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Reward-enhanced encoding 
improves relearning of forgotten 
associations
Ewa A. Miendlarzewska1,2,3, Sara Ciucci7,9, Carlo V. Cannistraci   7,8, Daphne Bavelier5,6 & 
Sophie Schwartz   1,2,4

Research on human memory has shown that monetary incentives can enhance hippocampal memory 
consolidation and thereby protect memory traces from forgetting. However, it is not known whether 
initial reward may facilitate the recovery of already forgotten memories weeks after learning. Here, 
we investigated the influence of monetary reward on later relearning. Nineteen healthy human 
participants learned object-location associations, for half of which we offered money. Six weeks 
later, most of these associations had been forgotten as measured by a test of declarative memory. 
Yet, relearning in the absence of any reward was faster for the originally rewarded associations. Thus, 
associative memories encoded in a state of monetary reward motivation may persist in a latent form 
despite the failure to retrieve them explicitly. Alternatively, such facilitation could be analogous to 
the renewal effect observed in animal conditioning, whereby a reward-associated cue can reinstate 
anticipatory arousal, which would in turn modulate relearning. This finding has important implications 
for learning and education, suggesting that even when learned information is no longer accessible via 
explicit retrieval, the enduring effects of a past prospect of reward could facilitate its recovery.

Reward can enhance hippocampal memory consolidation and thereby protect memory traces from forgetting1–3. 
The positive influence of reward on memory may spread to associatively related stimuli4, and even to unpractised 
items from a rewarded category5. Recollection of an episode is a conscious process which involves the retrieval of 
information from memory, prompted by a critical cue, along with contextual details (e.g., remembering where or 
when a picture had been seen before6) and an accompanying subjective sense of recollection7. Pattern separation 
and pattern completion have been identified as key processes enabling recollection8. Pattern separation refers to 
the ability of the associative network to reduce the overlap between similar input patterns before they are stored 
in order to reduce the probability of interference during memory recall. Pattern completion refers to the ability of 
the network to retrieve stored patterns when presented with partial or degraded input patterns. Recent evidence 
for such operations being performed within the hippocampal structures has been provided by Neunuebel and 
Knierim (2014)9.

A recollection attempt may, however, result in failure to retrieve – a phenomenon called forgetting. 
Importantly, forgetting in declarative memory does not necessarily mean that a memory is lost. Rather, forgetting 
may result from impaired accessibility or lower coherence of a memory trace. For example, a memory trace may 
be easily retrievable immediately after learning, but at a later time point the aid of a specific cue may be necessary 
to recover it, due to its reduced accessibility. Thus, whereas forgetting may be defined as ‘the inability to recall 
something now that could be recalled on an earlier occasion’10, in this view of memory, forgetting may in fact be 
an inability to recall something now that could possibly be recalled on a later occasion7, perhaps when a critical 
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cue or context is present. Evidence for such latent memory traces is well known in research on reward and fear 
conditioning: spontaneous recovery, reinstatement and rapid reacquisition are all phenomena that can occur after 
extinction of the original association. Similarly, in declarative memory, ‘savings’ – a reduction in the number of 
study trials or time required for relearning11 – have been observed for declaratively irretrievable associations. A 
memory may thus persist in a covert, inaccessible state after being forgotten, providing a platform for savings in 
future relearning.

While there is ample human research showing that reward benefits memory encoding4,12,13 and that rewarded 
(compared to non-rewarded) memory traces decay more slowly2,14, the question remains whether memories 
initially remembered better due to reward still benefit from a privileged status after they have been forgotten. 
In the present study, we thus focused on what happens after associations learned in anticipation of high reward 
motivation cannot be remembered anymore. To do so, we studied relearning after forgetting in participants 
who showed a reward-related memory enhancement. Accordingly, we selected participants who showed higher 
recall accuracy for associations encoded in anticipation of reward than for those encoded in anticipation of no 
reward. We hypothesized that, upon relearning, savings for memory traces which benefitted from reward will be 
larger than for non-rewarded ones. To test this hypothesis, we used a declarative memory task that relies on the 
hippocampus15, namely the cued explicit recall of learned object-location associations. Participants were tested 
immediately after the first learning during which half of the associations were rewarded, as well as after a delay of 
six weeks. In a key manipulation, those participants who showed a reward-memory advantage, were then asked to 
relearn exactly the same picture-location associations in the absence of reward in three repeated encoding-recall 
cycles (see Fig. 1 and Methods).

