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ABSTRACT
Urbanization transforms undeveloped landscapes into built environments, causing

changes in communities and ecological processes. Flying arthropods play important

roles in these processes as pollinators, decomposers, and predators, and can be

important in structuring food webs. The goal of this study was to identify

associations between urbanization and the composition of communities of flying

(and floating) arthropods within gardens and parks in a medium-sized mesic city.

We predicted that flying arthropod abundance and diversity would respond strongly

to percent impervious surface and distance to city center, measurements of

urbanization. Flying arthropods were sampled from 30 gardens and parks along an

urbanization gradient in Toledo, Ohio, during July and August 2016, using elevated

pan traps. A variety of potential predictor variables were also recorded at each site.

We collected a total of 2,369 individuals representing nine orders. We found that

flying arthropod community composition was associated with percent impervious

surface and canopy cover. Overall flying arthropod abundance was negatively

associated with percent impervious surface and positively associated with distance to

city center. Hymenoptera (bees, wasps, ants), Lepidoptera (moths, butterflies), and

Araneae (spiders) were positively associated with distance to city center. Hemiptera

(true bugs), Diptera (flies), and Araneae were negatively associated with percent

impervious surface. Both distance to city center and percent impervious surface are

metrics of urbanization, and this study shows how these factors influence flying

arthropod communities in urban gardens and city parks, including significant

reductions in taxa that contain pollinators and predators important to urban

agriculture and forestry. A variety of environmental factors also showed significant

associations with responses (e.g. canopy cover and soil moisture), suggesting these

factors may underlie or modulate the urbanization effects. More research is needed

to determine mechanisms of change.

Subjects Biodiversity, Ecology, Entomology, Biosphere Interactions, Natural Resource

Management

Keywords Impervious surface, Urbanization, Flying arthropods, Soil moisture, Distance to city
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INTRODUCTION
For the past two centuries, the global population has migrated from rural landscapes

into densely populated urban environments. Currently more than half of the world’s
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population resides in urban regions (United Nations, 2014), and this number is growing.

As more people move into urban regions, habitats are transformed into built

environments and this impacts biodiversity and ecosystem processes (McKinney, 2008).

The process of urbanization fragments landscapes and creates a mosaic of habitat patches

of different size, use, and quality. Urbanization has been found to be a contributor to

species endangerment (Czech, Krausman & Devers, 2000), and often leads to the

homogenization of biotic communities (McKinney, 2006; Groffman et al., 2014). In

addition, habitat loss and fragmentation in cities can alter important species interactions,

such as plant–pollinator interactions (Harrison & Winfree, 2015). These changes in

community structure and species interactions may affect important abiotic and biotic

processes, like pollination, nutrient cycling, and decomposition (McIntyre et al., 2001),

in the locations where most people now live. Thus, it is important to understand how

urbanization influences organisms in order to maintain the services these organisms

provide.

Urbanization can have strong positive and negative effects on a variety of organisms,

making patterns of change unclear. Bird diversity, in general, is negatively affected

(Blair, 2004), but total bird abundance and that of introduced species can be positively

affected (Clergeau et al., 1998). Arthropod pests can have higher abundances in urban

habitats, possibly due to reduced predation and parasitism (Kahn, 1988; Kahn & Cornell,

1989; McIntyre, 2000; Meineke et al., 2017), or due to direct environmental effects

(Meineke et al., 2013; Dale & Frank, 2014), facilitating their proliferation and the

likelihood of outbreaks. Others have argued that urbanization homogenizes biological

communities because certain taxa are able to take advantage of urban environments

worldwide (McKinney, 2006). But much remains to be understood about how

urbanization influences biota.

