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Abstract 

Background:  Microbial production of naringenin has received much attention owing to its pharmaceutical appli-
cability and potential as a key molecular scaffold for various flavonoids. In the microbial fermentation, a cheap and 
abundant feedstock is required to achieve an economically feasible bioprocess. From this perspective, utilizing 
acetate for naringenin production could be an effective strategy, with the advantages of both low-cost and abundant 
feedstock. For the efficient production of naringenin using acetate, identification of the appropriate regulatory node 
of carbon flux in the biosynthesis of naringenin from acetate would be important. While acetyl-CoA is a key precursor 
for naringenin production, carbon flux between the TCA cycle and anaplerosis is effectively regulated at the isocitrate 
node through glyoxylate shunt in acetate metabolism. Accordingly, appropriate rerouting of TCA cycle intermediates 
from anaplerosis into naringenin biosynthesis via acetyl-CoA replenishment would be required.

Results:  This study identified the isocitrate and oxaloacetate (OAA) nodes as key regulatory nodes for the naringenin 
production using acetate. Precise rerouting at the OAA node for enhanced acetyl-CoA was conducted, avoiding 
extensive loss of OAA by fine-tuning the expression of pckA (encoding phosphoenolpyruvate carboxykinase) with flux 
redistribution between naringenin biosynthesis and cell growth at the isocitrate node. Consequently, the flux-opti-
mized strain exhibited a significant increase in naringenin production, a 27.2-fold increase (with a 38.3-fold increase 
of naringenin yield on acetate) over that by the unoptimized strain, producing 97.02 mg/L naringenin with 21.02 mg 
naringenin/g acetate, which is a competitive result against those in previous studies on conventional substrates, such 
as glucose.

Conclusions:  Collectively, we demonstrated efficient flux rerouting for maximum naringenin production from 
acetate in E. coli. This study was the first attempt of naringenin production from acetate and suggested the potential 
of biosynthesis of various flavonoids derived from naringenin using acetate.
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Background
Naringenin, a secondary metabolite that can be obtained 
from natural plants, is a value-added chemical with high 
pharmaceutical applicability, such as oxygen radical elim-
ination, and anti-inflammatory and antiviral properties 
[1–3]. In addition, it has value as a key scaffold molecule 
for the biosynthesis of various flavonoids [4, 5]. Tradi-
tionally, naringenin is extracted from plants; however, 
the conventional method has been limited by low yield 
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from natural sources, complicated purification involved 
in a large number of solvents, and scalability issues [5–7]. 
Accordingly, attempts have been made to produce nar-
ingenin by microbial biosynthesis via heterologous pro-
duction in Escherichia coli and Saccharomyces cerevisiae 
with advances in metabolic engineering and synthetic 
biology. For microbial production of naringenin, low-cost 
and abundant feedstock would be required to achieve 
economically feasible and sustainable bioprocesses. In 
this regard, acetate has emerged as a promising carbon 
source, showing high potential for industrial use, since 
it can plentifully be obtained from inexpensive natural 
sources, such as lignocellulose biomass and carbon diox-
ide, at reasonable costs [8–10]. Furthermore, acetate is 
an eco-friendly renewable resource that can be produced 
from fermentation of industrial by-products and syngas 

[11, 12]. Therefore, utilizing acetate for microbial narin-
genin production would be an effective strategy for the 
construction of economically viable bioprocesses and 
reducing the cost of substrates.

To achieve the efficient bioconversion of acetate to 
naringenin, enhancement of naringenin biosynthetic 
pathway through malonyl-CoA supply from improved 
acetyl-CoA availability would be necessary [13–15] 
(Fig. 1). Indeed, downregulation of the gltA gene, encod-
ing citrate synthase, had previously been attempted for 
the enhancement of acetyl-CoA availability. However, 
since citrate synthase is a pace-making enzyme for the 
flux toward tricarboxylic acid (TCA) cycle, gltA repres-
sion might cause severe damage to overall cell physiology, 
leading to critical effects on energy generation and cell 
building block synthesis, thereby making it an unsuitable 

