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Molecular interactions provide paths for information flows. Genetic interactions reveal active
information flows and reflect their functional consequences. We integrated these complementary
data types to model the transcription network controlling cell differentiation in yeast. Genetic
interactions were inferred from linear decomposition of gene expression data and were used to
direct the construction of a molecular interaction network mediating these genetic effects. This
network included both known and novel regulatory influences, and predicted genetic interactions.
For corresponding combinations of mutations, the network model predicted quantitative gene
expression profiles and precise phenotypic effects. Multiple predictions were tested and verified.
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Introduction

Identifying causal links between genetic variation and
phenotype is a central challenge of modern genetics. The
combination of gene perturbation technology (Fire et al, 1998;
Winzeler et al, 2000) and high-throughput phenotype assays
(Drees et al, 2005; Dudley et al, 2005) enables rapid
identification of genes active in a biological response. Linkages
between individual genes and specific phenotypes can also be
established statistically by detecting quantitative trait loci
(QTLs) (Barton and Keightley, 2002). However, formulating
biomolecular models based on these techniques is difficult,
because most phenotypes are controlled by multiple genes
with multiple allelic variants. Moreover, the alleles of these
genes often interact in complex ways to affect phenotype
(Shook and Johnson, 1999; Steinmetz et al, 2002; Carlborg and
Haley, 2004; Sinha et al, 2006). Thus it is necessary to model
functional relationships between relevant (i.e. trait) genes
instead of viewing each gene as an independent factor. The
resulting network models will have the capacity to predict,
systematically and explicitly, the effects of multiple interacting
genetic perturbations. This capacity will enable testing of
genetically complex hypotheses, prioritization of candidate
genes for targeted intervention, and the personalization of
prognoses and therapies (Ideker et al, 2001; Galitski, 2004).

The identification of functionally relevant interactions in
databases of diverse high-throughput data types is a sub-
stantial challenge for the construction of predictive network
models. Many recent efforts have sought to distill functionally
important information by detecting systematic congruences in
multiple large data sets (Wong et al, 2004; Sachs et al, 2005;
Segre et al, 2005; Workman et al, 2006; Zhong and Sternberg,

2006). These approaches have had success in functionally
classifying genes and identifying probable candidate gene
pairs for the simple presence or absence of genetic interaction,
often defined either very broadly as any genetic nonindepen-
dence (Zhong and Sternberg, 2006) or very narrowly as one
particular interaction mode such as negative synthesis (Tong
et al, 2004). In contrast, our goals are to infer specific
functional relationships to drive network modeling, and to
make precise testable predictions for novel combinatorial
perturbations of genes.

Accordingly, we developed an analysis of genetic interaction
as a quantitative influence and used the results to direct the
integration of molecular (physical) interaction data. We define
these influences as positive or negative numbers of varying
magnitude that account for the fraction of a measurable
phenotype (e.g. the expression of a gene) inferred to be caused
by a system element (e.g. a regulatory protein). The measured
phenotype is modeled by multiple influences acting through-
out the inferred network. Our mathematical modeling is based
on the classical genetic-interaction approach of observing how
genetic perturbations interact to affect phenotypes, thereby
revealing functional relationships such as activation, repres-
sion, and pathway order (Avery and Wasserman, 1992).
However, because mutant phenotypes result from the activ-
ities of complex molecular pathways, the biochemical inter-
pretation of a genetic interaction is often ambiguous and
frequently involves multiple alternative molecular models and
both direct and indirect mechanisms (Kelley and Ideker, 2005;
Zhang et al, 2005). Conversely, molecular interactions,
plentifully generated through high-throughput methods, often
lack in functional interpretation or are of uncertain relevance
to specific genetic observations (Galitski, 2004). Therefore,
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our approach is to exploit this complementarity of genetic and
molecular interactions. Our approach is to (i) decompose
genetic-interaction data into influences encoding genetically
direct and indirect effects and (ii) use the molecular wiring to
constrain the molecular interpretation of genetic interactions,
and thereby assign function to specific molecular interaction
paths.

