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Abstract

Mutations in BRCAT and BRCA2 are responsible for a large proportion of breast-ovarian cancer families. Protein-truncating
mutations have been effectively used in the clinical management of familial breast cancer due to their deleterious impact on
protein function. However, the majority of missense variants identified throughout the genes continue to pose an obstacle
for predictive informative testing due to low frequency and lack of information on how they affect BRCA1/2 function.
Phosphorylation of BRCA1 and BRCA2 play an important role in their function as regulators of DNA repair, transcription and
cell cycle in response to DNA damage but whether missense variants of uncertain significance (VUS) are able to disrupt this
important process is not known. Here we employed a novel approach using NetworKIN which predicts in vivo kinase-
substrate relationship, and evolutionary conservation algorithms SIFT, PolyPhen and Align-GVGD. We evaluated whether
191 BRCAT and 43 BRCA2 VUS from the Breast Cancer Information Core (BIC) database can functionally alter the consensus
phosphorylation motifs and abolish kinase recognition and binding to sites known to be phosphorylated in vivo. Our results
show that 13.09% (25/191) BRCAT and 13.95% (6/43) BRCA2 VUS altered the phosphorylation of BRCA1 and BRCA2. We
highlight six BRCAT (K309T, S632N, S1143F, Q1144H, Q1281P, S1542C) and three BRCA2 (S196l, T207A, P3292L) VUS as
potentially clinically significant. These occurred rarely (n<2 in BIC), mutated evolutionarily conserved residues and abolished
kinase binding to motifs established in the literature involved in DNA repair, cell cycle regulation, transcription or response
to DNA damage. Additionally in vivo phosphorylation sites identified via through-put methods are also affected by VUS and
are attractive targets for studying their biological and functional significance. We propose that rare VUS affecting
phosphorylation may be a novel and important mechanism for which BRCA1 and BRCA2 functions are disrupted in breast
cancer.
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Introduction Previously, the need to characterize missense variants to provide
risk assessment to individuals from high-risk families led to
development of several approaches in classifying VUS. These
include integrating interspecies sequence variation [8-10], func-
tional analysis to uncover the consequences of VUS on protein
function [11-14], genetic assessment approaches including pedi-
gree analysis [15], likelihood models [16], structural-based
approaches to model the effect of amino acid substitution

Rare germline mutations of BRCAI and BRCA2 predispose
carriers to early-onset familial breast or ovarian cancers [1-3].
These genes can account for half of breast and/or ovarian familial
cancer aggregates (whereas the remaining families receive
inconclusive results) and are responsible for about 5-10% of all
breast cancer cases and 10-15% of ovarian cancers in the general

populz?tion [,5]. Clinically informative results .fmm BR_(‘H [17,18] and transcriptional activity assays [19]. These studies
screening have been mostly derived from protein-truncating have provided important information into the clinical significance
mutations presenting as indels, nonsense codons and splice of BRCA mutations.

variants as well as large genomic rearrangements [3,6,7]. Such
mutations have very apparent impacts on the normal protein
function and have been widely utilized in the clinical management
of familial breast and ovarian cancers. However, further analysis of
a significant number of BRCAI and BRCA2 missense variants of
uncertain significance (VUS) continue to pose an important
obstacle to the clinical management of a considerable portion of
familial breast cancer probands and families who carry such VUS.

Phosphorylation is an important post-translational modification
that occurs at specific serine, tyrosine and threonine residues
within protein sequences [20]. The phosphorylated residue is
surrounded by a kinase interaction/recognition motif that is
typically comprised of 7-12 amino acids [2]1] and that kinase
specificity is determined by the identity of these residues [22,23].
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Our studies have previously suggested that missense VUS and
commonly occurring single nucleotide polymorphisms (SNPs)
altering phosphorylation patterns of cell cycle and DNA repair
proteins may contribute to human cancer risk [24,25] and our
preliminary analysis showed that many of the missense variants in
BIC are found within the consensus motifs of sites known to be
phosphorylated i vivo. Despite this wealth of information, the
potential functional impact of these rare VUS remains unchar-
acterized. In the present study, our goal is evaluate the potential
consequences of missense VUS on kinase recognition and
phosphorylation of BRCA1 and BRCAZ2 proteins. Accordingly,
we have utilized the web-based algorithm NetworKIN 2.0 [26]
and selectively tested the missense VUS listed in the BIC database
that are located within 10 amino acids around the experimentally
verified and biologically characterized phosphorylation sites as
well as residues identified via high-throughput methods to be
phosphorylated in vivo. Here, we analyzed 191 BRCAI and 43
BR(CA2 missense VUSs, which have the potential to interfere with
the phosphorylation process via abolishing or creating phosphor-
ylation sites on BRCA1 and BRCAZ2.

