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Abstract

Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are lipid-soluble, endogenously produced
gaseous messenger molecules collectively known as gasotransmitters. Over the last several decades,
gasotransmitters have emerged as potent cytoprotective mediators in various models of tissue and cellular injury.
Specifically, when used at physiological levels, the exogenous and endogenous manipulation of these three gases
has been shown to modulate ischemia/reperfusion injury by inducing a number of cytoprotective mechanisms
including: induction of vasodilatation, inhibition of apoptosis, modulation of mitochondrial respiration, induction of
antioxidants, and inhibition of inflammation. However, while the actions are similar, there are some differences in
the mechanisms by which these gasotransmitters induce these effects and the regulatory actions of the enzyme
systems can vary depending upon the gas being investigated. Furthermore, there does appear to be some
crosstalk between the gases, which can provide synergistic effects and additional regulatory effects. This review
article will discuss several models and mechanisms of gas-mediated cytoprotection, as well as provide a brief
discussion on the complex interactions between the gasotransmitter systems.
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Introduction
Nitric oxide (NO), carbon monoxide (CO) and hydrogen
sulfide (H2S) are lipid-soluble, endogenously-produced
gaseous messenger molecules [1]. Together, they make
up the family of labile biological mediators termed gaso-
transmitters. Historically, these gases were considered to
be highly toxic and hazardous to the environment. How-
ever, it was found that under normal physiological con-
ditions in mammals these molecules are enzymatically
regulated and endogenously produced. Because of this
discovery, the biological and physiological role of these
gases has been re-evaluated. As such, an extensive
amount of work has been conducted over the last sev-
eral decades (last three centuries for NO) and has led to
the discovery that each gasotransmitter possess a num-
ber of physiological actions. The gasotransmitters have
also been extensively studied in several models of cellu-
lar and tissue injury. This work has led to the discovery
that gasotransmitters and the enzymes that generate
them share similar features and overlap in a variety of

biological functions. Specifically, studies have found that
deficiencies in the enzymes (through genetic manipula-
tion or use of inhibitors) exacerbate ischemia-reperfu-
sion (I/R) injury, whereas genetic overexpression of the
enzymes induces cytoprotection. Furthermore, treatment
with pharmacological donors or inhaled gas therapy has
also been shown to provide cytoprotection. This review
article will discuss the physiological significance and the
fundamental mechanisms by which these gaseous mole-
cules exert cytoprotection in several models of tissue
and cellular injury, as well as provide a brief discussion
on the complex interactions between the gasotransmit-
ter systems.

Physiological and Biological Roles of Gasotransmitters
NO was the first gasotransmitter to be identified by stu-
dies dating back to the late 1700’s, which investigated its
pharmacological efficacy [2]. However, it was not until
1867 that evidence emerged to suggest that NO induced
vasodilatory effects in patients suffering from angina
pectoris [3]. Unfortunately, it’s true potential and phy-
siological significance in the field of medicine was not
discovered until the 1980’s, when scientists Furchgott
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and Zawadzki identified NO as an endogenous modula-
tor of vascular tone [4]. NO levels are controlled at the
level of synthesis, initiated by the interaction of nitric
oxide synthases (NOSs) and calcium-calmodulin stimu-
lation. There are three isoforms of NOS that have been
characterized, purified, and cloned: the endothelial iso-
form (eNOS), the neuronal isoform (nNOS), and the
inducible isoform (iNOS). These enzymes generate NO
from the guanidine nitrogen of the amino acid L-argi-
nine in the presence of oxygen and NADPH, while
forming L-citrulline as a byproduct (Figure 1). NO
released from the endothelium enters the target cell and
initiates cGMP-dependent protein kinase phosphoryla-
tion of myosin, by activating the cytosolic enzyme solu-
ble guanylyl cylase causing a subsequent increase in the
intracellular concentration of cyclic GMP (cGMP),
which then goes on to regulate smooth muscle relaxa-
tion and vasodilatation.
The endogenous source of CO was first identified in

1969 when it was determined that it is derived from the
breakdown of heme by the enzyme heme oxygenase
(HO) (Figure 2) [5]. In 1993, a study investigating nona-
drenergic/noncholinergic (NANC) neurotransmission in
the enteric nervous system identified CO as a vasorelax-
ant and later confirmed it as the second gasotransmitter
[6,7]. Molecular cloning has revealed three known iso-
forms of heme oxygenase: inducible HO-1 a ubiqui-
tously expressed transcription factor activator that is
crucial in oxidative stress response; HO-2 which is con-
stitutively active and controlled by posttranslational
modification [8]; and HO-3 which is similar to HO-2
but considered a less efficient heme catalyst [9]. Similar
to NO, CO has been shown to modulate vasorelaxation,
vascular smooth muscle cell growth, and tissue injury
through elevation of cGMP levels, it is also suggested
that local effects of CO may directly influence NO
release, and furthermore stimulate adaptive responses
and augment gene expression [10,11].