Flying arthropods are abundant and diverse, and perform numerous ecosystem

functions within urban environments. Many studies have shown that arthropod diversity

along urbanization gradients is lowest near urban centers (Centeno, Almorza & Arnillas,

2004; Venn, Kotze & Niemela, 2003; Blair & Launer, 1997). However, one study found that

ant richness can be higher with urbanization (Uno, Cotton & Philpott, 2010). Differences

in abundance and richness across urban environments can result in shifts in the

composition of ant assemblages (Uno, Cotton & Philpott, 2010), and bee communities

(McIntyre & Hostetler, 2001; Pardee & Philpott, 2014). Some influential drivers of

Hymenoptera (ants, bees, wasps) population declines in urbanized areas include habitat

fragmentation and pollution (Potts et al., 2010). Studies have shown that impervious

surface cover has a negative effect on specialist cavity and ground nesting bees

(Geslin et al., 2016; Threlfall et al., 2015), but a positive effect on generalist honeybees

(Threlfall et al., 2015). Lepidoptera (butterflies, moths) have also been shown to have

reduced species richness in heavily urbanized areas (McGeoch & Chown, 1997). Much of

the reduction in Lepidoptera species richness is caused by a loss of vegetation or the

replacement of native with introduced plants (Majer, 1997). Furthermore, the plants many

adult butterflies depend on for nectar can be more sensitive to heavy metal pollutants

(Mulder et al., 2005), and this further explains the negative effects of urbanization on
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butterflies. Diptera abundance and community composition have also been found to vary

along urbanization gradients (Avondet et al., 2003). Hemiptera abundance has been shown

to increase with building cover, and to decrease with proximity to natural habitat cover

in an urban environment (Philpott et al., 2014). Thus, flying arthropods may respond

strongly to urbanization, but additional work is needed to help us gain a better

understanding of the mechanisms behind these patterns and the potential effects on

ecosystem functions and services.

Two important habitat types within urban environments are urban gardens and city

parks. Urban gardens are an important source of local, healthy food (Taylor & Ard, 2015),

and are increasingly used in the remediation of vacant lots in post-industrial cities like

Detroit and Toledo (Our City in a Garden, 2010). Additionally, urban food production

accounts for 15–20% of the global food supply (Hodgson, Campbell & Bailkey, 2011). City

parks provide many social and psychological benefits to urban residents, along with

environmental services like air purification and noise reduction (Chiesura, 2004).

Furthermore, both urban gardens and city parks increase property values and can lead to

tax revenues for cities (Luttik, 2000; Bremer, Jenkens & Kanter, 2003). Flying arthropods

play important roles in urban gardens and city parks as pollinators, predators, and

decomposers. Therefore, understanding how urbanization impacts flying arthropods is

necessary to maintain the delivery of ecosystem services to urban gardens and city parks.

Here we examine how the abundance, diversity, and composition of flying (and

floating) arthropod communities change with urbanization (percent impervious surface

and distance to city center) in urban gardens and city parks. We predicted that flying

arthropod abundance and diversity would be strongly correlated with percent impervious

surface and distance to city center. In addition, we explored associations with other

environmental variables and local habitat characteristics, in the hopes of identifying

factors that might be influencing these communities across changes in urbanization, for

future investigation.

METHODS
Site location
This study was conducted in Toledo, OH, USA. We sampled flying arthropods in a total of

30 parks and garden across the metro Toledo region (Fig. 1). Sites were chosen by

overlaying a grid (2 � 2 km) across a Northwest Ohio map and assigning each grid cell a

number value. A random number generator was used to select which grid cells we used

in our study. Within each selected grid cell, a park, or garden was chosen. Garden sites

were managed by the Toledo Botanical Gardens outreach program and the MultiFaith

Grows organization. Park sites were managed by the following entities: Toledo City Parks,

Olander Parks Systems, Toledo Zoo, Wood County Parks, and the City of Holland.

Sampling methods
Flying (and floating) arthropods were sampled using elevated pan traps in July and August

2016 (Permit: Ohio Division of Wildlife 17-204). Elevated pan traps were constructed by

placing a 175 ml bowl atop a 1 m PVC pipe (Tuell & Isaacs, 2009). Bowls were painted
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white (#137990), blue (#51910), or yellow (#51806) using Krylon ColorMaster� spray

paint. Each site contained three of each color type, for a total of nine elevated pan traps

per site. Traps were left in the field for 24 h. Each pan trap contained a water and soap

mixture. Sites were sampled once per month on days with weather conditions that were

sunny with a temperature of at least 70 �F. Upon collection, insects were rinsed with water

and placed into vials containing ethanol to preserve specimens. Specimens were stored

and identified to order.