Methods

Selection of in vivo Phosphorylation motifs for analysis

A comprehensive list of known phosphorylation sites of BRCAL1
and BRCA2 was obtained from the curated databases Phospho-
sitePlus [27] and Phospho. ELM [28] as of August 2012. We
evaluated BRCAI and BRCAZ2 missense variations’ effect in relation
to 44 and 11 phosphorylation sites reported in humans,
respectively (Figure la, b). Based on the curated databases, all
sites selected were reported to be phosphorylated i vivo and
reported in the literature. Kinase binding and biological signifi-
cance of the phosphorylation on protein function had been
demonstrated for sixteen sites in BRCAI and six sites in BRCA2.
Accordingly, these experimentally characterized sites are denoted
“biologically characterized” in this manuscript. The remaining
sites were previously identified as phosphorylated i vivo using
high-throughput methods (e.g. Mass spectrometry) where a
definitive biological significance in protein function has not yet
been shown and are designated as ‘“‘biologically uncharacterized”
in this manuscript.

Missense VUS from the Breast Cancer Information Core
Database

The National Institute of Health (NIH)’s Breast Cancer
Information Core (BIC) database (http://research.nhgri.nih.gov/
bic/) contains 11 types of genetic variations. These genetic
variations are identified by studying the tumor DNA samples and
may therefore be either inherited or somatic variations. Using the
most up-to-date version of the BIC database as of August 2012,
591 BRCAI and 883 BRCA2 missense VUSs were retrieved. Only
VUS located in or within a 10 amino acids sequence upstream and
downstream of a phosphorylation site were selected for analysis. A
total of 191/591 BRCAI and 43/883 BRCAZ missense variants
located in or near a kinase recognition motif were included in this
study.

NetworKIN analysis of VUS on BRCA1 and BRCA2
phosphorylation

BRCAI (Genbank P38393) and BRCA2 (Genbank P51587)
protein sequences were queried by the NetworKIN Beta 2.0
algorithm  (http://networkin.info/version_2_0/search.php) [26],
an improved version of the NetworKIN algorithm featuring more
kinases. The NetworKIN tool is designed to predict i vivo kinase-
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substrate relations [26]. It remains up to date with the most
current human phosphoproteome information derived from
Phospho.ELM and PhosphoSite databases and these sites are
compared with sequence motifs predicted using the Scansite [29]
and NetphosK [30] programs to predict the kinase families that
potentially bind and phosphorylate such sequences. The algorithm
takes into account also the biological context of a kinase through
the use of probabilistic functional associations from the STRING
database [31].

The BRCA1 or BRCA2 protein sequences carrying each VUS
substitution was queried by NetworKIN and the output matched
to predictions made for the wild-type protein sequence. VUS
which result in abolishing kinase binding at the phosphorylation
motif or create a site at the altered residue are included in this
report. Furthermore only the predictions for kinase-phosphoryla-
tion motif interactions with a NetworKIN score =5 were
considered reliable (Dr. Rune Linding, personal communication).
In cases where multiple kinases are predicted to bind a
phosphorylation site with a NetworKIN score =5 we arbitrarily
assumed the abolition of 80% or more of the kinase binding to be
the equivalent to the complete abolition of a phosphorylation
motif.

Evolutionary conservation analyses

To determine whether the missense VUSs substitute function-
ally critical residues we have investigated their evolutionary
conservation status using: (1) Sorting Intolerant From Tolerant
(SIFT; http://blocks.there.org/sift/SIFT.html). SIFT (V.2) is a
multiple sequence alignment tool that was developed based on the
idea that amino acids which play an important role tends to be
conserved in the protein family, so changes at these sites would be
deleterious to protein function [32]. SIFT analysis was performed
using algorithms to find homologous sequences from database
SWISS-PORT version 51.3 and TrEMBL 34.3, and selecting
median conservation sequence score 3.00. Predictions out of the
accepted median sequence conservation score of 2.75-3.25 were
also considered not reliable and thus were considered ‘“not
informative”. (2) PolyPhen (Phenotypic Polymorphism); (http://
genetics.bwh.harvard.edu/pph2/). PolyPhen-2 v.2.2.2r398 pre-
dicts the impact of an amino acid substitution on the structure and
function of a human protein [33]. (3) Align-grantham variation
grantham deviation (GVGD) specific weighted evolutionary
conservation analysis was carried out for BRCAl and BRCA2
(http:/ /http://agvgd.iarc.fr/agvgd_input.php) to determine the
A-GVGD class of each variants presented [10]. A-GVGD uses the
biochemical characteristics of amino acids together with protein
sequence alignments of multiple species to determine whether a
missense mutation could be neutral or deleterious to protein
function. A-GVGD was used with all default settings. Library
alignments for BRCA1 and BRCA2 were selected and analysis
was performed using the longest evolutionary depth (Human to
Sea Urchin).