Fig. 1  Overall metabolic engineering strategies used for naringenin production from acetate and a schematic diagram. PEP phosphoenolpyruvate, 
CIT citrate, ICT isocitrate, α-KG α-ketoglutarate, SUC succinate, MAL malate, OAA oxaloacetate, GLY glyoxylate, TCA cycle tricarboxylic acid cycle
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engineering target [16, 17]. Hence, selecting appropriate 
nodes for metabolic flux redistribution between narin-
genin biosynthesis and cell growth would be important 
for increased naringenin production. In this context, 
isocitrate node could be a key that can specifically redis-
tribute the flux between naringenin production and cell 
growth as a branching point of the glyoxylate and the 
TCA cycles [18–21]. Furthermore, activating the glyox-
ylate cycle can facilitate anaplerotic reaction for acetate 
assimilation and reduce CO2 loss from the TCA cycle 
[21, 22]. In addition to the isocitrate node, it would be 
important to identify the regulatory node to enable a 
tight linkage between TCA cycle intermediates via ana-
plerosis of the glyoxylate cycle and naringenin biosyn-
thesis for enhanced production of naringenin. According 
to previous studies of acetate-grown E. coli metabolism, 
the global expression profiling and metabolic flux analy-
sis reported that the flux of oxaloacetate to PEP was 
strengthened under acetate metabolism, which indicated 
that the gluconeogenic flux of TCA intermediates are 
mainly distributed at the oxaloacetate (OAA) node [18, 
19, 23]. From this perspective, the OAA node could be 
critical for flux regulation, to efficiently convert OAA, 
which is mainly accumulated via anaplerotic reaction of 
the glyoxylate cycle, into phosphoenolpyruvate (PEP) and 
to reflux it to naringenin biosynthesis (Fig. 1).

For this purpose, upregulating the pckA gene, encod-
ing phosphoenolpyruvate carboxykinase, to strengthen 
carbon flux from OAA to PEP could be an effective engi-
neering target [18, 19]. However, excessive overexpres-
sion of pckA can cause extensive loss of OAA, leading 
to significant metabolic imbalance, such as reduction of 
TCA cycle activity and inhibition of cell building block 
synthesis, resulting in reduced cell growth and decreased 
naringenin production. Therefore, precise rebalancing of 
flux at the OAA node through appropriate levels of pckA 
upregulation would be important for efficient naringenin 
production. Overall, metabolic flux redistribution via gly-
oxylate cycle activation and precise optimization of the 
flux at the OAA–PEP node might be effective in achiev-
ing high yield and productivity of naringenin biosynthe-
sis from acetate.

In this study, we activated the anaplerotic reaction of 
glyoxylate cycle through iclR deletion, while enhanc-
ing acetyl-CoA availability by the overexpression of acs 
gene encoding acetyl-CoA synthase (Fig.  1). Moreover, 
the strategy of further boosting metabolic flux at the 
OAA–PEP node was attempted to facilitate the flux of 
PEP–pyruvate–acetyl-CoA node from TCA cycle inter-
mediates for increased naringenin production. In par-
ticular, precise tuning of pckA expression under large and 
balanced expression ranges was conducted for explora-
tion of proper flux balance at the OAA node. Remarkably, 

the flux-optimized strain showed significant increase of 
naringenin production, a 27.2-fold enhancement (with a 
38.3-fold increase of naringenin yield on the carbon sub-
strate) over that of the unoptimized strain. Consequently, 
the optimized strain produced 97.02  mg/L naringenin 
with a yield of 21.02 mg naringenin/g acetate (the high-
est naringenin yield among carbon substrates) under 
optimized cultivation conditions, thereby achieving a 
competitive result against those from previous studies 
on conventional substrates (Additional file  1: Table  S1). 
Collectively, this study was the first attempt to establish 
naringenin biosynthesis from acetate through microbial 
processes. Naringenin production was especially drasti-
cally improved by the activation of the glyoxylate cycle 
and enhancement of the naringenin biosynthetic pathway 
through fine-tuning of the flux at the OAA–PEP node, 
thereby demonstrating its potential as a key strategy of 
metabolic engineering for the biosynthesis of various fla-
vonoids derived from naringenin using acetate.