H2S was the third endogenously produced gasotrans-
mitter to be identified. The production of H2S in mam-
malian systems has been attributed to three principal
enzymes (Figure 3): cystathionine b-synthase (CBS),
cystathionine g-lyase (CSE or CGL) and 3-metacaptopyr-
uvate sulfur transferase (3MST). The endogenous pro-
duction of H2S was initially described in the brain and
attributed to CBS activity [12]. However, recent studies
have found that ~90% of total H2S production in the
brain is attributed to 3MST [13]. CBS and CGL are
found in all tissues; however CBS is the predominant
source of H2S in the central nervous system (CNS),
whereas CGL is the predominant source in the cardio-
vascular system. Perhaps the most characterized physio-
logical action of H2S is its participation in memory
formation as a central component of the process of
long-term-potentiation of neuronal circuitry [12]. Addi-
tionally, like NO and CO, H2S also mediates smooth
muscle relaxation and vasodilation. However, it does so
in a guanylyl cyclase/cGMP independent manner
[14,15].

Cytoprotective Effects of Gasotransmitters
A unique characteristic of gasotransmitters is that they
lack conventional regulatory mechanisms, as they have

Figure 1 Enzymatic Synthesis of Nitric Oxide. Nitric oxide (NO) is
produced from amino acid L-arginine by the enzymatic action of
nitric oxide synthase (NOS). There are there forms of NOS:
endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS
(iNOS). NO activates guanylate cyclase (GC), which leads to
increased production of 3’,5’-monophosphate (cGMP).

Figure 2 Enzymatic Synthesis of Carbon Monoxide. Heme is
catabolised by heme oxygenases (HO), to form biliverdin, carbon
monoxide, and iron. Carbon monoxide can activate soluble guanylyl
cyclase, which causes an increase in cyclic guanosine
monophosphate levels (cGMP). Biliverdin is subsequently converted
to bilirubin by biliverdin reductase.
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the ability to pass messages directly to an intracellular
target without the need for receptor or plasma mem-
brane interactions [16]. This makes the gasotransmitters
particularly attractive candidates for the treatment of
pathological disorders, such as I/R injury. Over the past
several decades, studies using animal models and clinical
investigations have defined these gaseous molecules as
physiological participants in a wide range of profound
biochemical and biological functions, and have defined
them as potent cytoprotective mediators in various
models of tissue and cellular injury. In the physiological
range, the exogenous and endogenous manipulation of
these three gases has been shown to modulate ischemia/
reperfusion injury, vascular damage, vasodilation, oxida-
tive stress, inflammation, and apoptosis.

Myocardial Ischemia-Reperfusion Injury
In terms of cytoprotective effects, NO has been the
most investigated gasotransmitter. Specifically, much of
this work has focused on the role of endogenously and
exogenously derived NO in mediating the effects of
myocardial I/R injury [17-21]. The role of endogenously

derived NO has been studied using pharmacological
inhibitors against NOS and by genetically targeting each
NOS. The role of exogenously derived NO has been stu-
died through the administration of NO in the form of
authentic NO gas, NO donors, and more recently nitrite
and nitrate. Perhaps the most clear-cut evidence for a
protective role of endogenously derived NO in the set-
ting of myocardial injury comes from studies aimed at
investigating eNOS [22]. Studies that have employed the
use of mice deficient in eNOS (eNOS-/-) have overwhel-
mingly shown that these mice experience exacerbated
infarct sizes and increased myocardial dysfunction in
response to myocardial ischemia [23-26]. In contrast,
the overexpression of eNOS has been shown to reduce
the size of myocardial infarction and increase myocar-
dial function in the same experimental models of injury
[27-29]. Early studies reported that a deficiency of
nNOS or iNOS did not affect infarct size in response to
acute myocardial ischemia [24,28,30-32]. However, more
recent evidence suggests that nNOS plays a crucial role
in preventing adverse left ventricular remodeling and
ventricular arrhythmias and maintaining myocardial b-
adrenergic reserve after myocardial infarction [33,34].
Likewise, new evidence has emerged to suggest that
gene transfer of iNOS affords cardioprotection against
myocardial I/R injury [35,36]. Taken together, these stu-
dies clearly demonstrate that endogenously produced
NO has the ability to protect the heart from I/R injury.
Extensive work has also investigated the use of NO as