Although PolyPhen also uses other assessment criteria such as
protein 3-dimensional structure, both SIFT and PolyPhen use
alignment of similar proteins to determine whether an amino acid
is conserved and whether its substitution by a VUS has potential
functional consequences. To standardize the predictions made by
these two tools, we have annotated the “affecting protein function”
prediction of SIFT and both the “probably damaging” and
“possibly damaging” predictions of PolyPhen as “damaging” in
this report. Similarly, the “tolerated” prediction of SIFT and the
“benign” prediction of PolyPhen are collectively annotated as
“benign”. For any predictions that include a “damaging” and
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Figure 1. a. Summary of phosphorylation sites studied in BRCA1. Residues in green represent in vivo phosphorylation sites have been biologically
characterized in the literature. Residues in red represent in vivo phosphorylation sites identified via throughput methods where biological functions
have not yet been determined. b. Summary of phosphorylation sites studied in BRCA2. Residues in green represent in vivo phosphorylation sites that
have been biologically characterized in the literature. Residues in red represent in vivo phosphorylation sites identified via throughput methods

where biological functions have not yet been determined.
doi:10.1371/journal.pone.0062468.9001

“benign/tolerated” output of either program, we have annotated
such VUS as “likely damaging”.

Results

Study design and overall findings

Using NetworKIN Beta 2.0, we investigated the impact of 191
BR(CAI and 43 BRCA2 missense VUS found within or around 44
BRCAl and 11 BRCA2 phosphorylation sites, respectively
(Figure la, b, Tables SI & S2 in File S1). Our analysis indicated
that 13.09% (25/191) BRCAI and 13.95% (6/43) BRCA2 VUSs
impact an existing phosphorylation site, and/or create a new site
at the altered residue (Table 1, 2). Specifically six BRCAI and three
BR(CA2 VUS resulted in deleterious NetworKIN predictions at
experimentally and biologically characterized phosphorylation
sites while nineteen BRCAI and three BRCA2 VUS similarly
affected biologically uncharacterized phosphorylated sites. In cases
where NetworKIN predictions of kinases differ from those
identified experimentally, we found in most cases the prediction
fell within the same family of protein kinases. The Leiden Open
Variation Database (LOVD v.2.0 build 35; http://chromium.
liacs.nl/LOVD2/cancer/home.php) was accessed and VUS
highlighted by this study and included in previous studies are
summarized in Table S3 and S4 in File S1.

VUS impacting biologically characterized
phosphorylation sites

Six BRCAI VUS (K309T, S632N, S1143F, Q1144H, Q1281P,
S1542C) were predicted to affect the phosphorylation status of
BRCALI by abolishing kinase interaction at experimentally verified
sites Ser®®, Ser®2, Ser'!'*®) Ser'?%?, and Ser!**? (Table 1). Three
of the aforementioned substitutions (S632N, S1143F, S1542C)
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directly altered the Serine residue of the phosphorylated sites
Ser®®? Ser!'*3, and Ser!®*2, resulting in the complete abolition of
their respective kinase binding without creating new kinase
binding. In BRCAZ2, S1961 and P3292L. VUS altered the consensus
kinase motif for Ser'”® and the sequence for CDK2 binding for
Ser®?! | respectively and T207A directly altered the phosphory-
lated Threonine residue and completely abolished kinase binding
at Thr®*” (Table 1).

VUS impacting biologically uncharacterized

phosphorylation sites

A total of nineteen BRCAI and three BRCA2 VUS were found
to affect biologically uncharacterized phosphorylation sites. These
sites were shown to be phosphorylated in @ vivo experiments;
however their potential roles on protein and subsequent cellular
function have not been investigated yet. Affecting BRCAI were
twelve VUS associated with the complete abolition of kinase
binding motif without creating binding sites for kinases. These
VUS included the S1217P, S1218C, T1550I, S1577P, and
T1720A, which removed the phosphorylated residues at Ser'?'”,
Ser'?'® Thr'*, Ser’, and Thr'’?, respectively (Table 2).
Additionally, seven VUS substituted the wild-type residue with Y,
S or T resulting in the creation of putative kinase binding site at
the altered residue. In BRCA2, three VUS, D1923A, D1923V and
P3194Q), were all predicted to abolish kinase binding while none
was predicted to create a new kinase binding site (Table 2).

