capillary limit, high tension suppresses thermal fluctuations of
the membrane [44,45], which are not considered here but play a
prominent role during low-tension adhesion spreading [21,24].
Mechanical equilibrium in the non-adhered part of the vesicle is
expressed by Laplace’s law. These conditions determine the equili-
brium shape of the vesicles, the size of the adhesion and the
concentration of free binders and bonds.

Describing the out-of-equilibrium dynamics under force
requires accounting for diffusion and chemical kinetics, which
in turn depend on mechanics in different ways. Diffusion of
bonds is biased by their tendency to leave regions where they
are highly stretched. Chemical kinetics are influenced by mech-
anics since unbinding rates are force sensitive and rebinding
rates depend on the distance between potential partners
[34,36]. We thus need to resolve the force borne by bonds and
the separation between membranes required to compute these
rates. However, a single mechanical modelling resolving simul-
taneously the vesicle-scale capillary mechanics at length scales
of tens of micrometres and the separation profile near the edge
of the adhesion patch with sub-nanometre resolution is very
challenging from a computational point of view. For this
reason, exploiting scale separation, we combine a vesicle-scale
capillary model in terms of macroscopic quantities such as
patch size, contact angle or vesicle pressure with a model for
the micro-mechanics of the adhesion patch, taking the macro-
scopic quantities as parameters and resolving the force on
bonds by accounting for the bending rigidity of the membrane
κ and the compliance of the molecular bonds (figure 1c,d). In
this model, the length scale over which the tension of the free-
standing membrane is transmitted to the adhesion patch can be
estimated by balancing the bending and the bond normal press-
ures as ‘2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi½4�k=ðkc1Þ
p

[46], where k is the bond stiffness and c1
is a typical bond concentration. Considering k = 2.5 × 10−4 N m−1

and the values given above for κ and c1, we find that ℓ2∼ 20 nm,
much smaller than the typical size of an adhesion patch.

To focus on the mechano-chemistry of forced decohesion
and to simplify all other aspects of the model, we restrict our-
selves to a two-dimensional geometry where the membrane
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Figure 1. (a) Equilibrium of two identical vesicles adhering through mobile non-compliant binders. Chemical equilibrium requires uniformity and equality of the
chemical potentials (left). Mechanical equilibrium requires satisfaction of the Young–Laplace and Young–Dupré relations (right). (b) A capillary model describing
membrane mechanics in terms of the half-size of the adhesion ŝ, the angles θ and β and the radius R. (c) A schematic of the system, where a loading device
controls surface tension γ and force F. (d ) Micro-mechanics model of the adhesion patch resolving the separation profile relative to an equilibrium separation h,
accounting for bending stiffness and bond compliance.
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becomes a line whose arc-length coordinate is denoted by s. We
summarize here the theoretical model and provide a detailed
derivation based on Onsager’s variational formalism in elec-
tronic supplementary material, note 1. The vesicle is connected
to a loading device, which controls membrane tension γ by draw-
ing or supplying membrane length (area in three dimensions)
and applies a vertical force F (figure 1c). The area enclosed
by the curve defining the two-dimensional vesicle is kept
constant by a pressure difference P. The mechanical ensemble
thus simulates in two dimensions a vesicle whose enclosed
volume is constant and which is aspirated by a micropipette
that controls membrane tension [37–39]. Mechanical relaxation
is much faster than chemical relaxation, and thus we treat
the mechanics quasi-statically. Given the prescribed γ and F
and the current size of the adhesion patch ŝðtÞ, the capillary
model provides the shape of the vesicle (figure 1b), in particular
the contact angle θ and the pressure P. With this information
and the current concentration of bonds c1(s, t), the micro-
mechanical model provides the membrane separation profile
h(x, t) (figure 1d), by minimizing the functional capturing the
mechanics of the adhesive patch

