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Abstract: The molecular mechanisms of transcription factor 21 (TCF21) in regulating chicken adipo-
genesis remain unclear. Thus, the current study was designed to investigate the signaling pathway
mediating the effect of TCF21 on chicken adipogenesis. Immortalized chicken preadipocytes cell line
(ICP), a preadipocyte cell line stably overexpressing TCF21 (LV-TCF21) and a control preadipocyte
cell line (LV-control) were used in the current study. We found that the phosphorylation of c-Jun
N-terminal kinases (JNK) was significantly elevated in LV-TCF21 compared to LV-control. After
treating ICP cells with a JNK inhibitor SP600125, the differentiation of ICP was inhibited, as evidenced
by decreased accumulation of lipid droplets and reduced expression of peroxisome proliferator-
activated receptor γ (PPARγ), CCAAT/enhancer binding protein α (C/EBPα), adipocyte fatty acid
binding protein (A-FABP), and lipoprotein lipase (LPL). Moreover, we found that the inhibition of
JNK by SP600125 remarkably impaired the ability of TCF21 to drive adipogenesis. Taken together,
our results suggest that TCF21 promotes the differentiation of adipocytes at least in part via activating
MAPK/JNK pathway.
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1. Introduction

In the poultry industry, excessive fat deposition in broiler chicken is not wanted
by most customers, because many metabolic diseases like coronary heart disease and
arteriosclerosis are strongly related to increased dietary intake of cholesterol [1]. Increased
dietary cholesterol intake from fat may lead to increased serum cholesterol levels and
further increased risks of metabolic diseases [2,3]. Additionally, excessive fat deposition
hinders processing and leads to significant reductions in feed efficiency and carcass yield,
thus incurring economic losses for poultry producers and processors [4,5]. In addition,
excessive fat deposition in chicken has increased the incidence of metabolic disorders, such
as pulmonary hypertension syndrome, sudden death, fatty liver disease [6–8], and reduced
reproductive performance, such as less sperm concentration, more sperm with abnormal
morphology, and less egg production [9].

Obesity onset is closely linked with the differentiation of adipocytes [10,11]. There-
fore, to facilitate therapeutic prevention or treatment of obesity, it is of great significance
to get a deeper understanding of the molecular mechanisms involved in adipogenesis.
Multiple distinct transcription factors and signaling pathways serve together to regulate
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adipogenesis [12]. Many studies have provided detailed insights into the role of transcrip-
tion factors in peroxisome proliferator activated receptor (PPAR) and CCAAT/enhancer
binding protein (C/EBP) family, Wnt signaling, and TGF-β signaling in this context [13,14].
To offer new insights into the molecular mechanisms of adipogenesis, identification of
novel transcription factors and pathways regulating adipogenesis is particularly vital. Re-
cently, we have identified a novel transcription factor 21 (TCF21), which promotes chicken
preadipocyte differentiation by regulating the expression of lipoprotein lipase (LPL) [15].
However, the signaling pathways, by which TCF21 influences this differentiation process,
remain to be characterized.

Therefore, the present study was aimed to (1) screen the signaling pathways affected
by TCF21, (2) study the role of selected signaling pathway in chicken preadipocyte dif-
ferentiation, and (3) perform rescue experiment to investigate whether TCF21 regulates
chicken adipogenesis via the selected signaling pathway.

2. Materials and Methods
2.1. Cell Culture and Experimental Design

In this study, we utilized ICP established by infecting primary chicken preadipocytes
with the recombinant retroviruses expressing chicken telomerase reverse transcriptase
and telomerase RNA [16], LV-TCF21 established by infecting ICP with the recombinant
lentivirus expressing chicken TCF21, and LV-control established by infecting ICP with
the control lentivirus [15]. All cells were initially grown in DMEM (Gibco, NewYork, NY,
USA) containing 10% FBS (Biological Industries, Kibbutz Beit Haemek, Israel) in a standard
humidified incubator. When cells were >90% confluence, they were either passaged or
plated for downstream experiments at 1 × 105 cells/mL. When plated cells were 50%
confluence, differentiation was induced by adding fresh differentiation media (DMEM
containing 10% FBS and 300 µM oleic acid).