a viable pharmacological approach for the treatment of
I/R injury. Inhaled NO gas therapy initiated just before
or during coronary artery reperfusion has been shown
to be an effective means to rapidly increase the accumu-
lation of NO metabolites in blood and tissues and to
provide protection against myocardial I/R injury [37,38].
Additionally, the class of drugs known as NONOates,
which release NO in a pH-dependent, first order process
have repeatedly been reported to provide cardioprotec-
tion in experimental models of myocardial I/R injury
[39,40]. NONOates are not the only pharmacological
agents that can provide protection by increasing the
bioavailability of NO, as it has clearly been shown that
statins, metformin, adiponectin, and estrogen provide
cardioprotection by increasing the production of NO
from eNOS [28,29,41-44]. The use of NO as a therapeu-
tic agent in the treatment of myocardial I/R injury has
not been without some controversy, as there have been
some studies to report negative effects. In 2001 a com-
prehensive review investigating the role of NO in modu-
lating myocardial injury spanning from 1991-2001 found
that 73% of the studies reported that NO (endogenous
or exogenous) was cardioprotective, whereas 12%
reported that NO was detrimental [17]. Further investi-
gation of NO efficacy in myocardial I/R have suggested

Figure 3 Enzymatic Synthesis of Hydrogen Sulfide. There are
three enzymatic pathways involved in the synthesis of hydrogen
sulfide (H2S) in mammalian systems. Cystathionine b-synthase (CBS)
produces H2S through a reaction involving the generation of
cystathionine from homocysteine and L-cysteine from cystathione.
Cystathionine g-lyase (CGL or CSE) produces H2S through a reaction
involving the generation of L-cysteine from cystathionine. 3-
mercaptopyruvate sulfur transferase (3MST) produces H2S through a
reaction involving the generation of 3-mercaptopyruvate (3MP) from
a-ketoglutarate (a-KG) by cysteine aminotransferase (CAT).
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the cause for discrepancies between the opposing find-
ings can be explained by dosing inconsistencies, as it is
suggested that physiological levels (i.e., nanomolar) of
NO promote cytoprotection, while suprapharmacologi-
cal levels (i.e. high micromolar and milimolar) mediate
cellular necrosis and apoptosis [17,21].
Enhanced expression of HO-1 and its degradation

products have been shown to augment multiple intracel-
lular cytoprotective pathways. In particular, HO- 1 pro-
tein expression is significantly up-regulated in
myocardial infarction [45], and hypoxia-induced upregu-
lation of HO-1 in the heart has been shown to signifi-
cantly increase CO production [46]. Predictably, studies
investigating myocardial damage in HO-1 knockout
mice following MI have reported [32] exacerbated myo-
cardial injury, increased ROS production, and decreased
endogenous CO production. However, at low levels exo-
genous CO has been shown to stimulate cardioprotec-
tion in HO-1 knockout mice, and rat hearts during I/R
[47]. The role of endogenous CO in cardioprotection
has also been demonstrated using carbon monoxide-
releasing molecules (CO-RMs) to elicit pharmacological
activities in myocardial cells against I/R injury [48].
Taken together, these studies suggest the use HO-1
induced CO production and direct administration of
CO provide potential therapeutic alternatives for the
pharmacological regulation of myocardial I/R injury
[9,49,50].
An increasing number of studies also provide evidence