~F ½h� ¼ g

ðaŝ
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02

q
dxþ k

2

ðaŝ
0

h002

(1þ h02)5=2
dx

þ
ð ŝ
0

kc1
2

h2 dxþ
ð ŝ
0
Phdx� g sin u hðaŝÞ: ð2:2Þ

The first term is a capillary energy and results from
ds ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ h02
p

dx. The second term is then bending energy,
since the curvature of the curve can be written as h00/(1 + h0)3/2.
The third term is the energy stored in the elastic foundation,
whose stiffness is given by the number concentration of bound
binders c1 multiplied by the stiffness to stretching of one
bond, k. The fourth term accounts for the pressure inside the ves-
icle, which presses against the molecular bonds. The last term is
the potential energy of the tension force at the boundary of the
domain. α > 1 is a parameter such that ða� 1Þ̂s . ‘1, and hence
the boundary of the micro-mechanical model in the top-right
of figure 1d is not affected by bending elasticity and the results
are insensitive to this parameter. Minimization of equation (2.2)
allows us to compute the out-of-plane force per molecule k
h(s, t) within the patch region. In turn, this information allows
us to evolve the bond and free-binder concentrations c1(s, t)
and c2(s, t) and the position of the interface ŝðtÞ as discussed next.

The reaction–diffusion dynamics for c1 and c2 are given by

_c1 ¼ D1 c01 þ c1
h2

x2g

 !0" #0
þkonc22 � koffc1 in ð0, ŝðtÞÞ; ð2:3Þ

_c2 ¼ D2c002 � konc22 þ koffc1 in ð0, ŝðtÞÞ ð2:4Þ

and _c2 ¼ D2c002 in ð̂sðtÞ, L0Þ, ð2:5Þ
where dots and primes denote time and space derivatives, D1,2

are diffusion constants of bonds/free binders, kon is the
binding rate, koff is the unbinding rate, L0 is the total membrane
length and xg ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

kBT=k
p

is the scale of thermal fluctuations of
binders. These partial differential equations are defined on a
time-dependent domain. The transport term in equation (2.3)
includes a diffusive term and a bias, according to which bonds
try to reduce the mechanical contribution of their chemical
potential [9,40],

m1ðc1, hÞ ¼ m0
1 þ kBT log

c1
c0

þ kBT
h
xg

� �2

, ð2:6Þ

by moving away from regions where they are highly stretched.
An additional consequence of the stretching term in the chemical
potential of bonds identified by our model is the dependence
of the binding rate on separation, in agreement with previous
treatments [9,34,36]

konðhÞ ¼ �kon exp � h
xg

� �2
" #

, ð2:7Þ
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where �kon is the reference binding rate for h = 0. This expression
captures the fact that the probability of bond formation depends
on the proximity of potential partners as they thermally fluctu-
ate. By equating μ1(c1, h) in equation (2.6) with twice the
chemical potential of free binders, m2ðc2Þ ¼ m0

2 þ kBT log c2=c0,
we can identify a separation-dependent two-dimensional equili-
brium constant KðhÞ ¼ �K exp½�ðh=xgÞ2�, where �K is given by
equation (2.1). Interestingly, previous theories accounting for
orientational entropy and membrane thermal fluctuations but
not for bond extensional compliance have related three-dimen-
sional to two-dimensional equilibrium constants to find the
same dependence of K(h) on separation with a different interpret-
ation for xg [43,47]. In the present setting of high tension and
forced peeling, membrane fluctuations may not be as important
as bond deformability, but in general one can expect that the
effective compliance of the binding domain depends on both
the intrinsic compliance of the adhesion molecule and that of
the membrane supporting the bond, which for adhesion
molecules attached to the actin cortex includes adaptor molecules
and the actin network. This suggests that xg, or alternatively k,
should be regarded as an effective parameter rather than one
strictly describing the stiffness of an adhesion molecule.

Although cadherin bonds are thought to shift between ideal,
slip or catch bonds depending on environmental conditions
and conformation [14,48], here we only consider the slip-bond
behaviour as described by Bell’s model [49]

koffðhÞ ¼ �koff exp
kh
fb

� �
¼ �koff exp

h
xb

� �
, ð2:8Þ

where fb is the force sensitivity and where we introduce a
separation sensitivity xb ¼ fb=k for convenience.