The experimental design was as follows: firstly, LV-control and LV-TCF21 cells were
induced for differentiation and the accumulations of lipid droplets at 0, 24, 48, 72, 96, and
120 h after induction were assessed by oil red O staining. The earliest time point with
significant difference of lipid droplet accumulation between LV-control and LV-TCF21 was
selected for the following experiment. Then, luciferase reporter assay was carried out to
screen signaling pathways affected by TCF21 using LV-control and LV-TCF21 cells. Addi-
tionally, Western blotting was performed to further verify the results of luciferase reporter
assay. Thereafter, different concentrations (0, 2.5, 5, and 10 µM) of JNK inhibitor SP600125
was added into ICP cells to explore the role of JNK signaling in chicken adipogenesis.
Finally, a rescue experiment was performed using LV-control and LV-TCF21 cells with or
without supplement of SP600125. The differentiation of different groups was evaluated
by the accumulation of lipid droplets and expressions of adipogenic genes using oil red O
staining and RT-qPCR, respectively.

2.2. Oil Red O Staining and Extraction

The accumulation of lipid droplets in adipocytes was analyzed by oil red O staining.
Cells were washed thrice with PBS and fixed in 4% paraformaldehyde for 30 min. Cells
were again washed by PBS and then stained with freshly diluted oil red-O (oil red-O stock
solution: distilled H2O = 3:2) for 15 min. Cells were washed five to six times with distilled
water and PBS to remove excess staining. Lipid droplets were imaged using an inverted
fluorescent microscope (LEICA DMIRB, Feasterville, PA, USA). Oil red O was extracted
from the cells using a 100% propan-2-ol solution and measured at 510 nm. Adjacent plate
wells with identical treatment were collected, and the total protein content of the cells was
used to normalize the extraction results.

2.3. Western Blotting

Cells were washed thrice with PBS. Then, RIPA buffer (Santa Cruz, sc-364162, Dallas,
TX, USA) supplemented with PMSF (Beyotime, ST506, Shanghai, China) and phosphatase
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inhibitor (Abcam, ab201119, Waltham, MA, USA) was added into cells for lysis. Then the
proteins were extracted from cells. The protein concentration was determined by a BCA
protein assay (Thermo Fisher, 23227, Rockford, IL, USA). Equal amounts of proteins in total
cell extracts were separated by 12% SDS-PAGE and transferred to nitrocellulose membranes.
Then, nitrocellulose membranes were blocked with 5% (wt/vol) BSA in TBST, followed
by incubation with the following specific primary antibodies at 4 ◦C overnight: anti-Jnk1,
1:2500, Abcam, ab199380; anti-Jnk2, 1:5000, Abcam, ab134567; anti-P-Jnk, 1:1000, Abcam,
ab4821; anti-β-actin, 1:1000, Beyotime, AA128; anti-TCF21, 1:50, Abmart, Customized.
Blots were then incubated with respective HRP-conjugated secondary antibodies (donkey
anti-goat IgG, 1:2500, Beyotime, A0181; goat anti-rabbit IgG, 1:5000, ZSGB-BIO, ZB-2301;
goat anti-mouse IgG, 1:5000, ZSGB-BIO, ZB-2305. A BeyoECL Plus kit (Beyotime, P0018S)
was then used to visualize protein bands with a chemiluminescence system (Sagecreation,
Beijing, China) for Figure 1 and Supplementary Figure S1 and an ImageQuant LAS 500
system (GE, Piscataway, NJ, USA) for Figures 2 and 3. The grey intensity values of bands
were quantified using Image J software (NIH, Bethesda, MD, USA).