Results

Our approach required genetic manipulations, genome-scale
molecular-interaction data sets, and efficient phenotype
assays. Thus we used the filamentous growth response of
budding yeast as a model system (Gimeno et al, 1992; Lengeler
et al, 2000). In response to environmental cues, yeast cells
switch from their round single-cell growth form to a pathogen-
like, adhesive, invasive, filamentous form (also known as
pseudohyphal growth). Both the filamentous-growth pheno-
type (Drees et al, 2005) and microarray data (Van Driessche
et al, 2005) have been shown to be suitable measurements for
the study of genetic interactions. We therefore constructed a
set of single gene and double gene deletion strains and assayed
each for filamentation phenotype and gene expression
(thousands of measurements per strain). We inferred specific
genetic influences from these data and used the results to guide
the integration of molecular-interaction data in a network
controlling filamentous growth.

Combinatorial genetic perturbation

Transcription factor genes were chosen for perturbation in our
study because they play a direct role in the regulation of gene
expression. Thus, they offer a good prospect of modeling their
effects on gene expression and phenotype. The genes of five
specific transcription factors known to regulate the filamen-
tous growth response were chosen for deletion: TEC1 (Gavrias
et al, 1996), SOK2 (Ward et al, 1995), SKN7 (Lorenz and
Heitman, 1998), SFL1 (Robertson and Fink, 1998), and CUP9
(Prinz et al, 2004). We refer to these starting-point genes as
seed genes. They were chosen because: (i) they show a full
range of single-mutant phenotypes (from strongly hypo-
filamentous to strongly hyper-filamentous), creating interest-
ing double-mutant combinations; and (ii) they are down-
stream of a representative group of major signaling pathways
involved in filamentous growth. The inference of a genetic
interaction requires comparing the phenotypes of four
genotypes: a ‘wild type’, two single mutants, and a double
mutant that carries both mutant genes. Thus, we studied 16
strains: the wild type, five single-gene deletion strains (tec1D,
cup9D, sfl1D, sok2D, skn7D), and all 10 combinatorial double
deletions (tec1Dcup9D, tec1Dsfl1D, etc.). Gene expression data
were collected for each strain under filamentous growth
conditions (Supplementary information). All subsequent
analyses were restricted to 1863 genes showing differential
expression (Supplementary information). Also, each strain
was phenotyped for filamentation (Supplementary informa-
tion). The results revealed a rich pattern of genetic interactions
with frequent occurrences of classical epistasis, in which a
double-mutant phenotype is the same as one of the mutations

(the epistatic mutation) and the other (hypostatic) mutation is
masked (Supplementary Table S1). For example, we found
TEC1 deletion to be epistatic to all other seed gene deletions
(i.e. the phenotypes of all tec1D-containing double-mutant
genotypes were like the tec1D phenotype), in agreement with
its known role as a major direct regulator of filamentation
genes (Chou et al, 2006).

Model of interacting genetic influences on gene
expression

We used data-driven linear decomposition to model genomic
expression and quantify genetic interactions. Matrix decom-
position methods, including singular value decomposition
(SVD) (Alter et al, 2000; Carter et al, 2006) and generalized
Network Component Analysis (gNCA) (Yang et al, 2005), have
proven successful in disentangling multiple overlapping
quantitative signals in microarray data. Our decomposition
method was designed to dissect the complexities of genetic
interactions (Materials and methods). The solution can be
represented as a network of influences, as illustrated in
Figure 1. This procedure results in the decomposition of an
expression data matrix D into two matrices: (i) an influence
matrix, X, of coefficients for the genotype-independent
influences of the seed genes on target genes; and (ii) a
genotype matrix, G, of inferred activity levels for the seed
genes in each genotype. This is concisely written as