Results
Rewarded learning.  During the rewarded learning (Session 1), recall accuracy was comfortably above 
chance level (65.2% versus 16.67% for chance level) and showed an advantage for rewarded associations [mean % 
(SD): rewarded M = 75.58 (15.80), non-rewarded M = 55.4 (20.33); Wilcoxon sign-rank z = −3.824, p = 0.00001]. 
For every trial, we also calculated the Euclidean distance between the selected and studied location (one of six 
fixed locations on the screen; Fig. 1b), referred to as Distance-To-Target (DTT). DTT data were entered in a linear 
mixed model with factor Reward (rewarded, non-rewarded) and a random factor Subject. As expected, the DTT 
was significantly smaller for rewarded associations [F(1,1322.065) = 83.37, p-value < 0.001, R2

marginal = 0.054 and 
R2

conditional = 0.13; Fig. 2].
Statistical analyses performed on the reaction times (RTs) confirmed a main effect of reward 

[F(1,1322.025) = 4.575, p = 0.033, R2
marginal = 0.002, R2

conditional = 0.29, with faster responses on rewarded trials 
[mean ms (SD) rewarded: M = 1451.02 ms (451.67); non-rewarded: M = 1496.67 ms (460.08)]. Since it is reason-
able to expect faster RTs on correctly recalled associations, we added a fixed factor Correctness (on target, off tar-
get), and found that there was indeed a main effect of Correctness [F(1,1328) = 85, p < 0.001, R2

marginal = 0.048 and 
R2

conditional = 0.344]. This analysis also revealed an interaction between Correctness and Reward due to incorrect 
responses being especially slow for rewarded associations [interaction Correctness × Reward, F(1,1322) = 4.13, 
p = 0.038, ηp

2 = 0.003]. In sum, the expected reward effects were all present at initial learning.

Delayed recall.  At delayed recall six weeks after the learning, accuracy for picture locations was at 21.2%. 
This is slightly above the chance level of 16.67% [sign-rank test against chance level z-value = 2.0975, p = 0.036]. 
Therefore, most of the follow-up analyses will include only those associations that were incorrectly recalled at this 
first delayed recall test administered at the very beginning of Session 2, and which we thereafter refer to as for-
gotten associations. Importantly, at this six week delayed recall, initially rewarded associations were not recalled 
better than non-rewarded ones [mean % (SD): M(rewarded) = 21.35 (9.46), M(non-rewarded) = 21.05 (6.95); 
Wilcoxon sign-rank z = 0.524, p = 0.68].

We also verified that there was no difference in the percentage of forgotten associations at delayed recall 
between rewarded and non-rewarded trials by performing a separate analysis considering only those associ-
ations that were initially correctly recalled during Session 1 [percentage of forgotten trials mean % (SD): 
M(rewarded) = 75.44 (10.1); M(non-rewarded) = 73.3 (12.1); sign-rank z = −0.8928, p = 0.372]. The analysis 
performed on DTT data further confirmed that six weeks after learning, initially rewarded associations were 
no longer more accurately recalled than non-rewarded ones [only incorrect responses: F(1,1034) = 0.058, 
p = 0.809]. Finally, RTs at delayed recall when considering only incorrect responses (i.e. those of interest for 
subsequent relearning), did not differ between rewarded and non-rewarded associations [main effect of Reward 
F(1,1016.474) = 2.268, p = 0.132].

At delayed recall, participants indicated confidence of their response on a scale from 0 to 3, where 0 – guess-
ing, 1 – somewhat sure, 2 – quite sure, 3 – certain. When considering forgotten associations, there was no effect 
of reward on confidence ratings [F(1,1023) = 0.854, p = 0.356; M(rewarded incorrect) = −0.0497 (0.943), 
M(non-rewarded incorrect) = −0.1047 (0.96)].

We then asked whether response confidence had any effect on DTT, again taking into consideration ini-
tial reward status. The dependent measure DTT (z-scored) was entered in a linear mixed model with fixed 
factor Reward and with a trial-level covariate Confidence. For forgotten associations, neither confidence 
[F(1,1021) = 0.193, p = 0.663] nor reward [F(1,1021) = 0.057, p = 0.811] had an effect on DTT. Thus, six week 
after initial learning, forgotten associations showed no sensitivity to their initial reward status.