Figure 1. MAPK/JNK signaling pathway was activated by TCF21 overexpression. At 24 h post-induction of differentiation,
lysates from LV-control and LV-TCF21 cells were collected. (A) A schematic overview of the constructs used for the Cignal
Finder 45-Pathway Reporter Array. A. The inducible transcription factor-responsive construct expressing firefly luciferase.
B. The constitutively expressing Renilla luciferase construct. C. The non-inducible firefly luciferase reporter construct. D.
The constitutively expressing GFP construct. E. The constitutively expressing firefly luciferase construct. The negative
control is a mixture of C. and B. (20:1). The positive control is a mixture of D., E. and B. Each reporter is a mixture of
A. and B. (20:1). (B) A Luciferase activity-based array was used in order to identify those signaling pathways that were
responsive to overexpression of TCF21. Graphs are plotted as mean ± SE relative to luciferase activity in LV-control cells
from three independent experiments; (C) images for TCF21, JNK1, JNK2, p-JNK1, p-JNK2, and β-actin expressions in cells
by Western blotting; (D) bands intensities were quantified by Image J software. Graphs are plotted as mean ± SE from three
independent experiments. ** p < 0.01.
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Figure 2. MAPK/JNK signaling and lipid droplets accumulation were inhibited by SP600125 in a dose-dependent manner.
At 24 h post-induction of differentiation, ICP cells were then incubated for an additional 24 h in differentiation medium
containing 0, 2.5, 5, or 10 µM SP600125. (A) Images for JNK1, JNK2, p-JNK1, p-JNK2, and β-actin expressions in cells
treated with different concentrations of SP600126 by Western blotting (representative of three independent experiments).
Then, the bands intensities were quantified by Image J software. Graphs are plotted as mean ± SE from three independent
experiments. Different uppercase letters above columns denote significant differences; (B) images for oil-red O staining
of lipid droplets in preadipocytes treated with different concentrations of SP600125 (representative of three independent
experiments). Then, oil-red O dye was extracted from the cells treated with different concentrations of SP600125 in order to
quantify staining intensity. Graphs are plotted as mean ± SE from three independent experiments. Different uppercase
letters above columns denote significant differences.
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Figure 3. Inhibition of MAPK/JNK signaling attenuates TCF21-mediated enhancement of preadipocyte differentiation. At
24 h post-induction of differentiation, LV-TCF21 and LV-control preadipocytes were then incubated for an additional 24 h in
differentiation medium containing either 0 or 10 µM SP600125. (A) Images for JNK1, JNK2, p-JNK1, p-JNK2, and β-actin
expressions in LV-control or LV-TCF21 cells treated with 0 or 10 µM SP600126 by Western blotting (representative of three
independent experiments). Then, the bands intensities were quantified by Image J software. Graphs are plotted as mean
± SE from three independent experiments. NS, no significance, * p < 0.05, ** p < 0.01; (B) images for oil-red O staining of
lipid droplets in differentiated LV-control or LV-TCF21 preadipocytes treated with 0 or 10 µM SP600125 (representative of
three independent experiments). Then, oil-red O dye was extracted from the cells in order to quantify staining intensity.
Graphs are plotted as mean ± SE from three independent experiments relative to staining intensity of LV-control treated
with 0 µM SP600125. * p < 0.05, ** p < 0.01; (C) expressions of pro-adipogenic genes in differentiated LV-control or LV-TCF21
preadipocytes treated with 0 or 10 µM SP600125 by real-time PCR. Graphs are plotted as mean ± SE from three independent
experiments relative to the gene expression in LV-control treated with 0 µM SP600125. NS, no significance, * p < 0.05,
** p < 0.01.

2.4. Luciferase Reporter Assay

The Cignal Finder Signal Transduction 45-Pathway Reporter Arrays (QIAGEN, CCA-
901L, Germantown, MD, USA) (detailed information shown in Supplementary Table
S1 and Figure 1A) were used based on provided protocols in the handbook to identify
significantly activated or repressed signaling pathways caused by TCF21 overexpression.
Dual-Luciferase Assay System (Promega, Madison, WI, USA) was used to assess luciferase
activity based on provided directions, with Renilla luciferase activity used for normalization
purposes. The reporter activities of signaling pathways >10× reporter activity of negative
control were considered response to TCF21 overexpression and used for further analysis.
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2.5. RT-qPCR

Cells were washed thrice with PBS. Then, 1 mL TRIzol (Invitrogen, Carlsbad, CA,
USA) was added into each well to extract RNA from cells, after which nuclease-free water
was used to dilute the RNA prior to visualization of rRNA and sample quality via elec-
trophoresis on a denaturing formaldehyde agarose gel. Samples with a 28S:18S ratio of
1.8–2.1 were considered to be of sufficient quality for use in downstream experiments. A
total of 1 µg of RNA from each of these samples was then used to produce cDNA with
a PrimeScript™ RT reagent Kit with gDNA Eraser (Perfect Real Time) (Takara, RR047A,
Beijing, China), after which qPCR reactions were performed with a QuantStudio 6 Flex
System (Applied Biosystems, Foster, CA, USA). All reactions were conducted using Fast-
Start Universal SYBR Green Master Mix (Roche, Indianapolis, IN, USA), with reactions in a
10 µL total volume containing 1 µL cDNA. Thermocycler settings were as follows: 95 ◦C for
10 min; 40 cycles of 95 ◦C for 15 s, 60 ◦C for 1 min. Samples were analyzed in triplicate, with
TATA-box binding protein (TBP) used for normalization purposes. The 2−44CT method
was used to quantify relative gene expression. Primer sequences are presented in Table 1.