that both exogenous and endogenous H2S exert cyto-
protective effects [51], especially against myocardial I/R
injury [52] Studies have found that, targeted deletion
and genetic manipulation of CGL leads to modification
of H2S expression in the aorta, heart, and serum [53].
Johansen first investigated exogenous pre-treatment of
H2S using a Lagendorff hanging heart model, and found
that H2S administration caused a reduction in infarct
size and suppressed myocardial I/R injury [54]. Similarly,
in vitro studies have found that pretreatment with H2S
reduces myocardial necrosis, decreases cardiomyocyte
death, improves mitochondrial function [55] and
increases myocyte contractility [56,57]. In vivo models of
myocardial I/R have provided further support suggesting
the cardioprotective effects of H2S. Studies using murine
models I/R injury have shown that of treatment with
H2S prior to myocardial ischemia significantly reduces
infarct size, and H2S administered at the time of reper-
fusion has been shown to reduce infarct size and exert
dose dependent cardioprotection [43,58]. However,
when the production of H2S is reduced by pharmalogi-
cal inhibition prior to myocardial ischemia, mice experi-
ence exacerbated myocardial injury [58]. Further
evidence that H2S confers cardioprotection has been
shown by genetically altering CGL expression. Mice

deficient in CGL (CGL-/-) have been reported to experi-
ence decreased myocardial function, reduced serum H2S
levels, pronounced hypertension, diminished endothe-
lium-dependent vasodilation, and significantly larger
areas of myocardial infarction compared to wild-type
control animals [58-60]. However, a recent study investi-
gating the hemodynamic effects of H2S reported that
CGL-/- mice did not display a significant difference in
blood pressure when compared to wild-type mice [61].
The discrepancy between these two studies might be
partly due to the genetic background of the mice used,
which indicates that more research is needed to confirm
the effects of CGL inhibition on blood pressure.
Furthermore, specific overexpression of CGL has been
shown to increase H2S production in the heart, and
reduce the degree of injury following myocardial I/R
[58]. These findings suggest that therapy targeting endo-
genous and exogenous H2S may offer cytoprotection
against myocardial I/R injury.

Other Models of Ischemia-Reperfusion Injury
The cytoprotective effects of gasotransmitter therapy are
not limited to myocardial I/R injury, as NO and H2S
have been shown to confer protection in other organ
systems, such as the liver, kidney, and brain. Hepatic I/R
injury is oftentimes associated with liver surgery, hepatic
transplantation, and hepatic resection. NO modulates
hepatocellular/tissue injury through its participation in
neutrophil adhesion, platelet aggregation and mainte-
nance of normal vascular permeability [62]. Kuroki et al
investigated the role of nitroprusside in the pathogenesis
of hepatic I/R injury using a rat model, and reported
that it enhances hepatic microcirculation, decreases
LDH serum levels and reduces hepatocyte damage [63].
H2S therapy has also been shown to reduce serum ala-
nine aminotransferase (ALT) and aspartate aminotrans-
ferase (AST) levels following hepatic ischemia-
reperfusion [41], and to inhibit lipid peroxidation as
well as decrease inflammation [64,65]. In 2007, Tripatara
and colleagues used a rat model of renal I/R injury to
demonstrate attenuation of renal dysfunction and injury
in response to topical treatment with sodium nitrite
[66]. In addition, Unal and colleagues [67] have investi-
gated the effects of nitroprusside and antioxidant vita-
mins C and E, using rat kidney I/R models and found
that nitroprusside inhibited xanthine oxidase and pro-
vided a preventive influence in renal I/R injury than the
antioxidant vitamins C+E. Tripatara and colleagues also
investigated the endogenous and exogenous effects of
H2S in renal I/R injury, and found that CGL inhibition
causes a significant decrease in renal function and that
topical H2S therapy applied to the kidney prior to ische-
mia improves renal function and attenuates renal I/R
injury [68]. More evidence regarding the efficacy of NO
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and H2S therapy has been demonstrated in models of
cerebral ischemia. Chen examined the effect of eNOS
production in cerebral ischemia using eNOS-/- mice
[69]. Predictably, the eNOS-/- mice displayed a signifi-
cant decrease in neurological function, attenuation of
angiogenesis, and decreased cell proliferation. Other stu-
dies have reported the benefits of intravenous sodium
nitrite infusion at the time of reperfusion as means to
restore cerebral blood flow, and decrease infarct volume
[70,71]. Furthermore, administration of the exogenous
NO donor ZJM-289 has been shown to increase eNOS
expression, cGMP, and NO after cerebral ischemia.
Moreover, administration of H2S following cerebral
ischemia has been shown to reduce infarct size, increase
H2S levels in the brain and provides neuroprotection by
inducing hypothermia (30.8 ± 0.7°C) [72]. However,
contrasting studies have shown H2S administration sig-
nificantly increases cerebral infarct volume in rats fol-
lowing middle cerebral artery occlusion [73]. A recent
study has reported that the neuroprotective effects of
H2S are concentration dependent [74], and that admin-
istration of H2S increases fetal GSH levels in the brain,
decreases cerebral I/R injury and protects against oxida-
tive stress in utero [75]. Additionally, H2S has been
shown to reduce neuronal cell death in a murine model
of cardiac arrest/cardiopulmonary resuscitation [76].
Thus, additional studies are certainly needed to address
the reported discrepancies in models of cerebral injury.
Exposure to CO has been shown to promote cell