The governing equations (2.3)–(2.5) need to be supplemented
by initial, boundary and interface conditions at s ¼ ŝðtÞ. Since
free binders can cross the interface, their concentration and flux
are continuous. By contrast, the interface is by definition a barrier
for bonds. Consequently, the diffusive flux of bonds at the inter-
face must be compensated by bond transport owing to interface
motion,

�D1 c01 þ c1
h
xg

� �2
" #0( )

s¼ŝ

¼ c1 ð̂s, tÞv̂, ð2:9Þ

where v̂ ¼ dŝ=dt is the velocity of the interface. Finally, force
balance at the interface requires that

kBTc1ð̂s, tÞ ¼ 2gð1� cos uÞ, ð2:10Þ
where now c1 depends on space and time and is governed by
equation (2.3). Comparison of this equation with Rivlin’s classi-
cal theory of peeling [50] shows that osmotic tension of bonds
at the interface, kBTc1ð̂s, tÞ, plays the role of the adhesion fracture
energy. However, rather than a material property of the interface
as in classical peeling and in the case of tear-out of a vesicle
against a substrate with immobile receptors [17], here this quan-
tity is a dynamical variable. Equations (2.3), (2.4), (2.9) and (2.10)
supplemented by the initial and boundary conditions at s = 0 and
s = L0 allow us to solve for c1(s, t), c2(s, t) and ŝðtÞ. As these vari-
ables evolve, we need to update the mechanical variables θ and
h(s, t), which in turn affect the reaction–diffusion interface
dynamics. The self-consistent finite-element numerical solution
of the model is described in detail in electronic supplementary
material, note 1.
2.2. System preparation and parameters
Before driving the system out of equilibrium, we prepared
the system at an equilibrium state for non-compliant
and ideal bonds. In all calculations, we set �K ¼ c0�kon=�koff ¼ 2,
F = 0, the vesicle radius to R0 = 10 μm, ŝ0 ¼ 2:5mm,
c0 ¼ 2:5� 103molecules=mm2 � ‘lat, and the length of the half
vesicle to L0 = 35 μm. Thus, the total number of molecules is Ntot-

= c0 × L0. Here, ℓlat is an arbitrary depth of our one-dimensional
membrane to make it a ribbon, allowing us to map two-
dimensional to one-dimensional number densities. Without
loss of generality, m0

1 ¼ 0 and, from equation (2.1), we conclude
that m0

2 ¼ ðkBT log �KÞ=2. In all figures, we non-dimensionalize
chemical potentials by m0

2. With these data, conservation of the
total number of molecules, Ntot ¼ c1ŝ0 þ c2L0, and the law of
mass action, c0c1=c22 ¼ �K, provide two equations to solve for
the equilibrium concentrations, obtaining c1 = 1.58c0 and c2 =
0.89c0. Since R0 and ŝ0 determine the contact angle as
sin u0 ¼ ŝ0=R0, the force balance at the interface provides an
equation for the membrane tension, for which, taking kBT =
4.11 × 10−21 J, we find γ = 2.55 × 10−4 N m−1 × ℓlat. This
equilibrium state is illustrated in figure 1a.