Relearning.  Relearning consisted of three cycles of re-encoding and recall (referred to as Relearning 1, 2, 
3; see Fig. 1a), during which participants encoded the same picture-location associations as in Session 1, but 
without the prospect of any reward, and had then to recall the correct locations. We first checked that as expected 
performance improved as relearning progressed. This was indeed the case as shown by a main effect of relearning 
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cycle in analyses focusing respectively on accuracy, DTT, and RTs for pictures recalled incorrectly at delayed recall 
[main effect of cycle: for accuracy F(2,90) = 42.157, p < 0.001, R2

marginal = 0.13 and R2
conditional = 0.84; for DTT F(2, 

3015.978) = 54.44, p < 0.001, R2
marginal = 0.0308 and R2

conditional = 0.178; for RTs F(2,3016.069) = 4.541, p = 0.011, 
R2

marginal = 0.003 and R2
conditional = 0.205]. Given our interest in the role of previous reward in relearning, we first 

examined the first cycle of relearning where we expected possible effects of reinstated reward motivation to be 
the strongest. Indeed, the reactivation of prior reward associations could reinstate a state of reward motivation 
but it is likely to extinguish as the non-rewarded relearning progresses16–18. To assess relearning, we exclusively 
analysed forgotten associations, i.e. those associations incorrectly recalled at delayed recall. The analyses below 
include reward status at initial learning as a factor and have been carried out respectively on accuracy, DTT, and 
RTs as independent variables.

After the first relearning cycle, analysis of accuracy for forgotten associations showed a weak effect of reward 
history, whereby originally rewarded associations were relearned with a higher accuracy than non-rewarded asso-
ciations [main effect of reward: z = −2.202, p = 0.028, paired samples sign-rank test]. A similar analysis on DTT 
indicated a main effect of reward [F(1,991) = 3.886, p = 0.049, R2

marginal = 0.003 and R2
conditional = 0.165], with orig-

inally rewarded associations being also relearned with smaller DTT (Fig. 2). These results establish that savings 
for initially rewarded associations that benefitted from immediate memory advantage may selectively enhance 

Figure 1.  Experimental design (a) The experiment comprised two sessions separated by six weeks. During Session 
1, participants encoded half of the rewarded and non-rewarded picture-location associations twice before being 
asked to recall them (followed by the recall block 1; B1). The same procedure was repeated for the second half of 
the associations (followed by the recall block 2; B2). Participants came back six weeks later to participate in Session 
2. This session started with the same recall tasks as in Session 1. This was followed by a relearning task comprising 3 
cycles of one encoding and one recall block. Importantly, relearning was administered in the absence of reward. (b) 
Encoding and recall. Encoding began with the presentation of a reward cue (a piggy with coins for the rewarded 
associations or a pink cross of the same size for the non-rewarded associations). Next, an image appeared centrally 
and moved towards one of the six locations of the screen. The participants’ task was to memorize the position 
corresponding to each picture Note that in the initial learning, reward was offered for pictures of one semantic 
category, which alternated every 9 trials (mini-blocks). Only at delayed recall, participants indicated their response 
confidence in addition to the remembered picture location. The piggy bank image was modified from http://
coloringhome.com/coloring-page/1847657. Sailboat image was adapted from http://maxpixel.freegreatpicture.
com/Adriatic-Sea-Sailboat-Summer-Boka-Boat-1824463 and is under CC0C Public Domain license. The 
boabab image is adapted from https://en.wikipedia.org/wiki/Adansonia_grandidieri#/media/File:Adansonia_
grandidieri04.jpg licensed under CC-BY-SA.

http://coloringhome.com/coloring-page/1847657
http://coloringhome.com/coloring-page/1847657
http://maxpixel.freegreatpicture.com/Adriatic-Sea-Sailboat-Summer-Boka-Boat-1824463
http://maxpixel.freegreatpicture.com/Adriatic-Sea-Sailboat-Summer-Boka-Boat-1824463
https://en.wikipedia.org/wiki/Adansonia_grandidieri#/media/File:Adansonia_grandidieri04.jpg
https://en.wikipedia.org/wiki/Adansonia_grandidieri#/media/File:Adansonia_grandidieri04.jpg
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relearning six weeks later despite the fact that there was no difference at the delayed recall between rewarded and 
non-rewarded picture-location associations.

We found no effect of reward in later relearning cycles using the same linear mixed model analysis [main 
effect of reward in DTT in Relearning 2: accuracy z = −0.1184, p = 0.906, DTT F(1,996.241) = 0.001, p = 0.976; 
Relearning 3: accuracy z = 0.355, p = 0.722, DTT F(1,996.767) = 0.061, p = 0.804]. This effect is in accord with 
a possible extinction due to the absence of reward during relearning. A similar analysis was performed on RTs 
at relearning (for forgotten picture-location associations) with factors Relearning cycle (R1, R2, R3), Reward 
(rewarded, not rewarded at initial learning) and Correctness (on target, off target). We found only a main effect of 
correctness in R1 [F(1,1019.269) = 60.45, p < 0.001, R2

marginal = 0.053 and R2
conditional = 0.274] revealing faster RTs 

for correctly recalled associations [no effect of Reward, p = 0.55; no interaction Correctness × Reward, p = 0.436], 
as well as in R2 [Correctness F(1,1023.647) = 99.75, p < 0.001, R2

marginal = 0.08 and R2
conditional = 0.303; Reward 

p = 0.64; interaction p = 0.943] and in R3 [Correctness F(1,1020.462) = 70.01, p < 0.001, R2
marginal = 0.056 and 

R2
conditional = 0.307; Reward p = 0.384; interaction p = 0.975].