survival, decrease necrosis, prevent graft rejection and
promote tissue protection during organ transplantation
[40,77]. Exposure of the graft donor as well as the
graft (during ischemia) to exogenous CO and HO-1-
derived CO has been shown to restore graft function,
reduce generation of ROS and thus prevent cytotoxic
tissue injury. Overexpression of HO-1 has been shown
to reduce intragraft apoptosis [78] and suppress vascu-
lar injury. Akamatsu and colleagues used HO-1 pre-
conditioning to demonstrate retention of functional
viability in cardiomyocyte cellular grafts after implanta-
tion [79]. Yoshida and colleagues, exposed isolated rat
hearts to CO at high pressure, and reported organ pre-
servation, attenuation of intracellular decomposition
and prevention of necrosis [80]. Other studies have
demonstrated HO-1 increases survival after cardiac
transplant and HO-induced CO protects tissue in
mouse-to-rat cardiac transplantation [81]. Additionally,
at physiological levels CO inhalation was found to
exert tissue protection in lung transplantation [82],
and HO-1 overexpression has been shown to regulate
a cascade of cytoprotective effects in immune response
to organ transplantation [83]. Currently the US food
and Drug administration has granted an orphan drug
safety and tolerability study for CO inhalation therapy

in the reduction of delayed graft function, and solid
organ transplant preservation.
In summary, extensive research performed in recent

years has clearly demonstrated that the efficacy of gaso-
transmitter therapy in ameliorating in vitro or in vivo I/
R injury. Most importantly, these studies have provided
important information regarding the doses of each gas
that provide cytoprotection and suggest that the use of
these gases at or near the levels considered to be pro-
duced under physiological conditions in vivo is optimal
to protect a number of organs including the heart, liver,
kidney, and brain.

Summary of Cytoprotective Mechanisms and Evidence for
Gasotransmitter Crosstalk
So far, this review has provided evidence supporting the
multifaceted role of gasotransmitters in cytoprotection
and as such has highlighted the similarities between all
three gases. For instance, all are naturally produced in
the body and are constantly participating in biological
responses within target tissues and organs [84]. The rate
of NO/CO/H2S production, cytoprotection and clear-
ance vary with time, dose concentration, and enzymatic
mediators. Even the enzymes responsible for biosynth-
esis of gastrotransmitters show parallel similarities and
in the case of NO and CO can be classified as constitu-
tive (eNOS, nNOS, and HO-2) or inducible (iNOS, and
HO1). Importantly, all three gasotransmitters possess
similar physiological actions that could account for the
observed cytoprotective effects (Figure 4). For example,
all three can: (1) induce vasodilatation by activating the

Figure 4 Summary of Mechanisms by which Gasotransmitters
can Induce Cytoprotection. The gasotransmitters share unique
and similar pathways by which they protect against tissue and
cellular injury. Both CO and NO have been shown to regulate
smooth muscle relaxation through the sGC/cGMP pathway. NO and
H2S have been shown to regulate cell proliferation and vascular
smooth muscle relaxation balance through mitogen-activated
protein kinases (MAPK), and ATP-sensitive potassium channels (KATP
). In addition, H2S and CO regulate oxidant/antioxidant balance
through the transcription factor NF-E2-related factor (Nrf2).