Starting from this state and driving it out of equilibrium by
suddenly increasing the applied force F, we tracked the
mechano-chemical dynamics of forced decohesion, which tend
to uniformize μ1 and μ2 over the patch and vesicle, and tend to
equilibrate them as μ1 = 2μ2 over the patch. The time scale of
bond diffusion in the adhesion patch is tdiff,1 ¼ ŝ20=D1, whereas
that of free binders on the entire vesicle is tdiff,2 ¼ L20=D2. Since
a bond connects two binders, in the simplest situation its mobi-
lity is half that of a free binder, hence D2 = 2 D1. With our
choice of parameters, τdiff,2≈ 100 τdiff,1. Regarding reactions, the
natural time scale is treac ¼ 1=�koff. Once �koff is fixed, we deter-
mine the binding rate from �K=c0 ¼ �kon=�koff , which results from
equations (2.1) and (2.3). The ratios between the reaction
time scale and the diffusive time scales introduce Damkohler
numbers weighing the relative importance of reactions and diffu-
sion. For compliant bonds/binders, we consider a reference
stiffness of k = 2.5 × 10−4 N m−1.
3. Results
3.1. Diffusion-dominated regime
We first focused on the situation in which reactions are extre-
mely slow compared with diffusion by setting �kon and �koff to
zero and thus τreac = +∞. In this limit, the dynamics of free
binders become uncoupled from the rest of the system.
Thus, we are only left with one time scale associated with
the diffusion of bonds. For a typical diffusion coefficient of
free binders on lipid membranes, D2 = 2D1 = 0.5 μm2 s−1,
this time scale is τdiff,1≈ 25 s. We first considered non-compli-
ant bonds by setting h(s, t) = 0; see electronic supplementary
material, note 1. For this model, the state in figure 1a is an
exact equilibrium state at F = 0. We then suddenly applied a
separation force F. We reasoned that, in response to force
application, the contact angle should rapidly increase θ > θ0,
requiring a concomitant increase in bond concentration at
the interface according to equation (2.10). In turn, this
should create a sharp positive gradient in bond concentration
and chemical potential, and hence a motion of the interface
leading to patch shrinkage (equation (2.9)). As the patch
becomes smaller, bond chemical potentials should equilibrate
faster since they diffuse over a smaller distance and, since
the number of bonds is constant, the patch should become
increasingly concentrated with bonds. Our simulations
confirmed this physical picture (figure 2a,b; electronic sup-
plementary material, figure S1a,c and movie S1), and the
system reaches a new equilibrium state where μ1 is high
and uniform and the higher bond osmotic tension balances
the larger out-of-equilibrium membrane force at the interface
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(equation (2.10)). Hence, the system is able self-adjust the
effective adhesion fracture energy, kBTc1ðŝ, tÞ, to balance the
higher peeling driving force. Although the final chemical
potential of bonds is much larger than that of free binders,
equilibration between species is not possible in the absence
of reactions (figure 2a,b).

As F increases, θ also increases and a larger osmotic
tension, and hence a larger bond concentration, is required
to balance the mechanical force at the interface. Since the
number of bonds is constant, this in turn requires a smaller
equilibrium patch (electronic supplementary material, figure
S1b, figure 2c). Interestingly, a similar process of shrinkage
and concentration of adhesive patches has been observed
in cell doublets under force in vitro, and during cell–cell
hydraulic fracture in developing embryos [7,25].

Increasing the force also leads to faster dynamics
(figure 2c; electronic supplementary material, movie S1).
To further understand peeling dynamics, we sought an
analytical solution. Starting from the equilibrium state in
figure 1a with contact angle θ0, patch size ŝ0 and uniform
bond concentration c1(s, 0) = C0 = 2γ(1− cosθ0)/(kBT ), we sud-
denly increased the force and hence θ > θ0. In the actual
system, as ŝðtÞ decreases so does θ(t) owing to vesicle
capillarity (figure 2d, inset). To develop the analytical
solution, we simplified the problem by assuming that θ
remains constant during peeling. Introducing non-dimen-
sional space x ¼ s=ŝ0 � 1, time τ = t/τdiff, 1, driving
parameter U = (1− cosθ)/(1− cosθ0), position of the interface
XðtÞ ¼ ŝðtdiff,1tÞ=ŝ0 � 1 and concentration of bonds uðx, tÞ ¼
c1ðŝ0ðxþ 1Þ, tdiff,1tÞ=C0 �U, the governing equations (2.3),
(2.9) and (2.10) take the form of a classical Stefan problem;
see electronic supplementarymaterial, note 2, which describes
a myriad of phase transformation problems [51]. This problem
admits an analytical solution valid at short times or for large
domains in terms of the similarity variable x=

ffiffiffi
t

p
,

uðx, tÞ ¼ ffiffiffiffi
p

p
l el

2
U erfðlÞ � erf

x
2
ffiffiffi
t

p
� �� �

ð3:1Þ

and

XðtÞ ¼ 2l
ffiffiffi
t

p
, ð3:2Þ

where erf is the error function and λ is a constant depending
on the driving parameter U and is implicitly determined
by

ffiffiffiffi
p

p
lel

2
U½erfðlÞ þ 1� ¼ 1�U. To linear order in U− 1,

lðUÞ � �ðU � 1Þ= ffiffiffiffi
p

p / ðcos u� cos u0Þ, showing how the
interface motion depends on the horizontal force imbalance.
Interestingly, the diffusion-controlled spreading of a mem-
brane with mobile molecules binding to fixed receptors
exhibits analogous self-similar dynamics [31,32].