Habitat characteristics
Local habitat characteristics of each site were recorded during each sampling event

(Table 1). We calculated the canopy cover at the center of each site in four cardinal

directions using a densiometer. We counted the total number of trees within 25 m of

the site’s center. We walked a 10 m transect starting at the site’s center and counted the

number of flowers and floral colors for all vegetation within 1 m on each side of the

transect. Ground cover was measured by randomly placing four 1 m quadrats along each

transect, calculated as a percentage in the following categories: bare ground, debris,

herbaceous vegetation, leaf litter, or woody vegetation. Volumetric soil moisture was

measured using a soil moisture meter (Delta-T Devices SM150) at four random points

along each transect. Unshaded air temperature and relative humidity were taken with a

handheld weather station (Ambient Weather WS-HT-350). Percent impervious surface

was measured within a 300 m radius circle around the center of each site using the NLCD

2011 Percent Developed Imperviousness dataset from the National Land Cover Database.

Figure 1 Map displaying site locations and percent impervious surface data in Toledo, Ohio. Darker

colors indicate high impervious surface and light colors indicate low impervious surface.
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The distance of each site to the city center of Toledo (i.e. City Hall) was measured using

Google Earth.

Multivariate responses
We tested for associations between environmental factors and flying arthropod

community composition with nonparametric permutational anova (adonis) using the

“vegan” package of R (Oksanen et al., 2017). Also within this package, we used non-metric

multidimensional scaling (metaMDS) to show differences in community composition

between sites, and used the “envfit” function to show associations with environmental

factors. Bray–Curtis distances were used for all community composition techniques. For

these multivariate analyses, we analyzed data combined from the two months, removing

the need for repeated measures statistical approaches. We used the correlation function

(cor) in R to test for collinearity between environmental variables, and environmental

variables were considered highly correlated at a correlation coefficient of r = ±0.7. When

this occurred, one of the two highly correlated variables was dropped from the analysis.

Univariate responses
All statistical analyses utilized the program R (R Development Core Team, 2015). The

“vegan” package in R was used to calculate the Shannon Diversity Index and Pielou’s

Evenness (Oksanen et al., 2017). We tested for associations of abundance (total flying

arthropod and within order), diversity, or evenness of flying arthropods with our

environmental factors and metrics of urbanization (percent impervious surface and

distance to city center) using linear regression analysis. Abundance data were log-

transformed, and evenness data were squared to better meet the normality and equal

variance assumptions (assessed via plots of residuals). We consider a values below 0.1 to

Table 1 Description of environmental variables included in this study.

Factor Description

Percent canopy cover Measurements of canopy cover using a densiometer in four cardinal

directions of the site center

Tree counts Total number of trees greater than 1 m in height within a 10 m radius

of the site center

Flower counts Total number of blooming flowers along a 10 m transect

Floral colors Type of bloom color of each flower along a 10 m transect

Percent herbaceous cover Visual estimate of herbaceous cover calculated by averaging the values

from four 1 m quadrats

Percent bare ground Visual estimate of bare ground calculated by averaging the values

from four 1 m quadrats

Soil moisture Measurement of percent soil moisture using a soil moisture meter

Temperature Measurement of ambient temperature at the site center using a

weather station

Humidity Measurement of humidity at the site center using a weather station

Percent impervious surface Calculated within a 300 m buffer surrounding each site center

using the NLCD 2011 percent developed imperviousness dataset

Distance to city center Distance from the site center to the center of Toledo (i.e. City Hall)
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point toward potential patterns in need of further exploration and specify our exact

p values explicitly throughout. The purpose of this research is to identify patterns rather

than test hypotheses. Future research will be needed to test hypotheses and infer

mechanisms.

RESULTS
Collection summary statistics
We sampled and identified 2,369 individual arthropods representing nine orders (Araneae,

Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera, Odonata, Orthoptera, and

Thysanoptera). The three most common orders in terms of relative abundance were

Diptera (∼30% of all sampled insects), Hymenoptera (∼29% of all sampled insects), and

Coleoptera (∼15% of all sampled insects). Diptera varied from 0 to 63 individuals per site,

Coleoptera varied from 0 to 40, and Hymenoptera varied from 0 to 45.