Data-driven modelling.  To further investigate the robustness of a role of reward at relearning, we turned 
to a multidimensional data-driven approach to complement the classical, hypothesis-driven statistical methods 
we have used so far. We performed a data-driven unsupervised multivariate analysis19,20 on the dataset from the 
delayed test and relearning cycles. Following the same logic as in the hypothesis-driven analysis, only forgotten 
associations were included in that analysis.

We considered DTT and RTs together as features to discriminate and search for patterns across the condi-
tions in an unsupervised manner. In other words, we created a unique dataset that included for features the RT 
and DTT measures of individual trials for all 19 participants and for samples the 8 conditions: 2 reward status 
(initially rewarded or not) for the 4 memory tests (delayed recall, R1, R2, R3). We tested for the presence of any 
consistent variability across all these 8 conditions administered 6 weeks after the initial learning. We applied an 
unsupervised (meaning that the algorithm did not use any information about the reward status and recall cycle of 
each of the 8 conditions) machine learning procedure allowing dimensionality reduction by extracting groups of 
common features across the whole dataset and compressing them in a reduced space along diverse dimensions of 
embedding. This new reduced space could thus represent and emphasize differences between the conditions that 
account for a major source of variability. For instance, if the reward significantly influenced the 8 conditions rep-
resented by the multidimensional combination of DTT and RTs, we would expect to find that the unsupervised 
analysis is able to compress in the reduced space of visualization a pattern of condition-segregation that matches 
with the original reward status. We compared two parameter-free algorithms, which therefore do not require the 
tuning of any internal parameter and avoid data overfitting: one (principal component analysis, PCA21) using a 
linear and one (minimum curvilinear embedding, MCE22,23) a nonlinear dimension reduction transformation. 
The latter algorithm allows the analysis of all behavioural data at the same time without the constraints of linearity 
present in all classical statistical approaches we have used so far. Further explanations concerning the choice of 
these specific algorithms are provided in the Methods section.

The results of the analysis using PCA and MCE are displayed in Fig. 3 and both confirm a clear and 
eye-catching data separation for type of recall test and for reward status. On the left (Fig. 3a), PCA compresses 
on the first dimension a discriminative variability that accounts for the type of recall test. In particular, the 
delayed-recall test is markedly separated from the relearning ones. PCA’s second dimension separates originally 
rewarded trials (scoring low on the PC2) from non-rewarded ones (scoring high on PC2). In our dataset, the first 
two principal components of the PCA explain more than half (55%) of the variance in the data (39.99% for PC1 
and 14.61% for PC2). The explained variance for PC3 is 12.48% while its value for PC4 is 10.37%. These results 
are further confirmed by MCE (Fig. 3b) that shows an even clearer separation for type of recall test and for reward 
status. The first dimension of MCE compresses a discriminative variability that offers a symmetric separation of 

Figure 2.  Mean distance to target (DTT). At learning, rewarded picture-location associations were better 
recalled (smaller DTT) than non-rewarded associations. This effect was abolished six weeks later at delayed 
recall. Yet, the effect of initial reward re-emerged during the first cycle of relearning of associations recalled 
incorrectly. Note that ‘rewarded’ and ‘non-rewarded’ labels after the six weeks refer to the reward status of the 
associations at rewarded learning (see Methods and Fig. 1a for details).
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the conditions related with reward, with the originally rewarded conditions scoring high and non-rewarded ones 
scoring low on this first dimension. Interestingly, the second dimension of MCE displays a rather ordered and 
progressive separation of the relearning recall tests (Fig. 3b). Note that in general, both for PCA and MCE, the 
distance due to reward was notably smaller for delayed recall than for relearning, consistent with the results from 
our hypothesis-driven analyses.

Discussion
Forgetting has been proposed as a key process in memory formation24 and as such, it is affected by the 
reward-triggered dopaminergic modulation. Yet, although it has been shown that rewarded memories are 
forgotten more slowly25, it has not been investigated whether persistent effects of monetary reward on initial 
memory can still affect subsequently forgotten (declaratively inaccessible) memory traces. Our results show 
that offering monetary reward at encoding may facilitate not only retention but also relearning26 of forgotten 
hippocampus-dependent memories.