Evolutionary conservation of VUS

SIFT and PolyPhen analyses were performed to evaluate
whether the residues altered by VUS disrupting protein phos-
phorylation are damaging to protein function. Multiple sequence
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Human (QUERY) FCNKSKQPGLA VSRNLSPPNCT
Rhesus Macaque (sp|F6PQM4#1) FCNKSKQPGLA VSRNLSPPNCT
Rhesus Macaque (sp|Q6J619#1) FCNKSKQPGLA VSRNLSPPNCT
Horse (sp|F7BFJ5#1) FCNKSKQPGLA VSRNLSPPNCT
Marmoset (sp|F7GXAl#1) FCNKSKQPGLA VSRNLSPPNYT
Marmoset (sp|F7H7J2#1) FCNKSKQPGLA VSRNLSPPNYT
Horse (sp|F6SQ43#1) FCNKSKQPGLA VSKNPSPPNHT
Rhesus Macaque (sp[F7BG30#1) FCNKSKQPGLA VSRNLSPPNCT
Rhesus Macaque (sp|F7BG37#1) FCNKSKQPGLA VSRNLSPPNCT
African Elephant (sp|G3TDF5#1) FCNKSKQPGLA VNRNPSPPTHT
Elephant (sp|UPI0002234F72#1 FCNKSKQPGLA VNRNPSPPTHT
Bovine (sp|[FIMYX8#1) FCNKSKQPVLV VSRNPSLPNHT
Bovine (sp|Q864U1#1) FCNKSKQPVLV VSRNPSLPNHT
Rhesus Macaque (sp[F6PQP8#1) FCNKSKQPGLA VSRNLSPPNCT
Marmoset (sp|F7FZS4#1) FCNKSKQPGLA VSRNLSPPNYT
Pig (sp|A5A751#1 (Sus Scrofa)) FCNKSKQPVLA VNRNPSPPSHT
Howler Monkey (sp|O46488#1) FCNKSKQPGLA VSRNLSPPNYT
Rabbit (sp|GISKM1#1) FCNKSKQPGLA VNKKPSPPNHT
Dog (sp|Q95153#1) ICNNSKQPGLA VNRNLNPPDHS
Dog (sp|F1PAI7#1) ICNNSKQPGLA VNRNLNPPDHS
African Elephant (sp|G3TMB7#1) VNRNPSPPTHT
Lemur (sp|O46490#41) FCNKSKQPGLA VNRNPSPPNYT
Spider Monkey (sp|Q20CP3#1) FCNKSKQPGLA VSRNLSPPNYT
Spider Monkey (sp|G5CWL9#1) FCNKSKQPGLA VSRNLSPPNYT
Capuchin Monkey (sp|GSCWM1#1) FCNKSKQPGLA VSRNLSPPNYT
Marmoset (sp|GSCWMO0#1) FCNKSKQPGLA VSRNLSPPNYT
Gelago (sp|O46489#1) FCNKSKQPGLA VNKNPSPPNHT
Brown Bat (sp|G1P1R4#1) FCNESKQPGLA VNKNPSPSNHT
Giant Panda (sp|G1KZZ5#1) VCNKSKQLGLA VNRNPSPPDHS
Giant Panda (sp|D214D9#1) VCNKSKQLGLA VNRNPSPPDHS

% Conservation 96.67% 93.30%

Missense Variants Altering BRCA1/2 Phosphorylation

Serl]43 As 1144 As 1281 Ser1542
GSSHASQVCSE SSHASQVCSET LAKASQEHHLS QQLEESGPHDL
GSSHASEVCSE SSHASEVCSET LAKASQEHHLS QQLEKSGPHDL
GSSHASEVCSE SSHASEVCSET LAKASQEHHLS QQLEKSGPHDL
GSSHASEVCSE SSHASEVCSET LAKASQEHHLS QQLEKSGPHDL
GSSHTCQVCSE SSHTCQVCSET LAKASQEHHLS QQLDKSGPHDL
GSSCASQVCSE SSCASQVCSET LAKASQEHHLS QQLDKSGPHDL
GSSHASEVCSE SSHASEVCSET LAEACQEHHLS QQLTKSEAQDL
GSSHASEVCSE SSHASEVCSET LAKASQEHHLS
GTSRASQVCSE TSRASQVCSET LAKASQEHHLS
GTSRASQVCSE TSRASQVCSET SAKASQERHLS QQVEKSEARGL
GSRHASQVCSE SRHASQVCSET SAKASQERHLS QQVEKSEARGL
GSRHASQVCSE SRHASQVCS SAKVSQEHHLN QQLAKREAQDL
GSSHASEVCSE SSHASEVCSET SAKVSQEHHLN QQLAKREAQDL
GSSHTCQVCSE SSHTCQVCSET LAKASQEHHLS
GSSHASQICSE SSHASQICSET LAKASQEHHLS
GSSHTSQVCSE SSHTSQVCSET SAKASQEHHLS QQLTTSEAQDS
GGRHASQICSE GRHASQICSET LAKASQEHYLS
GSSRSSQVCSE SSRSSQVCSET LSKASQEHPPS SGISLFSDPES
GSSRSSQVCSE SSRSSQVCSET SAKASQEHHLS QQPTESEARDL
GTSRASQVCSE TSRASQVCSET SAKASQEHHLS QQPTESEARDL
GTSRASQVCSE TSRASQVCSET SAKASQERHLS EQQVEKSEARG
ESSHASQVCSE SSHASQVCSET LAEASQEHHLN
GSSHTSQVCSE SSHTSQVCSET
GSSHTSQVCSE SSHTSQVCSET
GSSHTSQVCSE SSHTSQVCSET
GSSHTCQVCSE SSHTCQVCSET
RSSHASQLCSE SSHASQLCSET LVKASQENHLS
GSSPVSQVGSE SSPVSQVGSET EHHLSEEARCS LQSGISLFSDD
GSTHASQVCSE STHASQVCSET EHYLSEEARCS PTKSEAQEVVE
GSTHASQVCSE STHASQVCSET EHYLSEEARCS PTKSEAQEVVE