At each site, we measured a wide range of values for our environmental variables of

canopy cover (0–82.3%), number of trees (0–10 individuals), soil moisture (6.0–62.3%),

impervious surface (5.6–73.3%), humidity (28.4–75%), temperature (70.3–100.4 �F),
herbaceous cover (45–97.5%), bare ground (0–37.5%), distance to city center (638–21,884m),

and flower abundance (6–202). We tested for collinearity between environmental

variables, and removed bare ground from further analyses due to its high collinearity with

herbaceous cover (r = -0.78).

Community composition results
Our PERMANOVA (Table 2) test showed two environmental variables that were

associated with flying arthropod community composition: impervious surface

(F1,20 = 4.39, p = 0.004 at a = 0.05; Fig. 2) and canopy cover (F1,20 = 2.31, p = 0.057 at

a = 0.1; Fig. 2).

Table 2 Results comparing flying arthropod community composition with environmental variables

from our PERMANOVA analysis.

Source df Sum of squares Mean of squares F model R2 p Value1

Impervious surface 1 0.38 0.38 4.39 0.13 0.004

Canopy 1 0.20 0.20 2.31 0.07 0.057

Trees 1 0.05 0.05 0.63 0.02 0.648

Soil 1 0.16 0.16 1.85 0.06 0.107

Humidity 1 0.05 0.05 0.62 0.02 0.692

Flowers 1 0.09 0.09 0.99 0.03 0.418

Temp 1 0.03 0.03 0.35 0.01 0.879

Herbaceous 1 0.15 0.15 1.78 0.05 0.113

Distance 1 0.06 0.06 0.64 0.02 0.670

Residuals 20 1.73 0.09 0.60

Total 29 2.90 1

Notes:
These results indicate that impervious surface and canopy cover were related to flying arthropod community
composition (at a = 0.05 or 0.1, respectively).
1 Bold indicates significance at a = 0.05 and italics at a = 0.1.
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Distance to city center results
The total abundance of flying arthropods was positively associated with distance to city

center (Fig. 3). For order-specific responses, we found positive associations with distance

to city center for abundances of Lepidoptera (F1,27 = 10.523, p = 0.003), Hymenoptera

(F1,26 = 4.686, p = 0.0398), and Araneae (F1,26 = 3.742, p = 0.064 at a = 0.1). Distance to

city center was not associated with the diversity or evenness of flying arthropod

communities.

Percent impervious surface results
The total abundance of flying arthropods was negatively associated with impervious

surface (Fig. 3). For order-specific responses, we found negative associations with

percent impervious surface for abundances of Araneae (F1,26 = 4.682, p = 0.040),

Diptera (F1,28 = 6.739, p = 0.0149), and Hemiptera (F1,25 = 3.228, p = 0.084 at a = 0.1).
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Figure 2 Non-metric multidimensional (NMDS) scaling analysis for flying arthropod orders

sampled in Toledo, OH. (A) All environmental variables are plotted with arrows connected to each

variable. (B) Impervious surface was found to have a significant association at a = 0.05 and canopy cover

at a = 0.1, with flying arthropod community composition.
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Figure 3 Panels displaying associations with distance to city center (A–D) and percent impervious

surface (E–G). An asterisk (�) indicates significant associations at a = 0.05 while others represent

significant associations at a = 0.1.

Lagucki et al. (2017), PeerJ, DOI 10.7717/peerj.3620 8/16

http://dx.doi.org/10.7717/peerj.3620
https://peerj.com/


Percent impervious surface was not associated with the diversity or evenness of flying

arthropod communities.