We compared the fate of previously rewarded (and better remembered) and non-rewarded object-location 
associations after they had been forgotten due to passage of time in 19 healthy participants, and tested whether 
reward during the initial learning would still modulate the relearning of the same associations 6 weeks later. 
During learning, reward improved memory performance (reducing distance to target and increasing accuracy), 
replicating the known effect of reward on initial acquisition2. Six weeks later, explicit recall performance for 
initially rewarded and non-rewarded associations did not differ as indicated by comparable accuracy, DTT, and 
RTs. Critically, no effect of reward status at initial learning was observed when considering forgotten associations, 
namely those for which we then investigated relearning. As hypothesized, subsequent relearning of forgotten 
associations was faster for initially rewarded associations for which we found a memory advantage compared 
to non-rewarded ones. This effect was observed in the absence of monetary reward and was most marked early 
during relearning, suggesting early spontaneous recovery of a reward response27.

The savings in relearning cycles 2 and 3 were comparatively reduced, which could be attributed to extinction 
of reward response since cycles 1, 2 and 3 each entailed the presentation of all pictures and their positions in the 
encoding phase followed by the recall phase in the absence of any reward (unlike initial learning in session 1 six 
weeks before). Previous human studies have shown that extinction of appetitive reward response in a condition-
ing task with monetary reward occurs already after the first 20 trials28 and therefore, we suspect that a similar 
effect took place in our memory task with previously reward-associated stimuli. As a consequence of extinction 
of reward motivation, we would no longer observe any differential effects due to reward status during cycle 2 and 
3 of relearning.

A second possible explanation for the lack of reward-related savings relearning 2 and 3 is that such effects 
may be overshadowed by a ceiling effect in memory performance. Please note that the participants effectively 
relearned all associations in the first relearning cycle going from accuracy of 0 to >60% (data presented in the 
Table 1 below). Subsequent additional learning proceeded much slower, with accuracy reaching 75% in the sec-
ond cycle (∆ of ~12%) and an increase of only ~7.5% between cycles 2 and 3 (to ~83%).

Figure 3.  Unsupervised (data-driven) dimension reduction pattern recognition analyses performed on dataset 
of Session 2 recall tests for pictures forgotten at delayed recall. Conditions previously associated with reward 
are displayed with orange dots, whereas conditions previously associated with no reward are displayed with 
black dots. The abbreviations next to the dots mean: DR for delayed recall; R1, R2, R3 for relearning cycle 1,2,3. 
(a) 1st dimension of the principal component analysis (PCA) provides evidence for the effects of learning 
on performance, while the 2nd dimension shows a trend for the effect of reward. (b) Minimum curvilinear 
embedding (MCE) shows a significant and neat difference on the 1st dimension due to previous reward 
association. On the other hand, the 2nd dimension of MCE provides an ordering that perfectly matches with the 
relearning cycles.
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The presence of an effect of reward in relearning was confirmed using a data-driven multivariate approach 
combining both DTT and RTs from the non-rewarded second session of the experiment. We demonstrated that 
the reward effect was detected with both a linear (PCA) and a nonlinear unsupervised algorithm (MCE), con-
firming and extending our classical statistical analyses. This result additionally illustrates the potential of using 
data-driven methods for behavioural data analysis, especially in datasets with significant inter-individual differ-
ences where nonlinear patterns can be expected.

Our findings of a lasting influence of reward memory on subsequent mnemonic processes extend the known 
role of reward on memory formation beyond encoding, early consolidation (reviewed in4), and late consolida-
tion29,30 stages of memory. Moreover, they are in line with previous observations of enduring effects of reward 
on, for instance, choice and preferences31. Lingering effects of reward on memory may be mediated by the ana-
tomical and functional connections between the hippocampus, the dopaminergic midbrain and the ventral 
striatum, which form the hippocampal-VTA loop that supports motivated memory formation32. Future studies 
using neuroimaging (fMRI) could examine the possible reactivation of reward areas (e.g. VTA, ventral striatum) 
during delayed recall and relearning. We suggest that the present behavioural results could implicate either a 
reactivation of the reward system, signalling the re-emergence of the original reward memory33, or increased 
hippocampal-VTA functional connectivity, signalling a strengthening (reconsolidation) of the original memory34 
at relearning.