90% 80% 76.70% 43.33%

Figure 2. Multiple sequence alignment demonstrating evolutionary conservation of the six biologically characterized
phosphorylated BRCA1 residues affected by missense variants of unknown clinical significance.

doi:10.1371/journal.pone.0062468.9g002

alignment retrieved from Polyphen results were also organized to
visualize if the VUSs affect evolutionarily conserved residues. We
also used A-GVGD to assign classes of CO (neutral) to C65 (likely
deleterious) to each variant. A-GVGD classified the 6 BRCAI VUS
affecting biologically characterized sites as CO or neutral while
66% (2/3) BRCA2 VUS were designated a higher class (Table 1).
On the other hand 26.3% (5/19) of BRCAI affecting unchar-
acterized sites were classified as possibly deleterious with 73.7%
(14/19) and 100% (3/3) BRCAZ variants being CO (Table 2).
Multiple sequence alignment from Polyphen demonstrated that 6
BR(CAI VUS affecting biologically characterized sites were highly
conserved (Figure 2) and the substitutions were predicted as either
likely damaging or damaging to the protein function (Table 1). Of
the 19 BRCAI VUS affecting biologically uncharacterized sites,
68.42% (13/19) were predicted to be likely damaging or damaging
to protein function while 31.58% (6/19) VUS were benign
(Table 2). Polyphen multiple sequence alignment results showed
that the 3 BRCA2 VUS affecting biologically characterized sites
occurred at evolutionarily conserved sites and thus were damaging
(Figure 3) and all BRCA2 VUS affecting uncharacterized sites were
also predicted to be damaging to protein function.

Discussion

BRCALI interacts with many proteins to serve its function in the
cell. Protein kinases have been shown to be critical in BRCAI-
phosyphorylation, where they are involved in activation or
deactivation of the BRCAI protein function including its stability,
protein-interactions and sub-cellular location [34-36], its regula-
tion of DNA repair [37-40] and its transcriptional activity [41—

PLOS ONE | www.plosone.org

43]. The phosphorylation pattern of BRCAZ2 is less well known but
it is shown to be essential in the regulation of BRCA2-mediated
DNA recombination repair [44,45].

In this study, we applied a prediction strategy based on the
NetworKIN algorithm [26] to investigate the impact of VUS on
the kinase-binding ability and phosphorylation patterns of BRCAI
and BRCA2 proteins. By targeting sites phosphorylated i vivo with
clearly defined biological roles, NetworKIN analysis permits
inference on biological and possibly clinical significance for any
VUS that abolish kinase association at that residue. This is a
significant advantage over predictions based on consensus
sequence motifs recognized by active sites of enzymes alone.
Therefore the method provides an effective way to identify VUS
altering kinase association at key residues of biologically charac-
terized phosphorylation sites and their potential impact can be
inferred via validation assays in the literature. An added advantage
of our approach is that NetworKIN can shed light on potential
kinases that interact with phosphorylation sites confirmed to be
phosphorylated i vivo using proteomic discovery methods but for
which no additional experiments have yet been done to
characterize their role in BRCA function.

VUS impacting the phosphorylation of BRCA1 and BRCA2

The sixteen biologically characterized phosphorylation sites for
BRCAL1 (Table S1 in File S1) studied are involved in functions
including intracellular localization [46,47], transcription regula-
tion [48], and cell cycle regulation [39,49]. Phosphorylation of
BRCAZ2, on the other hand, is pertinent in regulating of BRCA2-
mediated DNA recombination repair [44,45]. Overall 3.14% (6/
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196

Ser
Human (uc00luub.1_hgl9) DMSWSSSLATP
Baboon (uc00luub.1_papHaml) DMSWSSSLATP
Rhesus Macaque (uc001luub.1_rheMac2) DMSWSSSLATP
Marmoset (uc001luub.1_calJacl) DMSWSSSLATP
Horse (uc00luub.1_equCab2) DMSWSSSLATP
Gorilla (uc001uub.1_gorGorl) DMSWSSSLATP
Alpaca (ucOOluub.1_vicPacl) DMSWSSSLATP
Dog (uc00luub.1 canFam2) DMSWSSSLATP
Bovine (uc00luub.1_bosTau4) DMSWSSSLATP
Tarsier (ucOOluub.1_tarSyrl)
Rabbit (uc001uub.1_oryCun2) DMSWSSSLATP
Dolphin (uc00luub.1_turTrul)
Elephant (uc00luub.1_loxAfr3) DMSWSSSLATP
Megabat (ucOOluub.1_pteVaml) DMSWSSSLATP
Sloth (ucO01luub.1_choHof1) DMSWSSSLATP
Guinea Pig (uc00luub.1_cavPor3) DMSWSSSLATP
Bushbaby (uc001uub.1_otoGarl)
Squirrel (uc00luub.1_speTril) DMSWSSSLATP
Armadillo (ucOOluub.1_dasNov2)
Shrew (uc00luub.1_sorAral) DMSWSSSLATP
Mouse (uc00luub.1_mm9) DMSWTSSLATP
Rat (ucOOluub.1_rn4) DMSWTSSLATP
Microbat (ucO0luub.1_myoLucl) DMSWSSSLATP
Mouse Lemur (ucOOluub.l_micMurl) DMSWSSSLATP
Shrew (uc001uub.1_tupBell)
Hedgehog (uc001uub.1_eriEurl) DMSWSSSLATP
Rock Hyrax (ucOOluub.1_proCapl) DMSWSSSLATP
Tenrec (uc00luub.1_echTell) DMSWSSSLATP
Opossum (uc00luub.l_monDomb5) DMSWSSSLATP
Pika (ucOOluub.1_ochPri2) DMSWSSSLATP
Platypus (ucOOluub.1_ornAnal) DMSWSSSLATP
% Conservation 83.30%