Vegetation results
The total abundance of all flying arthropods combined was negatively associated with

canopy cover and herbaceous cover, and positively associated with the number of

flowering plants (Table 3). For order-specific response, we found negative associations

with canopy cover for the abundances of Hemiptera (F1,25 = 4.385, p = 0.047) and

Hymenoptera (F1,26 = 3.865, p = 0.0601 at a = 0.1). Additionally, Lepidoptera abundance

was negatively associated with the number of trees (F1,27 = 4.472, p = 0.0438), and

Hemiptera abundance was negatively associated with herbaceous cover (F1,25 = 9.664,

p = 0.005). Vegetation factors were not associated with the diversity or evenness of flying

arthropod communities.

Soil moisture results
The total abundance of all flying arthropods was positively associated with soil moisture.

Arthropod diversity was also positively associated with soil moisture. For order-specific

responses, we found positive associations with soil moisture and the abundances of

Table 3 Associations between environmental factors and response factors.

Response metric R2 Environmental factor Relationship p Value

Total arthropod abundance 0.43 Canopy cover - 0.028*

Impervious surface + 0.033*

Distance + 0.017*

Flowers + 0.024*

Herbaceous cover - 0.005*

Soil moisture + 0.039*

Arthropod diversity (orders) 0.05 Soil moisture + 0.095

Lepidoptera abundance 0.17 Trees - 0.044*

Distance + 0.003*

Hemiptera abundance 0.26 Canopy cover - 0.047*

Impervious surface - 0.084

Soil moisture + 0.039*

Herbaceous cover - 0.005*

Hymenoptera abundance 0.18 Distance + 0.040*

Canopy - 0.060

Soil moisture + 0.095

Araneae abundance 0.24 Impervious surface - 0.040*

Distance + 0.064

Soil moisture + 0.080

Diptera abundance 0.12 Impervious surface - 0.015*

Note:
Multiple R2 values are given for each response metric model. An asterisk (*) indicates significant associations at a = 0.05
while others represent significance at a = 0.10.
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Hemiptera (F1,25 = 4.762, p = 0.039), Hymenoptera (F1,26 = 3.001, p = 0.0951 at a = 0.1),

and Araneae (F1,26 = 3.312, p = 0.080 at a = 0.1).

DISCUSSION
Understanding how flying arthropod communities are impacted with urban gardens

and city parks in urban areas is important for maintaining the many ecosystem functions

flying arthropods provide. We found evidence that pollinator-containing orders of insects

(i.e. Hymenoptera, Lepidoptera) are less abundant with more impervious surface and

more abundant farther from the city center (i.e. Diptera). These patterns are supported

across the literature for butterflies (Clark, Reed & Chew, 2007; Mauro, Dietz & Rockwood,

2007), bees (Hernandez, Frankie & Thorp, 2009), and parasitoids (Bennett & Gratton,

2012). In addition, we found evidence that orders containing both pests and predators

(i.e. Araneae and Hemiptera) are less abundant with more impervious surface. These

results are interesting because many of these taxa are important in providing pollination

and pest control services for urban gardens and city parks. More research targeting the

mechanisms of effect upon these taxa is needed.

Associations with distance
We found more flying arthropods in general, and more Araneae, Hymenoptera, and

Lepidoptera farther from the city center. Hulsmann et al. (2015) found a similar pattern

with distance to city center for bumblebee abundance and diversity, while Pacheco &

Vasconcelos (2007) found no effect on ant abundance in an urban region. Others have

found that butterfly abundance peaks at intermediate distances (Blair & Launer 1997).

Peaks in abundance at intermediate distances may be explained by additional food and

water resources made available in suburban regions, while peaks at distances further from

the urban core are often explained by plant community composition and density

(Hulsmann et al., 2015).

Associations with impervious surface
We found that impervious surface was associated with shifts in flying arthropod community

composition, with fewer flying arthropods overall with higher impervious surface.