We then compared these analytical predictions, valid at
short times/large domains and assuming that θ remains con-
stant, with our numerical calculations, which did not make
any of these assumptions. At short times, equation (3.2) pre-
dicts very well the motion of the interface, particularly at high
forces where the interface moves significantly before the
finite-size effects leading to self-stabilization of the interface
start to play a role (figure 2c). To further test the theory, we
plotted the rescaled bond concentration at different time
instants against the similarity variable, finding a remarkable
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collapse to equation (3.1) despite the reduction of θ with time
and finite-size effects (figure 2d). These results thus establish
a mapping between the dynamics of forced adhesions
between membranes mediated by long-lived bonds and the
self-similar solution of the classical Stefan problem.

Next, we examined numerically the more realistic situ-
ation of deformable bonds while keeping all other model
parameters equal, including the total number of bonds.
In this case, the state in figure 1a is not in equilibrium for
F = 0 since bonds are stretched in a boundary layer near
the interface, which modifies their chemical potential
(equation (2.6) and figure 2e). Despite the small size of the
perturbed region, the new equilibrium state is significantly
smaller and more concentrated (figure 2f; electronic supple-
mentary material, figure S1c,d). The width of the boundary
layer where bonds are stretched and depleted is commensu-
rate with ℓ2 and thus decreases with increasing bond
stiffness, but the new position of the interface is quite insen-
sitive to k (figure 2f ). Interestingly, the results for non-
compliant bonds are not the limit as k→ +∞ of those for com-
pliant bonds. We note, in this respect, that in this limit both h
and xg tend to zero, and hence the last term in equation (2.6)
does not necessarily tend to zero to recover the non-compli-
ant case. Upon force application following equilibration, the
dynamics proceed similarly to the case of non-compliant
bonds, albeit at a faster rate (figure 2g; electronic supplemen-
tary material, figure S1c,d and movie S2). To understand
the faster dynamics, we note that, close to the edge of the
adhesion patch, the entropic and stretching components of
the chemical potential of bonds (equation (2.6)) compete
and become similar (electronic supplementary material,
figure S1e), with bonds tending to move towards the depleted
edge because of entropy and tending to move away from it to
avoid stretching. During peeling, bond transport due to
stretching dominates at the edge, driving inward interface
motion (equation (2.9)). Thus, the effect of bond stretching
is limited to a very small region close to the edge but has
macroscopic effects in setting the equilibrium patch size
and bond concentration and the kinetics of the peeling pro-
cess. Although the similarity solution does not account for
bond compliance, bond concentration at different times
remarkably collapses when rescaled and plotted in the simi-
larity variable (figure 2h), showing that the Stefan problem
captures the physics of this diffusion-dominated regime at
short times.

We finally examined the force distribution in the adhesion
patch. The out-of-plane traction k c1(s, t)h(s, t) needs to balance
F and hence increases with it. However, increasing F does not
lead to further separation. Instead, the system adapts to higher
F (higher θ) by increasing c1(s, t) near the interface (equation
(2.10)), while keeping a rather constant profile of the force
per molecule, k h(s, t), with a force scale emerging from
the competition of mixing entropy and bond stretching
(equation (2.6)) and given by fg ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k � kBT
p � 1:0 pN

(electronic supplementary material, figure S2).
3.2. Reaction-dominated case
We then studied a different extreme scenario characterized by
fast reaction rates, �koff ¼ 10 s�1, representative of weak bonds
such as cadherins, and very low diffusivity, which should
result in a reaction-dominated regime similar to the tear-out
of an adhesive vesicle from a solid substrate with immobile
receptors [28–30]. We decreased D1,2 by a factor of about
1000 (D1 =D2/2 =D0 = 0.25 × 10−3 μm2 s−1), which is compar-
able to the reduction of diffusivity of adhesion molecules
from artificial lipid bilayers to cell membranes [52], and
initially considered rather insensitive slip bonds with
fb=fg ¼ 4. Upon force application, we observed that, in con-
trast to the diffusion-dominated case where ŝðtÞ � ŝ0 /

ffiffi
t

p
,

now both the size of the patch and the number of bonds
decrease nearly linearly, with the net unbinding reaction
rate localized in close vicinity to the interface (figure 3a;
electronic supplementary material, movie S3). Complete
decohesion is reached before significant diffusion of bond
or free binders can take place at the patch or vesicle scales.