Moody and Calvert Medical Gas Research 2011, 1:3
http://www.medicalgasresearch.com/content/1/1/3

Page 5 of 9



sGC/cGMP pathway (NO and CO) [85] or by activating
ATP-sensitive K+ (KATP) channels (H2S) [15]; (2) inhibit
apoptosis by directly interacting with the apoptotic
machinery [86] or by increasing the expression of anti-
apoptogens, such as HSP90, HSP70, and Bcl-2 [43]; (3)
modulate mitochondrial respiration [17,58,87]; (4)
induce antioxidants [58,81] and (5) inhibit inflammation
[88-91]. However, while the actions are similar, there
are some differences in the mechanisms by which these
gasotransmitters induce these effects and the regulatory
actions of the enzyme systems can vary depending upon
the gas being investigated. Furthermore, there does
appear to be some crosstalk between the gases, which
can provide synergistic effects and additional regulatory
effects. The rest of this article will provide a brief dis-
cussion on the complex interactions between the gaso-
transmitter systems.
We will begin with the interaction between NO and

H2S. Like NO, H2S is produced in the endothelium as
well as SMCs [92], and mediates acute regulation by
vasorelaxative hormones through calmodulin and IP3
dependent pathways [93]. There appears to be a close
interaction between H2S and NO, with NO amplifying
the inhibitory effect of H2S and H2S tissue specific acti-
vation of eNOS [94]. In particular, NO and H2S have
been suggested to collaborate in regulating vascular
homeostasis and vasodilation [14]. Additional evidence
suggests that NO can increase CGL activity acutely, and
that chronic exposure to NO up-regulates CGL expres-
sion. Moreover, at low concentrations H2S has been
shown to enhance the release of NO from vascular
endothelium and increase the vasorelaxant effect of the
NO donor sodium nitroprusside [15].
CO and NO share apparent similarities in structure,

molecular weight and solubility [95]. Both NO and CO
interact with iron (Fe) to form 5 or 6 coordinated haem
complexes, which result in conformational changes and
activation of the sGC/cGMP pathway [85]. Thus, many
of the biological effects of CO are similar to NO, includ-
ing its anti-apoptotic, anti-proliferative and anti-inflam-
matory mechanisms. Other studies have confirmed the
participation of both NO and CO-mediated signaling cas-
cades in immune suppression of platelet aggregation and
neurotransmission [96]. In addition to regulating vascular
cell growth, CO influences cell survival by blocking cyto-
kine-mediated mitochondrial release of cytochrome C
[97] and has been shown to influence hepatoprotection
through the transcriptional upregulation of iNOS in the
liver. Both exogenously administered or endogenously
released NO stimulates HO-1 gene expression and CO
production [32,97]. Furthermore, CO and NO have been
shown to participate in vasoactive cross talk, influencing:
growth factors, anti-inflammatory mediators, angiogen-
esis and vascular remodeling [98,99].

The crosstalk between H2S and CO has been the least
studied, as there are only a few studies which have
addressed this interactions. Zhang and colleagues [100]
were one of the first to investigate the physiological and
pathological interactions of CO and H2S and found that
exogenous H2S can upregulate the CO/HO pathway
during hypoxic pulmonary hypertension. Additionally, in
much the same manner to that described for NO, H2S
increases the expression of HO-1 in a Nrf-2 dependent
manner [43].

Conclusion
The studies mentioned in this review have identified the
therapeutic potential and translational opportunities of
gasotransmitters as potent cytoprotective molecules. So
far, the exogenous administration, endogenous manipu-
lation and use of genetically modified animals has been
successful in demonstrating gasotransmitter-mediated
cytoprotection in models of I/R injury and other forms
of disease. In addition, the gasotransmitters have been
shown to play a pivotal role in the regulation of cell
functions and in the reduction of tissue injury by activa-
tion of a number of prosurvival pathways. However,
there are still a number of questions that remain to be
answered, especially in relation to the interactions
between the gases. For instance, the exact correlation
between these gases in the various pathways of cytopro-
tection has yet to be fully investigated [101]. It is also
not known if using some variation of NO/CO/H2S, as a
combination therapy will provide synergistic effects in
the treatment of ischemic disorders. Therefore, addi-
tional studies designed to examine NO/CO/H2S cross
talk will provide better comprehension concerning this
issue, as well as new insights into their interactions. In
addition, it is important to recognize a need for the
development of consistent dosing and measurement
techniques for the advancement of gasotransmitters in
pharmalogical research. Because the regulation, expres-
sion and function of these gaseous molecules are so
complex, optimal alterations in synthesis and activity
will possibly provide novel therapeutic opportunities for
the treatment of a number of pathophysiological
conditions.
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