D ¼ X:G ð1Þ

Thus, the genetically ‘direct’ (not necessarily molecularly
direct) influences from the seed genes to target genes are
separated quantitatively from the genetically ‘indirect’ effects
that involve a second seed gene and a genetic interaction. In
the genotype matrix, G, we define the wild-type activities to be
equal to one (gA

wt¼gb
wt¼y¼1); activity levels of null alleles are

fixed at zero (Materials and methods). Note that other allele
types can be accommodated readily with a measured level of
activity relative to the wild type. Other genotype matrix
elements (capturing genetic interactions) are unknown a
priori, but they can be calculated as activity changes relative to
wild type under perturbations of other seed genes (gA

BD, gB
AD,

gC
ADBD, etc.).
We performed a least-squares best-fit solution for the

decomposition defined by Equation (1) (Supplementary in-
formation). For our data set, the resulting model showed high
correlations with the observed expression profiles of all genes
across all experimental conditions (Materials and methods).
The inclusion of genetic interactions in the model accounted for
much of this correlation (Supplementary Figure S1).

We next integrated molecular interaction data with our
decomposition results to construct regulatory network models
(Materials and methods). Figure 2 illustrates the strategy with
a small network for the transcriptional regulation of the gene
DDR48, encoding an ATPase involved in stress response, cell
wall organization, and flocculation (Tonouchi et al, 1994).
This strategy was applied genome wide. As an example,
Figure 3 shows the inferred molecular network transmitting
positive influences from SKN7 to 54 genes. Networks were
constructed from molecular interactions that were specifically
selected based on the presence of quantitative influences (with
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sign, magnitude, and direction) inferred in the model. Path-
ways involving five or greater links were discarded because
they are longer than the average shortest connection between
any two elements in the global network, and thus are less
likely to be biologically relevant (Steffen et al, 2002). These
networks represent specific, testable hypotheses of influence
from the causal perturbation to the expression of affected
genes.

From the genotype matrix, G, in Equation (1), we inferred
quantitative cross-influences between seed genes that geneti-
cally interact (Figure 4A; Supplementary information). These

correspond to influences on inferred regulatory activity, rather
than seed gene expression. For instance, we inferred from
SKN7–CUP9 genetic interactions present throughout the
expression data that SKN7 has a positive influence on the
regulatory activity of CUP9 during the filamentous growth
response (Figures 2A and 4A). We found candidate molecular
paths to transmit these influences following the method
described above (Figure 2C and Supplementary Figure S2).
This allowed us to make predictions for perturbations of these
path genes, in which the modified influences alter genetic
interactions.
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Figure 1 Outline of modeling strategy. (A) Overall modeling strategy. (B) Genetic influences decomposition and corresponding networks for a simplified system of two
seed genes, A and B (circles), influencing the expression of three target genes, X, Y, and Z (boxes). The data matrix is decomposed in terms of influence and activity
variables, corresponding to all possible influences in the network. (C) Illustration with synthetic expression data of three genes in four strain backgrounds. Positive and
negative numbers in the influence matrix with magnitude greater than the significance cutoff (0.1) map to green and red edges in the network, respectively. Black
numbers correspond to expression data and activities fixed by genetic backgrounds (all wild-type activities are 1, the activity of the deleted gene A is gA

A¼0, etc), while
the red numbers are the best-fit solution of the system. In this example, the genotype matrix element of gene B in the A-deletion strain is reduced (gB

A¼0.5), from which a
positive influence from A to B is deduced and shown in the network.
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Figure 2 Directed data integration: modeling how TEC1, CUP9, and SKN7 control the expression of gene DDR48. (A) Network of inferred influences that cause
genetic interactions. Edges indicate the direction of positive (green) and negative (red) influences, with intensity indicating magnitude of influence. (B) Network of
physical interactions connecting the four genes from high-throughput data sets. This network is too dense and disorganized to identify functional pathways. Interactions
are protein–protein (blue), protein–DNA (orange), and protein phosphorylation (violet). (C) Integrated network constructed from the subset of molecular paths in (B) that
are specific candidates for transmission of influences in (A). Influences from the remaining seed genes (SOK2 and SFL1) have been omitted for clarity.
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Predictions of gene expression