In view of these results, we hypothesized the existence of
travelling solutions of the form ciðs, tÞ ¼ fiðsþ v̂tÞ (figure 3b).
To systematically examine this point, we again made the
approximation of constant driving force (constant θ). Propagat-
ing fronts in reaction–diffusion systems requires non-generic
nonlinearity, as in the prototypical Fisher–Kolmogorov–
Petrovskii–Piscunov (FKPP) equation [53,54] or in the
FitzHugh–Nagumo system [55]. For non-compliant ideal
bonds, our model in the moving frame reduces to a two-
species advection–reaction–diffusion equation whose only
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nonlinearity is the term �konc22, and our simulations did not
develop travelling solutions. Instead, for compliant and
force-sensitive bonds the model couples to mechanics, which
predicts a separation profile h localized near the adhesion
edge that in turn biases bond motion away from the edge,
locally increases off rates and decrease on rates. In this case,
our simulations readily developed travelling solutions with
constant interface velocity, localized unbinding, a sharp tran-
sition of bonds to accommodate the concentration at s ¼ ŝðtÞ
(equation (2.10)) and a sharp transition of free binders to a
higher plateau in the wake of the interface due to broken
bonds (figure 3c; electronic supplementary material, figure S3).

To understand the physics controlling the peeling speed v̂
and the local profiles around s ¼ ŝðtÞ, we reasoned that, even
though the time of bond diffusion in the whole patch is very
long, τdiff,1≫ τreac, there should be a small length scale ℓ3 over
which diffusion and reactions compete near the interface,

‘23=D1 � treac, leading to ‘3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=�koff

q
� 5 nm. For our par-

ameter set, ℓ3 is smaller than ℓ2, over which bonds are
loaded. Dimensional analysis and the analogy with the
FKPP model suggest that this small-scale diffusion may con-
trol the overall decohesion process by setting the front speed

v0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1

�koff
p

� 50 nm s−1. This situation is also analogous to
fracture mechanics of solids, where the physics within a small
process zone in the vicinity of the crack tip determines the
effective fracture properties [56]. Our simulations confirmed
that v0 and ℓ3 provide order-of-magnitude estimates of peel-
ing velocity and size of disturbed region (figure 3c,d).

However, the system exhibits a more complex behaviour
that depends on a delicate interplay not only of bond trans-
port and reactions but also of mechanics through h
(equations (2.3), (2.7) and (2.8)). This interplay controls the
dynamical organization in the moving process zone (elec-
tronic supplementary material, figure S3) and ultimately
front velocity. As in the diffusion-dominated case, we
found that dynamics are faster for a larger mechanical driv-
ing force θ. However, here v̂ is nearly proportional to the
vertical component of force (sin θ) (figure 3d, inset). We
finally examined the influence of the slip bond effect, finding
a very strong increase of v̂ as bonds became more sensitive to
force, i.e. when fb becomes smaller than the force scale close
to the edge given by fg (figure 3e).

In summary, unlike the non-local and self-stabilizing peel-
ing dynamics of the diffusion-dominated regime, here the
front moves at a constant speed that depends only on the
driving force and material parameters v̂ðu; Di, k, fb, �koff, �konÞ
akin to the kinetic law for the motion of a material interface
[57]. The unconventional tear-out described here also differs
from the classical tear-out for immobile bonds [15] in that it
fundamentally depends not only on marginal unbinding
but also on small-scale diffusion near the front.
3.3. Reaction–diffusion regime
To examine an intermediate regime, we kept the off-rate
�koff ¼ 10 s�1 representative of weak bonds such as cadherins
and considered diffusion constants typical of adhesion mol-
ecules on lipid membranes, D2 = 2D1 = 0.5 μm2 s−1. In this
regime, depending on the magnitude of the applied force,
the adhesive patch can either fail or reach a stable configur-
ation with full uniformization and equilibration of the
chemical potentials of bonds and free binders (electronic
supplementary material, movie S4). With our choice of �koff,
reactions take place much faster than diffusion, τreac≈
0.1 s≪ τdiff,1≈ 25 s, and thus chemical potentials between
bonds and free binders locally equilibrate very quickly in
the adhesion patch (electronic supplementary material,
figure S4a). For longer lived bonds, e.g. �koff ¼ 0:1 s�1, reac-
tions and diffusion dynamically compete (electronic
supplementary material, figure S4b), leading to stronger
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adhesions as a whole (electronic supplementary material,
figure S4c,d).