Table 1. RT-qPCR primer sequences.

Gene Accession Number Primer Sequence (5’ to 3’) Product Length (bp)

PPARγ NM_001001460
F:GTGCAATCAAAATGGAGCC

170R:CTTACAACCTTCACATGCAT

C/EBPa NM_001031459
F:GCGACATCTGCGAGAACG

266R:GTACAGCGGGTCGAGCTT

A-FABP NM_204290 F:ATGTGCGACCAGTTTGT
R:TCACCATTGATGCTGATAG 143

LPL NM_205282
F:ATGTTCATTGATTGGATGGAGGAG

159R:AAAGGTGGGACCAGCAGGAT

TBP NM_205103
F:GCGTTTTGCTGCTGTTATTATGAG

122R:TCCTTGCTGCCAGTCTGGAC

PPARγ: peroxisome proliferator activated receptor γ; C/EBPα: CCAAT/enhancer binding protein α; A-FABP: adipocyte fatty acid binding
protein; LPL: lipoprotein lipase; TBP: TATA-box binding protein.

2.6. Statistical Analysis

All data were obtained from three independent experiments with triplicate in each
experiment and were shown as mean ± SE. Student’s t-tests were used to compare results
between two groups. When more than two groups were compared, the Turkey’s HSE test
was used. JMP v11.0 (SAS Institute Inc., Cary, NC, USA) was used for all analyses, and the
threshold of significance was p < 0.05 or p < 0.01.

3. Results
3.1. Overexpression of TCF21 Leads to Enhanced Lipid Droplets Accumulation

To select a suitable time point for the following experiment, we compared the lipid
accumulation between LV-control and LV-TCF21 during differentiation. First, we examined
the overexpression effect of TCF21 in LV-TCF21 cells and the expression patterns of TCF21
in LV-control and LV-TCF21 cells. The results showed that both mRNA and protein expres-
sion levels of TCF21 in LV-TCF21 were significantly higher than those in LV-control before
(0 h) and after induction of differentiation (24, 48, 72, 96, 120 h) (p < 0.01, Supplementary
Figure S1). The expression patterns of TCF21 were similar in LV-control and LV-TCF21 cells
that the expressions of TCF21 had an elevated trend after differentiation induction (Supple-
mentary Figure S1). Specifically, the mRNA and protein expression patterns of TCF21 in
LV-control cells were gradually increased after induction (Supplementary Figure S1). The
mRNA expression pattern of TCF21 in LV-TCF21 cells was also gradually increased after
induction, but its protein expression in LV-TCF21 cells had a minor decrease at 72 h after
induction (Supplementary Figure S1). Meanwhile, we compared the lipid accumulation
between LV-TCF21 and LV-control during differentiation in order to select an appropriate
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time point for the following experiment. The results showed that LV-TCF21 had remarkably
more lipid droplets accumulation since 24 h post-induction of differentiation (p < 0.05 or
p < 0.01, Figure S1).

3.2. MAPK/JNK Signaling Pathway Was Activated by TCF21 Overexpression

Based on these initial findings, we selected 24 h to screen signaling pathways that
were significantly activated or repressed in response to TCF21 overexpression. Among the
45 signaling pathways we analyzed, the activity of MAPK/JNK signaling pathway was
significantly elevated by TCF21 overexpression (p = 0.000423, Figure 1B and Supplementary
Table S2). Western blotting further confirmed that TCF21 overexpression enhanced JNK
phosphorylation (p < 0.01, Figure 1C,D).