In addition, Hemiptera, Araneae, and Diptera showed lower abundances with more

impervious surface. Studies have shown similar patterns for bumblebees (Ahrne, Bengtsson

& Elmqvist, 2009), ground spiders (Kaltsas et al., 2014), and tree spiders (Meineke et al.,

2017). However, scale insects (Hemiptera) are positively affected by impervious surface

(Dale, Youngsteadt & Frank, 2016; Speight et al., 1998). Other studies have found percent

impervious surface to have no effect on the abundance of arthropods (Pacheco &

Vasconcelos, 2007). One mechanism to explain why impervious surface reduced arthropod

abundance is a species-area effect, since impervious surfaces can lead to a loss in habitat area

(McKinney, 2008). Another mechanism is a physiological effect of impervious surface on

arthropods. Diamond et al. (2017) found difference in physiological limits for ants sampled

at sites with high and low impervious surface. However, many other possibilities exist

(e.g. increased soil contaminates, reduced nesting sites).
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It is interesting to note that except for spiders, the orders influenced by distance to city

center were different than those influenced by percent impervious surface. This suggests

that Hymenoptera and Lepidoptera may be more influenced by habitat fragmentation and

a loss of connectivity, while Hemiptera and Diptera may be more influenced by local

habitat characteristics associated with impervious surface (e.g. increased temperatures).

This hypothesis warrants further testing.

Association with vegetation factors
We found negative associations with canopy and herbaceous cover on Hymenoptera and

Hemiptera abundance, as well as overall flying arthropod abundance. Additionally,

canopy cover was associated with the composition of flying arthropod communities.

Previous studies in urban systems support our findings on canopy cover, but not

herbaceous cover. Studies show that canopy cover reduces herbivorous ground arthropod

abundance (Philpott et al., 2014), and has a significant impact on ant community

composition (Uno, Cotton & Philpott, 2010). But these studies found herbaceous cover to

have positive or no effects on arthropods, and others have found similar positive effects of

herbaceous cover on arthropods (Pinna et al., 2008). The differences between our findings

(negative associations with herbaceous cover) and those of others (positive or no

associations) may be due to the herbaceous cover structure or composition (i.e. height,

diversity, or type). Studies have found that vegetation height is an important predictor of

community composition for leafhoppers and grasshoppers (Strauss & Biedermann, 2006).

Our findings that the total arthropod abundance was negatively associated with

herbaceous cover, but positively associated with flowing plants, could be explained by

aspects of herbaceous cover for which we did not account. One might expect flowering

plants to be associated with herbaceous vegetation in undeveloped areas, but we suggest

that this relationship may not hold in managed urban landscapes, where turf grass is part

of the herbaceous cover. Additionally, a previous study showed that Hymenoptera were

more attracted to specific plant species, and not necessarily diverse gardens (Barbir et al.,

2015). Combined this suggests that the relative abundance of herbaceous vegetation

should not necessarily be expected to be positively associated with arthropod abundance

in urban areas.

Associations with soil moisture
Soil moisture also had strong associations with flying arthropod abundance. Soil moisture

was the only factor to have positive associations on arthropod diversity, and it was

positively associated with the abundance of Araneae, Hemiptera, and Hymenoptera.

Studies have found positive effects of soil moisture on arthropod movement

(Green, Scharf & Bennett, 2005), arthropod water content (McCluney, Burdine & Frank,

2017), and arthropod abundance (Allen et al., 2014), but research is lacking on the role of

soil moisture in altering community composition and diversity. However, a study found

that the absolute number of insect species increased with increasing soil moisture levels

and suggests that soil moisture plays a key role in overall ecosystem health (Janzen &

Schoener, 1968). Our finding that soil moisture is associated with flying arthropod
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abundance and diversity is interesting because urban gardens (and many city parks) are

irrigated and receive water inputs. Studies have shown that irrigation can positively

impact arthropod abundance (Cook & Faeth, 2006), and these inputs could be important

in maintaining abundant and diverse flying arthropod communities in urbanized sites.

Conclusion
Understanding drivers of flying arthropod declines is necessary in maintaining the

important services they provide in urban gardens and city parks. Upwards of 150

agricultural crops in the US require pollination services, and flying arthropods are the

primary pollinator of these crops. Additionally, pest control services are important in

reducing crop loss. With estimates that 15–20% of the world’s food supply comes from

urban agriculture (Maxwell et al., 2000), conservation of flying arthropods with urban

environments should be an issue of global concern. The patterns we observed indicate that

urbanization plays an important role in shaping arthropod communities, and particularly

may reduce the abundance of Lepidoptera and Hymenoptera.
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