We made quantitative predictions of gene expression for
additional perturbations. Because we could not associate the
background expression influences (Equation 2, x0, y0, etc.)
with specific molecular pathways, it was not clear what the
total effects of a novel single-mutant deletion would be.
However, we could predict precise expression levels for double
perturbations once the single perturbations were known. Thus
for each new double mutant, we predicted the quantity XADBD–
XAD–XBD for each gene. To make predictions for each new
double mutant, we removed a genetic influence (quantitative
contribution to gene expression) whenever the molecular path
from influencer to influenced was broken by deletion of a gene
on the path. If an alternative path of the same length exists, the
influence was not removed. This gave more accurate results
than removing the influence when an alternative path exists
(data not shown). This is consistent with studies that show
regulatory information often flows via parallel pathways
(Kelley and Ideker, 2005). For broken paths, both expression
influences in matrix X and activity influences in matrix G were
removed. The matrix X.G was recomputed (Equation (1)) to
obtain the prediction for mutant gene expression.

We compared our predictions to observed quantities. We
collected microarray gene expression data for four additional
single- and double-deletion strains: yap6D, cup9D yap6D,
sfl1D yap6D, and sok2D yap6D. YAP6, which is not a seed gene,
was chosen for its central role mediating influences from SFL1,
CUP9, and SOK2 to other genes (Supplementary Figure S2 and
Supplementary Table S3). For these YAP6 deletion strains, we
identified genes that receive expression influences putatively
transmitted by Yap6 (e.g. DDR48 in Figure 2; Supplementary
Table S2) and set those influence coefficients to zero. Yap6 is
also a candidate for transmitting influences among the seed
genes, specifically those from SFL1 and CUP9 (Figure 4A and

Supplementary Figure S2). We initially removed all putative
activity influences following the above procedure. These
included activity influences from SFL1 and CUP9 to TEC1,
SOK2, and each other, and from CUP9 to SKN7. Removal of all
of these resulted in poor predictions (data not shown). We
refined the model with minimal alteration, and after testing the
effects of the removal of each individual activity influence, we
found that prediction inaccuracy was almost entirely due to
the removal of the CUP9 influence on SKN7. This suggests a
parallel molecular path of influence from CUP9 to SKN7 that
was not mapped. Its absence is possibly due to one or more
interactions missing from current interaction databases. As a
refined hypothesis, we left this influence intact and removed
the others (Supplementary information). The deletion of YAP6
in combination with other deletions embodies direct tests of
the genetic interactions inferred explicitly in our model, and
predicted effects of varying degrees on all genes.

These gene expression predictions were evaluated. Table I
lists results for expression of all 1863 genes in our data set for
the additional double-mutant strains. We also show results for
a subset of genes determined to be filamentation-phenotype-
correlated (Mode-2 genes; see below). To assess the accuracy
of the model, we performed w2 tests over all data and
determined the likelihood of the result from a w2 distribution
(Supplementary information). We repeated the predictions
using a linearly additive control model that lacks influences
between seed genes and hence does not generate genetic
interactions (Supplementary information). We computed the
relative probability of the w2 fits of the genetic-interaction
model and the control model to determine the likelihood that
the genetic-interaction model performed significantly better.
Relative to the control, our model provided an improvement in
fit across almost all genes rather than large fit improvements
for a small subset of genes. The genome-wide improvement is
highly significant (Table I), and provides direct evidence for
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both the biological importance of genetic interactions and the
accuracy of our modeling technique.