The phenomenon of memory recovering following forgetting bears some analogies with an effect known as 
‘renewal’ that occurs after the extinction of a conditioned response in a particular context. Renewal is a spe-
cial case of the return of a memory that happens without additional exposure to the unconditional stimulus 
(a reward), in contrast to two other phenomena - reinstatement and rapid reacquisition. Studies of appetitive 
conditioning in animals explain the accelerated return of a conditioned response after its successful extinction 
as arousal-mediated35. Upon re-exposure to the reward-conditioned stimulus (CS+), re-learning is enhanced by 
the reactivation of the unconditional stimulus memory that elicits arousal, possibly due to the re-evoked state 
of reward anticipation. Conversely, relearning is slower when the CS+ is not presented. Therefore, the lasting 
influence of reward that was revealed in savings at relearning in our spatial memory task could be explained by 
the reactivation of associated reward memories, which in turn may reinstate motivation and promote re-encoding 
and reconsolidation. This last finding – of a latent effect of reward motivation – may have important implications 
for learning and education36–38.

Methods
Participants.  Thirty-four healthy volunteers recruited at the University of Geneva participated in the study. 
Since the main focus of the study was to examine the memory performance of previously reward-enhanced mem-
ories during subsequent relearning, only participants who showed a reward-related advantage at learning were 
invited for Session 2 (Fig. 1a). To determine the reward-related advantage in memory, we compared the mean dis-
tance to target (DTT) for all rewarded and all non-rewarded trials at first recall for each participant. Participants 
whose mean DTT was equal or larger for rewarded compared to non-rewarded trials (n = 11) received a financial 
compensation for their time and were excluded from analysis. Three further participants were excluded from 
analyses: one due to technical issues, one due to awareness of the semantic category-reward manipulation, and 
one due to above-average memory performance at delayed recall (2 standard deviations above group mean). 
Nineteen participants were thus included in the analyses (10 females; mean age ± SD: 25.7 ± 5.05). All partic-
ipants were students or recent graduates with no declared history of neurological or psychiatric disease and no 
sleep problems. All participants gave written informed consent. The study protocol was approved by the Ethics 
Committee of the Geneva University Hospitals and was performed in accordance with relevant guidelines and 
regulations.

Stimuli.  We used as stimuli seventy-two unique natural photographs portraying activities, scenes, animals 
and vehicles belonging to two semantic categories (36 pictures from each), “sea” and “savanna”. The photographs 
were trimmed to measure 512 × 512 pixels and were presented on a screen of 1280 × 1024 resolution (screen size 
47 × 57 cm) at a distance of ~60 cm. The stimuli thus subtended 22 × 22 degrees of visual angle. The two sets of 
pictures, corresponding to the two categories, were selected from a large picture dataset (n = 150) based on rat-
ings performed by a group of 10 independent raters such that they were neutral in valence and did not differ in 
terms of arousal, familiarity, and how interesting their content and visual composition was. The two sets did not 
differ in terms of spatial frequencies, and mean luminance was equalized over the sets.

Procedure.  The experiment was composed of two sessions scheduled six weeks (±3 days) apart and was per-
formed on a desktop computer. Session 1 consisted of an initial learning task in which participants encoded the 
location (among 6 possible locations) of each of the 72 pictures. During Session 2, participants first performed 
a delayed recall test (DR), and then proceeded to the relearning task, which was composed of 3 encoding-recall 
cycles (R1, R2, R3; Fig. 1a). The tasks were programmed and presented using Cogent toolbox (Cogent 2000, 
v.1.32, http://www.vislab.ucl.ac.uk/cogent_2000) implemented in Matlab v7.9 (R2009b, The MathWorks, Inc., 
Natick, Massachusetts, United States).

Relearning 1 Relearning 2 Relearning 3

Rewarded 64.9% (23%) 74.8% (21%) 82.7% (17%)

Non-rewarded 61.5% (23%) 75.6% (20%) 82.6% (17%)

Table 1.  Memory accuracy for associations forgotten at delayed test reported as mean ± st. deviation.

http://www.vislab.ucl.ac.uk/cogent_2000
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For the initial learning, the 72 different pictures were presented in 2 blocks of 36 pictures each. Each block was 
composed of 4 mini-blocks of 9 pictures, i.e. 2 for each semantic category (“the sea” and “savanna”). Assignment 
of reward to one of the categories was counterbalanced across participants. Each block was therefore composed 
of 2 mini-blocks of rewarded and non-rewarded pictures presented in a pseudo-randomized order (RNRN or 
NRNR).

During Session 1 (learning), each of the two blocks of different 36 pictures was presented twice in two suc-
cessive runs of encoding followed by one run of recall (Fig. 1a top). The runs were separated by 10 s, while block 
1 and 2 were separated by a pause of 60 s. During encoding, each mini-block started with a reward or no-reward 
cue presented for 1.5 s. The reward cue was a pink piggy-bank with animated coins. The non-reward cue was a 
cross of the same colour and size. In later trials of the mini-block, a scaled-down cue was presented before each 
picture as a reminder (Fig. 1b). No reward cue was presented during recall. At each encoding/recall run, the order 
of pictures within the mini-block as well as the order of mini-blocks changed.