Missense Variants Altering BRCA1/2 Phosphorylation

Thr207 Pr03292
PTLSSTVLIVR CTFVSPAAQKA
PTLSSTVLIVR CTFVSPAAQKA
PTLSSTVLIVR CTFVSPAAQKA
PSLSSTVLIVR CTFVSPAAQKA
PTLSSTVLIAR CTFVSPAAQKA
PTLSSTVLIVR CTFVSPAAQKA
PTLSSTVLIVR CTFVSPAAQKA
PTLSSTVLIVR CTFVSPAAQKA
PTLSSTVLIVQ CTFVSPAAQKA

PTLSSTVLI-- CTFVSPAAQKA
PTLSSTVLIVR CTFVSPAAQKA
PTLSSTVLIVR CTFVSPAAQKA
PTLSSTVLIVR CTFVSPAAQKA
PTLSATVLIVR CTFVSPAAQKA
PTLSSTVLIVR CTFVSPAAQKA
PTLGSTVLLVR CTFVSPAAQKA
—————————— R CTFVSPAAQK-
PTLSSTVLIVK CTFVSPAAQKA
PTLSSTVLIVK CTFVSPAAQKA
PTLSSTVLIAR CTFVSPAAQKA
PTLSSTVLIAR CTFVSPAAQKA
PTLSATVLIAR CTFVSPAAQKA
PTLSATVLIVR
PTLSSTVLIVR
CTFVSPAAKKA
PTLSSTVLIER CTFVSPAAQKA
PTLSSTVLIVR CTFVSPAAQRA
PTLSSTVLIAR CTSVSRAAQKA
PTLSSTVLIVR RTFVSPAAQKA
PTLASTVII--
PTLSSTVLLAK CASVSPALKKA
93.30% 86.70%

Figure 3. Multiple sequence alignment demonstrating phylogenetic conservation of the three biologically characterized
phosphorylated BRCA2 residues affected by missense variants of unknown clinical significance.

doi:10.1371/journal.pone.0062468.9003

191) of BRCAI and 6.98% (3/43) of BRCA2 VUS studied
represent variants of potentially high clinical significance because
they occur only very rarely (n<2 in BIC) and are predicted to
disrupt @ vivo phosphorylated sites whose role in regulating
BRCA1/2 functions have been biologically characterized. Lastly
our results also suggest that VUS impacting phosphorylated sites
tend to occur at evolutionarily conserved residues. Using the SIFT,
Polyphen, and A-GVGD algorithms concurrently we ensured that
all true positives were captured. This is important since the VUS
impact i vivo phosphorylated sites and that the vast majority of the
variants identified in this study do not fall within the functional
domains of BRCAl and BRCA2 where most pathogenic
mutations to date are found.

Candidate BRCA1/2 VUS for disease association studies
Six BRCAI VUS affected phosphorylation of BRCAI at a
biologically characterized site by altering the kinase motif and thus
eliminating kinase binding. In particular, three of the VUS S632N,
S1143F, and S1542C directly removed the S residue and
completely abolished the biologically characterized phosphoryla-
tion sites at Ser®™?, Ser''*?, and Ser'”*?, respectively. Although the
remaining three VUS (K309T, Q1144H, Q1281P) did not directly
impact the phosphorylated residue, they were predicted to alter
the consensus kinase binding motif, resulting in the abolition of a
phosphorylation site. For BRCA2, S1961, T207A, and P3292L
affected phosphorylation of previously biologically characterized
phosphorylation sites at Ser'”?, Thr?*’, and Ser®*!, respectively.
Given that the biological function of the affected phosphorylation

PLOS ONE | www.plosone.org

sites are known, these BRCAI and BRCA2 VUS are excellent
candidates for further association studies into pathogenicity. In the
following section, we discuss the potential biological consequences
of these VUSs based on studies demonstrating their functions.