Going back to the case of fast reaction rates (�koff ¼ 10 s�1)
and first focusing on compliant ideal bonds (fb ¼ þ1),
we studied in detail the peeling dynamics, which exhibit mul-
tiple scales in space and time, as shown the kymographs
(figure 4b–e). At short times commensurate with the diffusion
time scale in the patch τdiff,1, the dynamics proceed similarly
to a self-similar diffusion-dominated regime (figure 4d,f, inset),
but now, as in the reaction-dominated regime, fast unbinding
localizes at the edge of the patch to reduce the chemical
potential of stretched and concentrated bonds (figure 4e), lead-
ing to a fast initial decrease of the total number of bonds
(figure 4g, inset). Examining early times, t = t1, t2, even if μ1
and μ2 equilibrate and uniformize within the adhesion patch,
the local excess chemical potential of free binders μ2 resulting
from fast unbinding has not had time to equilibrate in the rest
of the vesicle, driving diffusion of free binders away from the
patch (figure 4a,b), thereby reducing μ2 in the patch and further
driving unbinding reactions (figure 4g). This process is much
slower since it is controlled by the diffusive time scale over
the vesicle, τdiff,2 = 100τdiff,1. Since τdiff,2≫ τdiff,1≫ τreac, now reac-
tions take place nearly uniformly in a quasi-equilibrated
adhesion patch. With fewer bonds, mechanical equilibrium at
the interface requires reducing the size of the patch, which
decreases the contact angle and increases bond concentration
(equation (2.10)). In turn, the higher bond concentration favours
further unbinding. Thus, the much slower dynamics during this
second phase are complex, multi-phasic and depend on the dif-
fusion of free binders over the entire vesicle with time scale τdiff,2
(figure 4f,g).

The speed and outcome of these dynamics depend on the
magnitude of F. To characterize adhesion strength, we simu-
lated the dynamics for different forces and tracked the time to
complete failure tfail (figure 4h), finding that lifetime very
abruptly increases as force is reduced [36]. This suggests
the existence of a threshold force below which the patch is
long-lived and above which decohesion occurs rapidly.
Consistent with this, lifetime closely follows a power law
t / ðF� FcÞa with a≈−2.2 and the critical force Fc a fitting
parameter (figure 4h, inset). Thus, Fc can be interpreted as
the strength of the adhesion patch. This mesoscopic notion
of strength should depend on the microscopic strength of
individual bonds given by fb. As in the FKPP regime, we
found that force sensitivity of slip bonds only plays a signifi-
cant role when fb , fg, in which case lifetime at fixed F and
strength dramatically reduce (figure 4h).

Up to now, our model assumes a dilute limit of molecules
on the membrane. However, force application leads to
increasing molecular crowding, which should affect the



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220183

9
dynamics of decohesion by changing the interplay between
reactions and diffusion. Crowding has been shown to facili-
tate passive endocytosis of particles with mobile binders
[58] and to modify the mechanisms and morphology of nas-
cent adhesions [59]. We thus developed a model accounting
for crowding by considering a more general expression for
the mixing entropy based on the Flory–Huggins theory that
included cross-diffusion effects (electronic supplementary
material, note 1). According to this model, close to a maxi-
mum concentration of molecules, cmax, the chemical
potential of bonds