Participants were asked to memorize the location of pictures on the screen during the encoding runs and were 
told that for trials in a mini-block starting with the reward cue – their correct response in a later recall run would 
be rewarded with bonus points (Fig. 1b). A maximum of 10 Swiss francs was offered for their performance (for 
indicating the correct screen position of all 36 rewarded pictures; that is 27c per one picture) in addition to the 
regular hourly compensation of 15 Swiss francs. Participants were instructed about the encoding-recall struc-
ture, and were warned not to rely on the temporal sequence of the trials as it changed across the encoding and 
recall blocks. A practice run was administered before the experiment with a separate set of 18 black-and-white 
drawings.

In the recall run (Fig. 1b bottom), participants pressed one of 6 coloured keyboard keys corresponding to the 
chosen location using both hands (3 keys per hand). Participants were encouraged to respond on every trial, even 
if unsure of their choice. They were instructed to withhold their response until 1 s after image onset (indicated 
with a red frame) but also early responses were included in analysis. No feedback was provided during recall and 
participants saw their performance and the monetary reward only at the very end of the Session 1.

Only one participant was aware of the reward-semantic category assignment and her data have been excluded 
from subsequent analyses. Participants were scheduled to return six weeks later for Session 2 which they were 
told would be a continuation of the experiment but no information was provided about the follow-up task. At 
final debriefing at the very end of Session 2, we learned that none of the participants had expected a memory test.

Six weeks later, during Session 2, participants were asked to recall the location of all 72 pictures learned during 
Session 1 and to state the confidence of their response on a 4-point scale (3 = ‘certain’, 2 = ‘rather sure’, 1 = ‘some-
what sure’, 0 = ‘guessing’; bottom right in Fig. 1b). The recall test maintained the mini-block structure used during 
initial learning, and the pictures were again shuffled within each mini-block. Following this delayed recall task, 
participants started relearning, which consisted of three cycles of single encoding-recall runs (see schema on the 
right in Fig. 1a). Exactly the same picture-location associations were used as for the initial learning of Session 
1. The task was similar to the learning one but differed by two main aspects: there was only one encoding run 
followed by recall after every 36 trials, and no reward was offered and thus no reward cues were presented. No 
feedback was provided at any point in the relearning task.

Data Analysis.  For each condition and cycle, memory performance was measured as accuracy




 ×






correct responses
trials per condition
#

#
100 ,

(1)

as well as distance to target (DTT). Euclidean distance to target was calculated as

− + −x x y y( ) ( ) (2)n n0
2

0
2

where n is the participant’s response and 0 is the target position on a 1280 × 1024 pixel monitor (see Fig. 1b). 
Consequently, DTT measures could take 6 possible values, including 0 for a correct response. For analy-
ses, we used scaled DTTs obtained by dividing the Euclidean distance values by the maximum possible value 
(1068.5). In the hypothesis-driven analyses non-responses were excluded and reaction time (RT) data were log-
arithm(10)-transformed. For both RT and DTT, the first response was considered, unless the RT was <100 ms 
in which case it was regarded as impulsive and excluded from analysis. Confidence of response data (categorical 
values 0–3) were normalized within each participant (z-score).

We used two types of statistical analyses: univariate hypothesis-driven and multidimensional data-driven 
(unsupervised). In order to capture the individual differences that usually characterize memory tasks and retain 
the information related with response variability that is lost with data reduction due to averaging, behavioural 
data for the recall of picture locations were first analysed at a single trial level using a linear mixed model39 (which 
is univariate and hypothesis-driven) implemented in SPSS v.22 (IBM Corp. Released 2013. IBM SPSS Statistics for 
Windows, Armonk, NY: IBM Corp.). A linear mixed model (random effects model) accounts for within-subject 
correlation of repeated measurements with the inclusion of a random intercept for subjects. Note that linear 
mixed model analyses do not require the data to be normally distributed. In addition, mixed models can handle 
unbalanced data (e.g., unequal trials per condition) and covariates that vary continuously with every data point, 
like response confidence that varied at the trial-level in Session 2. When used together in a model (one as a 
dependent variable and one as a covariate), DTT and confidence scores were standardized (z-scoring normali-
zation) for the optimization of the mixed linear model estimation. The purpose of standardization and scaling of 
the covariates was to make the values more similar to the dependent variable in the model. Random intercept was 
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included in the reported model when the Wald Z value was significant, indicating that a significant proportion of 
residual variance is due to repeated measures (trials) in subjects.