BRCA1-K309T promotes aberrant chromosome
segregation

Aurora-A/STKG6 localizes to the centrosome in the Go-M
phase, and its kinase activity positively regulates the Gy to M
transition of the cell cycle [50]. It physically binds to and
phosphorylates BRCAT1 in vivo at Ser® and that this interaction is
required for the regulation of progression from Gy to M transition.
As it has been shown that centrosome maturation from late S to M
phase is essential in the completion of mitosis [51] and that
Aurora-A has a role in inhibiting BRCAl-mediated centrosome
nucleation in the late Go-M phase [52], the K309T VUS identified
in breast cancer patients is a candidate mutation that may promote
aberrant chromosome segregation resulting in multi-nucleation
and multi-centrosomes often associated with breast cancers

[53,54].

BRCA1-S632N affects BRCA1-mediated transcription

In vivo phosphorylation of BRCAL at Ser®? by cyclin D1/cdk4
complex has been shown by Kehn et al [48] to inhibit DNA
binding activity of BRCA1 to gene promoters during Go—G; phase
of the cell cycle. Among these gene promoters are those involved
in tumor suppression (RYBP, APEX, SST, OASI) as well as
oncogenes involved in positively aiding tumor progression (ARGH,
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FHX). All three VUSs S632N, P633T and P633S abolished the
CDK2 kinase binding at Ser®? but in the case of the latter two,
NetworKIN predicted CDK2 binding ability at the altered
residues created by threonine and serine, respectively, suggesting
that only S632N completely abolishes kinase binding and thus
represent a potentially pathogenic VUS due to disruption in
BRCAIl-mediated gene transcription.

BRCA1-S1143F, Q1144H and Q1281P interfere with
BRCAT1-mediated single strand repair

Phosphorylation of Ser!'** and Ser!** play a role in single
strand break (SSB) DNA repair following alkylating agent methyl
methanethiosulfonate (MMTS) exposure by contributing to the
localization of BRCAL1 to nuclear foci [46]. The authors showed
that site-directed mutagenesis of Ser''*” and Ser'*® reduced the
targeting of BRCA1 to MMTS-induced foci. Indeed, our results
showing three VUS, S1143F, Q1144H and Q1281P, completely
abolished ATM binding to Ser''** and Ser'**, suggesting these
are likely to contribute to the tumorigenic process by interfering
with BRCAl-mediated SSB DNA repair.

BRCA1-51542C deregulates BRCA1-mediated double
stranded break repair

ATM phosphorylates BRCAI at Ser'>*? n vivo in response to
double stranded breaks (DSB) induced by v irradiation [49,55].
While it 1is unknown how phosphorylation at this site contributes to
BRCALI function, Cortez et al. demonstrated that site-directed
mutagenesis of two of the seven sites (Ser'™® and Ser'’*)
identified from the same study were significantly more sensitive to
growth inhibition by ionizing radiation compared to wildtype
BRCA1 owing to the altered function of BRCALI in post-exposure
cell proliferation and recovery processes. It should be noted that
while NetworKIN predicted CSNK2A2 and CK2Al binding
rather than ATM for Ser'>*? this may be explained by the fact that
in contrast to Ser'*** and Ser'’**, Ser'**? along with four other
sites identified in the study (Ser''®?, Ser'**", Ser'*7, Ser!**®) were
phosphorylated only when kinase reaction was allowed to proceed
longer with higher concentrations of adenosine triphosphate and
ATM [49]. Nevertheless NetworKIN found that ATM was the
predicted kinase for three of the four sites (T'able S1 in File S1).
This suggests that ATM is the most likely kinase for Ser'**? and
that double-strand break DNA repair following ionizing radiation
may be compromised by this VUS.

BRCA2-51961 and T207A disrupt interaction with P/CAF
Phosphorylation of highly conserved Ser'® and/or several Ser/
Thr residues between codons 203-207 by the polo-like 1 (Plkl)
kinase modulates BRCA2 disassociation from the p300/CBP-
associated factor (P/CAF) [56]. Interestingly, while PLK1 was not
the predicted kinase for these sites, S196I and T207A VUSs
nevertheless alter highly conserved residues to deleteriously affect
the consensus phosphorylation motifs of Ser'*®* and Thr®”,
respectively, to abolish kinase binding suggesting a potential link
between mutations and disruption of the interaction with P/CAF.

BRCA2-P3292L affects interaction with RAD51

BRCA2 Ser®®!| the most well characterized phosphorylation
site for BRCA2 located at the carboxy-terminal region, interacts
with the recombination protein RAD51 [57]. It has been shown
that phosphorylation of Ser’®*' by CDKs blocks interaction
between BRCA2 and RADS51 serving as a molecular switch for the
regulation of recombination activity [44]. P3292L occurs at a

highly conserved residue and abolishes CDK2 binding to Ser®?".

PLOS ONE | www.plosone.org

Missense Variants Altering BRCA1/2 Phosphorylation

This strongly suggests that this VUS is of high clinical significance
and impact breast cancer by negatively affecting the interaction
between BRCA2 and RADSI.