Predictions of filamentation phenotype

We next sought to predict the filamentous-growth phenotype
for novel double-mutant strains by integrating filamentation
phenotype data and gene expression data. To find a connection
between these two data types, we performed SVD (Alter et al,
2000) on the gene expression data matrix for our 1863 genes
and compared the results with filamentation measurements.
SVD is an unsupervised algebraic method that mathematically

separates a data matrix into a set of ‘modes’ determined by
quantitative patterns within the data. Each mode is manifest in
the data as a global expression-pattern component that
contributes to the expression of each gene to a degree varying
from negligible to predominant. We examined the expression
patterns of the SVD modes for correlation with filamentation
data (Supplementary Table S1) for all 16 strains. We found that
SVD Mode 2, quantitatively the second-greatest expression
component (Supplementary Figure S3), was best correlated
with the phenotype data (Supplementary Figure S4; Supple-
mentary information). This implies that the 285 genes
(Supplementary Table S4) that strongly exhibit the Mode-2
expression component are a quantitative proxy for the
filamentation phenotype, even though this component is not
the most dominant pattern in the data. Supporting this
conclusion, ‘cell wall’ is the most significantly enriched (data
not shown) Gene Ontology (Ashburner et al, 2000) annotation
among the Mode-2 genes, which include the prototypical
filamentation gene FLO11 encoding a cell-wall protein, as well
as many other known filamentation genes. The results raise
the possibility that other SVD expression components and
cognate gene sets might correlate with other phenotypes
affected by our perturbations, such as cell adhesion
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Figure 4 Seed gene influence network, filamentation-specific molecular network, and topological motifs. (A) Genetic influences between the seed genes inferred from
genetic interactions. Green (red) arrows represent positive (negative) influence on regulatory activity. Color intensity is proportional to influence magnitude. (B) Mode-2
molecular network. The green box represents the Mode-2 genes with positive expression influences from the three topmost seed genes (TEC1, CUP9, and SFL1).
Seed genes influence each other as in (A). Yellow nodes are transcription factors with enriched binding targets among the influenced genes. White nodes are proteins
that fall on the shortest directionally consistent putative paths of influence from each seed gene to yellow transcription factors. Interactions are colored as: protein–protein
in blue, protein–DNA in orange, and protein phosphorylation in violet. Black arrows denote inferred influences for which no molecular path with fewer than five
interactions was found. Genes TEC1, CUP9, and MGA1 are themselves members of the Mode-2 gene set. (C) Network topologies. The three network motifs and
corresponding phenotype predictions for novel double-mutant pairs in (B). Labeled nodes denote deleted genes and inequalities represent phenotype predictions. Gray
nodes represent genes that influence the Mode-2 gene set (green box) and white nodes represent candidates for transmission of the influences. Edges represent paths
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Table I Summary statistics for gene expression predictions

Genes N w2 w2C P(w2)/P(w2C)

All genes 5589 0.16 0.20 1.7�10�208

Mode-2 855 0.25 0.33 9.1�10�40

Statistics for double mutants cup9D yap6D, sfl1D yap6D, and sok2D yap6D. N is
the number of predictions, and the subscript c refers to the additive control
model (see text). w2 values are reduced. Relative probabilities are computed with
the w2 distribution.
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(Robertson and Fink, 1998). More generally, SVD may be a
quantitative unbiased approach to associate distinct expres-
sion patterns with specific phenotypes obtained from other
assays.

The Mode-2 genes are significantly enriched with genes
bound by eight transcription factors (Supplementary Table
S5), of which six (TEC1, STE12, PHD1, SOK2, ROX1, and SKN7)
were known to have filamentous-growth-related phenotypes.
Subsequently, we found that deletions of the other two (MOT3
and SKO1) have filamentation phenotypes (see below).