In the analysis of accuracy, computed as percentage of correct (on-target) responses relative to all trials, we 
used nonparametric tests (Wilcoxon sign-rank) to test for a difference between responses from initially rewarded 
and non-rewarded trials because the distribution of the data was not Gaussian. We present group means with 
confidence intervals (95%) in Fig. 2.

For effects statistically significant at α < 0.05, we report effect sizes in the form of the coefficient of determi-
nation R2 for the reported fixed effect as well as for the fixed effect + random effect of random intercept (factor 
Subject). It is defined as the proportion of variance in the response variable that is explained by the explanatory 
variables. We report both marginal and conditional R2, that gauge, respectively, the contributions of fixed, and of 
fixed and random effects of variation in the responses40.

To further explore the possible latent influence of reward on performance during relearning, DTT and RTs 
from the associations forgotten in Session 2 were analysed with a multidimensional data-driven approach. We 
chose to include only that part of the experiment where no actual reward was offered in order to focus solely on 
our question of interest, which is the lingering effects of initial reward when relearning in the absence of reward. 
The aim of this analysis was to unsupervisedly detect and distinguish the factors that influence the relations 
between the experimental conditions. We performed a linear and nonlinear multivariate analysis (dimension-
ality reduction) by means of two parameter-free unsupervised machine learning algorithms: principal compo-
nents analysis (PCA) for the linear analysis and Minimum Curvilinear Embedding (MCE) for the nonlinear 
analysis. We chose PCA because it is the mainstream linear multivariate method to unsupervisedly explore data 
patterns in multidimensional data22. For comparison, we chose MCE22,23 - a nonlinear version of PCA that is also 
parameter-free and that demonstrated to achieve top performance in unfolding patterns in many applications 
from biology and medicine to radar signal analysis22,41–47. MCE has in particular the advantage to be the only 
parameter-free nonlinear machine learning approach that was specifically designed to deal with small size data-
sets, as is the case in our study22,23.

The data were DTT and RTs for associations that were incorrectly recalled (i.e., forgotten associations) at the 
delayed recall at all of the recall tests in Session 2. As a result, this dataset has 8 conditions: delayed recall and three 
relearning recall tests for the originally rewarded and non-rewarded pictures. Here, both RTs and DTTs were 
zscored (i.e., mean-centred and scaled to have standard deviation 1.). Each of the 8 conditions constituted a row 
in the data matrix and was defined by 1040 features, which is an aggregate of a variable number of 21–33 trials 
for 19 subjects for RTs and DTTs. Therefore, the dataset matrix had 8 rows and 1040 columns. As noted in the 
hypothesis-driven analysis, we noted a strong effect of individual differences in performance that is often char-
acteristic for memory tasks, including the current dataset. Since we z-scored each feature (column) of the dataset 
(representing one trial per participant), each feature is mean-centered, ensuring that the first component of PCA 
describes the direction of maximum variance48. Since an equal number of data points is required for this analysis, 
missing data were replaced with either the maximum of response time or distance to target that is in both cases 1.

For PCA, the data were factorized using singular value decomposition. The dataset was also analysed using 
MCE which is a form of parameter-free nonlinear-kernel PCA designed for nonlinear dimensionality reduction. 
We used a noncentered MCE that does not centre the minimum curvilinear kernel (hence the first dimension of 
embedding should be neglected, and we renamed the second dimension as first dimension, the third as second), 
because it was shown to be more effective especially when time-varying (time-dependent trajectory of the con-
ditions in the multidimensional space) effects are influencing the conditions23,43,45. Sample labels (if known) are 
not used for the data projection thus rendering the analysis unsupervised. Using the MCE algorithm, we searched 
for the hidden pattern (specifically: the ordering of the conditions on one of the first two dimensions) that unsu-
pervisedly emerge explaining the higher variability in the data without the PCA’s constraint to map only linear 
variability. To visually verify if any matching between represented condition-variability in the 2D reduced space 
and known condition-labels (recall tests: delayed recall, relearning tests R1, R2, R3; or reward/no-reward status at 
learning) was present, the condition points plotted in the 2D reduced space (for both PCA and MCE) are marked 
in a colour that represents the presence or absence of reward, and text labels report the recall cycle. The results 
of this analysis are displayed in Fig. 3. Since the patterns obtained by PCA and MCE are matching with a perfect 
separation there is no need to apply statistical or geometrical evaluations (such as class separability measures) in 
the 2D reduced space to quantify the level of separation.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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