3.3. MAPK/JNK Signaling and Lipid Droplets Accumulation Are Inhibited by SP600125 in a
Dose-Dependent Manner

To investigate the role of MAPK/JNK signaling in chicken adipogenesis, ICP cells
were treated with JNK inhibitor SP600125 at the concentrations of 0, 2.5, 5, and 10 µM,
respectively. We found that the protein level of p-JNK (Figure 2A) and accumulation of
lipid droplet were reduced by SP600125 in a dose-dependent manner. Additionally, the
accumulation of lipid droplets in ICP cells was remarkably decreased by SP600125 at the
concentration of 10 µM (Figure 2B). Therefore, SP600125 at the concentration of 10 µM was
used in the following experiment.

3.4. Inhibition of MAPK/JNK Signaling Attenuates TCF21-Mediated Promotion of
Preadipocyte Differentiation

Finally, we performed rescue experiment using LV-control and LV-TCF21 to explore
whether MAPK/JNK signaling mediated the impact of TCF21 on preadipocyte differen-
tiation. Although LV-control was derived from ICP, it was not the same as ICP due to
lentivirus infection. Therefore, we examined whether SP600125 at the concentration of
10 µM was appropriate to treat LV-control cells in the rescue experiment. We found 10 µM
SP600125 was also sufficient to suppress MAPK/JNK signaling and preadipocytes differ-
entiation in LV-control cells (TCF21 (−) SP600125 (−) group vs. TCF21 (−) SP600125 (+)
group in Figure 3). The results of TCF21 (+) SP600125 (−) group compared with TCF21 (−)
SP600125 (−) group in Figure 3 showed that TCF21 promoted preadipocyte differentiation,
as evidenced by increased lipid droplets accumulation and expressions of pro-adipogenic
genes. The results of TCF21 (+) SP600125 (−) group compared with TCF21 (+) SP600125 (+)
group in Figure 3 showed that inhibition of MAPK/JNK signaling attenuated the promot-
ing effect of overexpression TCF21 on preadipocyte differentiation. The results of TCF21
(−) SP600125 (−) group compared with TCF21 (+) SP600125 (+) group in Figure 3 showed
that the inhibition of MAPK/JNK signaling by SP600125 could not completely neutralize
the promoting effect of overexpression TCF21 on preadipocyte differentiation.

4. Discussion

In the poultry industry, excessive fat deposition remains a significant problem [17],
leading to significant reductions in feed efficiency and carcass yield, thus incurring eco-
nomic losses for poultry producers [4]. Therefore, a better understanding of the molecular
mechanisms governing poultry adipose tissue development may be of value for poultry
breeding purposes.

It has been reported that TCF21 is not expressed in brown preadipocytes and is instead
specific to white preadipocytes TCF21 [18], and compared with brown adipose tissues, the
expression of TCF21 is more abundant in white adipose tissues [19]. In addition, TCF21
expression is significantly higher in the visceral adipose tissue of obese Uygurs [20] and
obese mice [21] compared to their normal weight counterparts. These results indicate that
TCF21 plays an important role in white adipose tissue development.

We recently found that TCF21 was a novel regulator that promoted chicken preadipocyte
differentiation, acting at least in part via targeting and promoting the expression of LPL [15].
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However, at present, the mechanisms whereby TCF21 influences adipogenesis remain
poorly understood. As such, further research is needed to understand what signaling
pathways are regulated by TCF21, which proteins interact with TCF21 to modulate target
gene expression and regulation of adipogenesis, and how many target genes are subject to
TCF21-mediated regulation in addition to LPL. Therefore, in the present study we sought
to begin to resolve these unknown issues by exploring the signaling pathways through
which TCF21 promotes preadipocyte differentiation.

We first checked the expression patterns of TCF21 in LV-control and LV-TCF21 cells
after differentiation induction, and found that their general trends were similar with
our previous results in primary preadipocytes (Supplementary Figure S1), indicating that
LV-control and LV-TCF21 cells can be used for downstream experiments. In addition, we no-
ticed a minor difference in expression patterns of TCF21 between mRNA and protein level
at 72 h after induction (Supplementary Figure S1), which may be due to post-transcriptional
regulation. Thereafter, we used chicken ICP cells stably overexpressing TCF21 to reveal that
TCF21 promotes preadipocyte differentiation at an early time point (24 h) after induction,
and the promotive effect of TCF21 on chicken adipogenesis was observed throughout the
differentiation process (24–120 h after induction) (Figure S1). These results were consistent
with our previous work in primary chicken preadipocytes [15]. Thus, together with our
previous results [15], we confirmed the importance of TCF21 in the process of adipogenesis
in chicken.