Three (TEC1, CUP9, and SFL1) of the five transcription
factor seed genes had significant influences on the Mode-2
expression component (Supplementary information). These
influences were positive, and represent the genetically ‘direct’
effects of these seed genes on the expression of the Mode-2
genes. We found the shortest paths of molecular interactions to
connect these three seed genes to the enriched transcription
factors, although in some cases involving SFL1, no paths
shorter than five interactions could be found. This procedure
generated the Mode-2 network (Figure 4B), mapping specific
molecular paths of putative influence. Through inclusion in
the Mode-2 network, this process implicated three additional
transcription factor genes: YAP6, CIN5, and UME6.

To initially probe the predictive value of the Mode-2
network, we constructed deletions of the newly implicated
transcription factor genes YAP6, CIN5, UME6, MOT3, and SKO1
and assayed the filamentation phenotype. UME6 deletion was
lethal in the filamentation-competent

P
1278b yeast back-

ground. All other deletions of transcription factor genes
implicated by the Mode-2 network showed a filamentation
phenotype: yap6D and sko1D mutants had filamentation
defects, the mot3D mutant was strongly hyper-filamentous,
and the cin5D mutant was marginally hypo-filamentous.

We then tested the capacity of the model to predict specific
phenotypes for 13 novel combinatorial deletions. Predictions
were based on three topological motifs present in the Mode-2
network and corresponding quantitative expectations
(Figure 4C; Supplementary information). The model rendered
predictions of both the phenotype of the double mutant (hyper,
hypo, or wild-type filamentation) and the exact inequalities

that order the observed phenotypes of the wild type, the two
single mutants, and the double mutant on a scale of
filamentation. For example, if a deletion of gene A is hyper-
filamentous and epistatic to a hypo-filamentous deletion of
gene B, the inequality would be BDowtoAD¼ADBD. There
are 75 possible inequalities (Drees et al, 2005); we predicted
one of these for each of the 13 novel double mutants.

Table II lists the predictions and experimental observations
of the double-mutant phenotypes and phenotype inequalities.
We assessed the accuracy of the model predictions by
comparison with results generated from a training set of
1809 genetic interactions for invasive growth (Drees et al,
2005), a closely related phenotype (Supplementary informa-
tion). The model correctly predicted all 13 double-mutant
phenotypes, which was a very unlikely outcome using the
training set (P¼0.0002). Six of the 13 phenotype inequalities
proved correct, which is also a significant improvement over
the training set (P¼0.009) due to the much larger number of
possible outcomes. Note also that all of the incorrect
phenotype-inequality predictions differed minimally from the
observed phenotype inequalities.

Discussion

The model of filamentous growth control based on the Mode-2
network (Figure 4B) contains many genes known to be
involved in filamentation. For example, the MAP-kinase Kss1
is correctly implicated as passing a positive influence on gene
expression by derepressing the transcription factors Tec1 and
Ste12 (Madhani et al, 1997). The network also implicated new
regulators of filamentation (Yap6, Mot3, and Sko1) that were
verified experimentally, and proposes new information flows
where molecular support is currently sparse, such as a positive
influence from SFL1 on binding targets of SKO1.

In addition to implicating genes, our approach was often
able to correctly infer functional relationships between
genes that control filamentous growth. This is evident in
the broad success in predicting double-mutant expression
profiles (Table I) and phenotypes (Table II). In particular, all