m1 ¼ m0
1 þ kBT

c1
c0

� 2kBT log
cmax � c1 � c2

cmax

� �
þ kBT

h
xg

� �2

ð3:3Þ
rapidly increases, which accelerates unbinding reactions and
increases the effective diffusion coefficient. Close to the
crowding limit, the osmotic tension of bonds takes the form
−kBT(2cmaxlog [(cmax − c1)/cmax] + c1), which blows up as
c1→ cmax and reduces to the van’t Hoff form kBT c1 used
before in the dilute limit c1≪ cmax. For high crowding
(cmax/c0 = 5), our simulations show that concentrations uni-
formize much more rapidly than in the dilute limit and to a
lower value as saturation is reached in the patch (figure 5a).
The patch rapidly shrinks until failure because
of unbinding reactions taking place throughout the adhesion
driven by the higher chemical potential of bonds in a
crowded situation (figure 5b–e). Systematic simulations at
various forces show that crowding accelerates failure and
reduces Fc analogously to the effect of slip bond sensitivity
(figure 5f ). Hence, crowding weakens the adhesion patch
by favouring a tear-out mechanism with diffuse unbinding
(figure 5c), different from the FKPP regime exhibiting
highly localized marginal unbinding (figure 3a). For cadher-
ins on lipid vesicles, cmax/c0≈ 20 [60], our model still
predicts significant weakening caused by crowding relative
to the dilute limit. Our analysis does not include the effect
of other membrane molecules, which can act as crowders
but not contribute to adhesion.
4. Summary and discussion
In summary, we have developed an out-of-equilibrium model
self-consistently coupling diffusion, binding and unbinding
reactions and mechanics to understand the dynamics of peel-
ing between fluid membranes bridged by mobile adhesion
molecules forming transient bonds. We have used this
model to map various distinct and biologically relevant scen-
arios of forced decohesion amenable to experimental
examination. In all of these scenarios, the macroscopic peel-
ing behaviour depends on the physics occurring in a very
small process zone close to the edge of the adhesion patch.
(i) For long-lived mobile bonds, adhesion patches shrink
and become concentrated in a self-stabilizing process con-
trolled by diffusion. At short times, the system evolves
according to the self-similar dynamics of a classical Stefan
problem with the interface moving as ðŝðtÞ � ŝ0Þ/

ffiffi
t

p
.

(ii) For short-lived bonds with low diffusivity, such as cadher-
ins partially immobilized by the cytoskeleton, we have
identified a new unconventional tear-out regime character-
ized by FKPP-like travelling solutions with ðŝðtÞ � ŝ0Þ/ t,
which are localized reactions in the vicinity of the interface,
but also by small-scale diffusion in a process zone of sizeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1=�koff
q

. The interplay between diffusion and reactions
sets the order of magnitude of the front speed

ffiffiffiffiffiffiffiffiffiffiffiffiffi
D1

�koff
p

, but
this speed is strongly influenced by the applied force and
by the ratio between force sensitivity fb and the characteristic
force born by bonds close to the interface fg ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k � kBT
p

. (iii)
For mobile short-lived bonds such as cadherins on a lipid
membrane, the system exhibits a hierarchy of reaction and
diffusion time scales resulting in multi-phasic dynamics.
The reinforcing effect of bond motion and the weakening
effect of bond breaking compete in a force-dependent
manner, defining the strength of the patch below which peel-
ing arrests and above which peeling rapidly leads to
complete failure. Strength strongly decreases for sensitive
bonds (fb ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k � kBT

p
) and with molecular crowding.

Although our minimal model ignores important aspects of
cell–cell adhesion, the physical rules identified here should
bear biological relevance. We have shown how the ability of
bonds to laterally move in fluid–fluid adhesive interfaces
leads to a very rich repertoire of peeling scenarios that cells
can use to stabilize cell–cell junctions during physiological
stretch, or to selectively detach during morphogenesis. For
instance, cells can effectively tune adhesive strength, and
hence their ability to stay adhered or to disengage, by control-
lingmolecular properties of bonds such as stiffness k and force
sensitivity fb, e.g. through extracellular Ca2+, by controlling the
number of transmembrane crowding molecules or by control-
ling the actively generated surface tension. Beyond cells, our
study also provides a conceptual framework for artificial bio-
mimetic systems with a comparable degree of adhesive
tunability [45].
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