We then used a luciferase assay system to screen signaling pathways that were af-
fected by TCF21 overexpression at 24 h after induction. Among the 45 pathways, TCF21
overexpression significantly increased the activity of MAPK/JNK signaling (Figure 1B). We
further observed that TCF21-overexpressing cells had higher levels of p-JNK (Figure 1C,D),
which further confirmed the luciferase assay results in Figure 2B. In colorectal cancer [22]
and cholangiocarcinoma [23], TCF21 functions as a tumor suppressor by modulating ERK
and PI3K/Akt signaling. Ao et al. [24] reported that TCF21 functions as a corepressor in
the ERα signaling pathway and disrupts the growth of ERα-positive breast cancer cells.
Ide et al. [25] reported that TCF21 regulates kidney development by activation of the
Gdnf-Ret-Wnt11 pathway, which is required for branching morphogenesis. These results,
together with our findings, clearly demonstrate that TCF21 modulates multiple biological
processes through different signaling pathways.

MAPK members can be divided into four conventional subgroups, including extra-
cellular signal-regulated kinase 1/2 (ERK1/2), JNK, p38 MAPK, ERK5 and three atypical
subgroups, including ERK 3/4, ERK 7/8, and nemo-like kinase (NLK) [26]. The role of
conventional MAPK members in adipogenesis has been widely studied in mice [27–29].
Among them, JNK signaling is highly sensitive to stress conditions, and JNKs are activated
in obesity in numerous metabolically important cells and tissues, such as adipose tissue,
macrophages, and liver [30]. To the best of our knowledge, the role of MAPK/JNK sig-
naling in chicken adipogenesis remains unclear. In this study, we found that inhibition of
MAPK/JNK signaling by 10 µM SP600125 significantly reduced lipid droplet accumulation
(Figure 2), thus indicating that MAPK/JNK signaling plays an important role in chicken
adipogenesis. The role of MAPK/JNK signaling in preadipocytes differentiation has been
previously studied in 3T3-L1 preadipocytes, but the results of these studies have not always
been consistent [31–33]. Lee et al. [31] and Liu et al. [32] found that JNK inhibition led to
enhanced adipocytic differentiation, whereas Kusuyama et al. [33] found JNK signaling
to be essential for C/EBPδ induction during the early stages of differentiation of 3T3-L1
preadipocytes. Additionally, it was reported in foam cells that MAPK/JNK signaling
could phosphorylate PPARγ [34]. The phosphorylation of PPARγ modulates the transcrip-
tion activity of PPARγ and further influences adipogenesis [35]. In the current study, we
found that inhibition of JNK signaling by SP600125 significantly inhibited adipogenesis
and reduced the expression of PPARγ. However, whether MAPK/JNK signaling can
phosphorylate PPARγ and then regulate chicken adipogenesis requires further study.
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Thereafter, to investigate if TCF21 regulates chicken preadipocyte differentiation via
MAPK/JNK signaling, we performed rescue experiments. We found that inhibition of JNK
signaling significantly decreased the promotive effect of TCF21 on chicken adipogenesis
(Figure 3) suggesting TCF21 promoted chicken preadipocyte differentiation by activating
JNK signaling. Principally, however, we cannot exclude that SP600125 also inhibits kinases
other than JNK in vivo, especially as Bain et al. (2003) previously reported inhibition of
several kinases by SP600125 in vitro [36]. Therefore, in the future, combination use of other
JNK inhibitors and siRNA of JNK may better elucidate the contribution degree of JNK
signaling in TCF21 mediated adipogenesis. In addition, further studies are still required to
elucidate the molecular mechanism regarding how TCF21 activates MAPK/JNK signaling
and how MAPK/JNK signaling regulates chicken preadipocyte differentiation.

5. Conclusions

In summary, we provided novel evidence that TCF21 activates MAPK/JNK signaling
to promote preadipocyte differentiation in chicken. Our findings enrich our understand-
ing of chicken adipogenesis, and thereby have the potential to benefit efforts aimed at
prevention of excessive fat deposition in chicken.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/genes12121971/s1, Figure S1: Detection of TCF21 overexpression efficiency and its effect
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