Table II Prediction of double-mutant phenotype

Deletions Network motif ADBD phenotype Phenotype inequality

AD BD Predicted Observed Predicted Observed

sfl1D yap6D Serial � � ADBD¼BD owt oAD ADBD¼BD owt oAD
skn7D mot3D + + AD owt oBD¼ADBD AD owt oBD¼ADBD
cup9D yap6D � � ADBD¼BD owt oAD ADBD¼BD owt oAD
sok2D rox1D + + wt oBD¼ADBD oAD wt oBD oADBD¼AD
sfl1D cin5D Intermediate + + wt¼BD oADBD oAD wt¼BD oADBD¼AD
tec1D sko1D � � ADBD oAD oBD owt ADBD¼AD oBD owt
cup9D phd1D + + BD¼wt oADBD oAD BD¼wt oADBD¼AD
cup9D cin5D + + BD¼wt oADBD oAD BD¼wt oAD oADBD
sok2D yap6D Parallel wt wt BD oADBD¼wt oAD BD oADBD¼wt oAD
sok2D cin5D + + BD¼wt oAD¼ADBD BD¼wt oAD oADBD
sok2D phd1D + + BD¼wt oADBD¼AD BD¼wt oADBD oAD
skn7D cin5D � � AD¼ADBD owt¼BD AD¼ADBD owt¼BD
skn7D sko1D � � ADBD oBD oAD owt ADBD oBD oAD owt

All 13 double gene deletion (ADBD) phenotypes were predicted correctly (P¼0.0002) and six (in bold type) of 13 phenotype inequalities were predicted correctly
(P¼0.01) based on the Mode-2 network (Figure 3). Network motifs are illustrated in Figure 4c.
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predictions involving YAP6 deletions proved accurate for both
phenotype (P¼0.02) and phenotype inequality (P¼0.006),
suggesting that its regulatory role in the network was mapped
correctly. Predictions based on parallel and serial network
topologies (Figure 4C) were also superior to the training set
(phenotypes P¼0.03 for both; inequalities P¼0.04 and
P¼0.006, respectively). Furthermore, the model was able to
accurately predict both filamentation phenotypes and the
phenotype inequalities of all four double mutants in which the
single mutants had opposite phenotypes, which would have
been highly unlikely using the training set (P¼0.009 and
P¼0.0002, respectively). The model is further supported by
successful gene expression predictions for novel double-
mutant strains. Although the control model was able to
recover basic trends in the data, the predictions from our
genetic-interactions model were significantly more accurate
(Table I).

Notwithstanding the successful performance of our ap-
proach, its linear approximation may over-simplify many
functional relationships and may miss complicated regulatory
effects that are not as relevant for modeling genome-wide
transcript levels. Dynamic modeling of the seed gene network
could encompass nonlinear, post-transcriptional influences
and feedback loops that often lead to more complex effects.
Potential transcriptional feedback loops are apparent for CUP9
in the Mode-2 network (Figure 4B), as Tec1, Ste12, Phd1, Sok2,
and Mot3 bind its promoter (Harbison et al, 2004; Borneman
et al, 2006). Dynamic modeling of these small networks might
explain, for example, how the seed genes interact to generate
their diverse single-mutant phenotypes.

Our methods are designed for application to any system in
which multiple interacting genes are linked to phenotypes.
The genetic influences decomposition can be used to dissect
genetic-interaction effects between any number of seed genes,
and a greater number can be expected to result in inference of a
more comprehensive network of interactions. Combined with
molecular data integration, this suggests an iterative approach
in which a gene implicated in the system (such as YAP6 in the
filamentation network) is taken as an additional seed gene in a
subsequent round of experimentation and analysis. Further-
more, although we have exclusively used null alleles in this
study, the method can incorporate hypomorphic and hyper-
morphic alleles by fitting the genotype matrix elements to
appropriate activity values relative to wild type. Possible
methods to estimate these values include assays of protein
levels (or phosphorylated protein levels for phospho-activated
regulators) and using results fit with a cognate null mutant to
constrain all parameters other than the activity levels of the
non-null mutant allele. The method is extensible and can also
predict the effects of higher-order combinatorial genotypes,
such as triple gene deletions, through removal of the influence
coefficients associated with every perturbed gene and the
paths in which they form a critical link. Finally, the genetic
influences decomposition is formulated to be directly applic-
able to all quantitative phenotypes, not only gene expression,
with the requirement that the number of phenotypes assayed
for each strain be equal to or greater than the number of seed
genes plus one (Supplementary information).