Candidate VUS for BRCA1/2 functional studies

In this study we have also identified 19 BRCA1 and 3 BRCA2
VUS (Table 2) that were predicted to alter known & vitro and i vivo
phosphorylated sites, however, not yet characterized for their
biological role in protein function or in breast cancer development.
Overall, our findings indicated casein kinase II (CK2) and ATM to
be important kinases that bind to many biologically uncharacter-
ized but phosphorylated sites that are affected by VUS as discussed
below.

Casein Kinase II (CK2) is a ubiquitous protein serine/threonine
kinase involved in SSB repair of chromosomal DNA [58]. It was
first described to bind and phosphorylate the carboxyl region of
BRCAI (amino acids between 1345-1863) at Ser'>”? [59]. In cell
cycle regulation it is required in the transition from GO to G1 and
Gl to S [60]. NetworKIN prediction showed that the predicted
kinase for the biologically uncharacterized sites Ser'® Ser®™,
Ser™ Ser'?™) Ser'7 Ser'?'®) and Ser™”” to be CK2 and
CSNK2AI. In support of the functional significance of this
observation, four of the five BRCAI VUS (S454N, S1217P,
S1218C and S1577P) which directly mutated serine residues at
Ser™, Ser'?! Ser'?'® and Ser'”’’ are predicted to abrogate
CK2/CSNK2AL1 binding to these sites. In fact 35% (7/20) BRCAI
VUS (S403F, S454N, D749Y, E1214K, S1217P, S1218C and
S1577P) are predicted to result in the abrogation of CK2A1 and
CSNKZ2AI interaction on these sites while N417S and P1502S
created a binding site for these two kinases at Ser*'” and Ser'*?,
respectively.

These variants likely play a role in breast cancer predisposition
by deleteriously affecting BRCAl-mediated cell cycle regulation
and thus warrant further investigation. Interestingly in BRCA2,
the biologically uncharacterized sites Ser'??* and Thr*'?* ident-
fied from a general mass spectrometry screen in prostate cancer
cells [61] and non-small cell lung cancer from the CST research
group [62-64] are also predicted to be phosphorylated by the
CK2 kinases. Two of the three BRCA2 VUSs (D1923V and
D1923A), were predicted to abolish the CK2 kinase binding at
Ser'¥®? which is a highly evolutionarily conserved residue, also
making these variants valid targets for functional analyses in breast
cancer.

Several phosphorylation sites were identified via mass spec-
trometry to detect phosphorylation in response to DNA damage
[55,65-67]. Thr'”® and Thr'”?® were identified from an ATM/
ATR kinase analysis and NetworKIN also predicted ATM to be
the kinase for Thr1720. Thr'”* in the C-terminal BRCT domain
of BRCAL is part of a hydrogen bonding network with the DNA
helicase BACH1 and DNA resectioning factor CtIP [68,69] and
our results show that VUSs (F1695L, R1699L) and R1699W
reduce the consensus motif of Thr'’" to abolish the majority of
kinase affinity. Interestingly R1699W is a variant known to be
clinically significant as it reduces peptide binding to the pSer-x-x-
Phe motifs in partner proteins that regulates the response to DNA
damage [12]. These results suggest that a significant change in
phosphorylation pattern of Thr'’% may also contribute to their
clinical significance by altering the DNA damage response of
BRCAL

T1720A was the subject of several analyses including structural
[70,71], transcription [11], transactivation [71] and phospho-
peptide binding assays [70] because it was the sole BRCAI
alteration in individuals considered to be at high risk for breast or
ovarian cancer. These analyses suggested T1720A to be of
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neutral/low clinical significance. In our study, however, Networ-
KIN predicted ATM binding to this site, which was removed by
T1720A, therefore warrants further attention with respect to
kinase recognition and binding.

Future Studies

In silico analysis greatly enhance our ability to make predictions
on genetic variations for which currently no experimental
evaluation is available. BRCAI and BRCAZ2 variations found to
affect kinase binding to these sites will be invaluable in the
prioritization for further functional characterization and/or
association studies in breast cancer. A follow-up study covering
more comprehensive list of VUS compiled from various databases
and literature sources will be a great value for the clinical
management of disease in the families carrying them.

Conclusion

The results of this study suggest for the first time that missense
VUS can influence the phosphorylation patterns of BRCA1 and
BRCAZ2. The variants identified using i silico methods here are
based on i viwo phosphorylated sites and the functional evidence
for the corresponding observation were also supported by the
literature. Therefore the VUSs highlighted in this study are key
candidate mutations that alter phosphorylated motifs to prevent
kinase interactions essential for the biological functions of BRCALI
and BRCA2, and represent important candidates for further
analysis into disease susceptibility. Our approach and data provide
novel insights into how mutations can alter the function of BRCAI
and BRCA2 through post-translational modifications such as
phosphorylation. As new phosphorylation sites are identified and
their kinase specificities and biological role are elucidated, it is
likely that missense variants affecting this important process will
significantly contribute to the clinical management of breast
cancer.
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