With the abundance of molecular interactions, there are
often numerous possible paths of influence among gene

products. Likewise, genetic interactions often have multiple
possible molecular interpretations. By emphasizing the
complementarity of these data types, our integration of genetic
influences decomposition and molecular interaction data
greatly constrained these possibilities and assigned specific
functional significance to molecular interactions in a network
model of the transcriptional control of filamentous growth.
This model generated predictions that relied on both the
accuracy of our genetic influence decomposition and our data
integration strategy. The integration strategy exploited the
availability of accurate, genome-scale molecular interaction
data sets, and identified instances in which functionally
important molecular data are missing. With the increasing
availability of human interaction data (Stelzl et al, 2005) and
further modeling developments to address allelic variation in
outbred populations, similar quantitative and integrative
techniques may ultimately be applied to disease-related
models.

Materials and methods

Genetic influences decomposition

The genetic influences decomposition method can be illustrated with
the simplified case of two seed genes A and B that influence the
expression of two genes X and Y. For a strain genotype labeled with
superscript S, we write a linear pair of equations for gene expression:

XS ¼ x0 þ xAgS
A þ xBgS

B

YS ¼ y0 þ yAgS
A þ yBgS

B ð2Þ

The parameters xA, xB, and x0 represent contributions to the expression
of X from the gene A, gene B, and the remainder of the genetic
background, respectively (similarly for gene Y). These parameters are
independent of the strain genotype. The coefficients gA

S and gB
S are the

inferred activity levels of the seed genes A and B in the strain
background S, and are independent of the transcript being measured.
Gene knockout strains are modeled by setting the activity of the
deleted gene to zero, such as gA

AD¼0 and gA
ADBD¼0 for strains with gene

A deleted. Influences between seed genes (observed as genetic
interactions) can be systematically and quantitatively inferred from
changes in activity levels of one gene when the other gene is perturbed,
and vice versa (Supplementary information). For example, gA

BDogA
wt

would evince a positive influence from gene B on the activity of gene A.
Note that these activity changes are relative to wild type (all gwt¼1)
and are calculated parameters. Rather than substituting transcript level
data for these activities (as in many regression methods), these model-
derived parameters conceptually include all levels of gene control from
initiation of transcription to protein localization, modification, and
degradation.

The system of equations in Equation (2) can be expanded to model
an arbitrary number of gene expression measurements and perturbed
seed genes by systematically adding parameters (Supplementary
information). The equations can be recast in matrix form.

In the decomposition of our genomic expression data, the number of
measurements in Equation (1) far exceeds the number of model
parameters. We found the least-squares best-fit solution (Supplemen-
tary information).

Directed data integration

To identify functionally important expression influences, we first
determined coefficients in the influence matrix, X, that were
significantly different from zero (Supplementary information). For
example, the influences of TEC1, CUP9, and SKN7 on DDR48 are
mapped in Figure 2A. For each seed gene, we then identified a set of
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genes that received positive expression influences from the seed gene,
and another set of genes that received negative expression influences,
for a total of 10 overlapping gene sets (Supplementary Table S2). We
queried each gene set for enrichment of genes bound by each known
transcription factor (Lee et al, 2002; Zeitlinger et al, 2003; Harbison
et al, 2004; Borneman et al, 2006), thus defining candidate transcrip-
tion factors for each gene set (Supplementary Table S3). We next
searched public data for protein–protein (Bader et al, 2001; Xenarios
et al, 2001), protein phosphorylation (Ptacek et al, 2005), and protein–
DNA (Lee et al, 2002; Zeitlinger et al, 2003; Harbison et al, 2004;
Borneman et al, 2006) interactions and constructed networks
including only the shortest directionally consistent paths connecting
each seed gene with the transcriptional regulators and hence the genes
it influenced (Figure 2; Supplementary information) (Carter et al,
2006). We were able to connect seed genes to about half of their
influence targets on average (Supplementary Table S3).

Genomic expression data have been deposited in the Gene
Expression Omnibus, accession GSE5938.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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