Results and discussion
Construction of a naringenin‑producing strain using acetate
For naringenin biosynthesis from acetate in E. coli, three 
heterologous enzymes needed to be introduced into E. 
coli: 4-coumaroyl-CoA ligase (4CL) which catalyzes the 
formation of p-coumaryl-CoA ester involving 1  mol of 
ATP, Coenzyme A and p-coumaric acid; chalcone synthase 
(CHS) which catalyzes the condensation to naringenin 
chalcone using 3 mol of maloyl-CoA and 1 mol of p-cou-
maryl-CoA; chalcone isomerase (CHI) which catalyzes the 
stereospecific cyclization of naringenin chalcone to narin-
genin (Fig. 1). In particular, we took advantage of a homol-
ogous enzyme combination, which had been validated for 
the highest naringenin production in a previous study, to 
introduce the optimized naringenin biosynthetic pathway; 
the combination included 4CL from Arabidopsis thaliana, 
CHS from Petunia hybrida, and CHI from Citrus maxima 
[24]. In addition, expression of the three genes was opti-
mized at transcriptional level using promoter variants with 
diverse strengths. Therefore, we designed a base strain, 
BN, for producing naringenin from acetate based on the 
optimized naringenin biosynthetic pathway [24].

We evaluated naringenin production capacity of the 
constructed strain, harboring the recombinant narin-
genin biosynthetic pathway, with 10  g/L acetate as the 
carbon source (Fig. 2). The BN strain produced 2.45 mg/L 
naringenin over 48 h of cultivation, showing the yield of 
1.24  mg naringenin/g acetate. Therefore, heterologous 
expression of 4CL, CHS, and CHI successfully enabled 
E. coli to produce naringenin from acetate; however, the 
naringenin concentration was relatively low compared 
to that reported in previous studies on naringenin pro-
duction from conventional substrates (Additional file  1: 
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Table  S1). Therefore, further strain improvement for 
enhanced acetyl-CoA availability would be required to 
achieve efficient production of naringenin from acetate.

Effect of acs overexpression and iclR deletion 
on naringenin production using acetate
To enhance naringenin production, facilitation of the 
naringenin biosynthetic pathway via efficient supply of 
malonyl-CoA from acetyl CoA would be highly impor-
tant (Fig.  1). Especially, improvement of the availability 
of acetyl-CoA, an exclusive precursor of malonyl-CoA, 
was previously suggested to increase naringenin produc-
tion [13–15, 24]. For enhancing acetyl-CoA availability, 
first, we accelerated the reaction to convert acetate to 
acetyl-CoA through overexpression of acs gene encod-
ing acetyl-CoA synthase, which was obtained from the 
genomic DNA of E. coli BL21 Star™ (DE3), thereby yield-
ing the BNA strain. Naringenin production by the BNA 
strain was 82% higher than that by the BN strain, and 
specific acetate consumption rate of BNA showed a 15% 
improvement over that of BN (Fig. 3a, b).

In addition, the identification of key regulatory node 
between cell growth and naringenin biosynthesis would 
be important. Isocitrate node could be an effective 
engineering target that can specifically redistribute 

the flux, as a branching node, between the glyoxylate 
and TCA cycles [18, 19]. From this perspective, we 
activated the anaplerotic reaction of glyoxylate cycle 
and rebalanced the carbon flux at the isocitrate node by 
deleting the iclR gene encoding isocitrate lyase repressor, 
thereby resulting in the BNI strain. This strain showed 
a 10.2-fold higher naringenin concentration than the 
BN strain, with a 38% increase of the specific acetate 
consumption rate over that of the BN strain (Fig.  3a, 
b). Compared BNI with BNA, we speculated that the 
generated acetyl-CoA was mainly used in TCA cycle 
for cell growth in the BNA, despite the conversion of 
acetate to acetyl-CoA through acs overexpression, which 
caused relatively low boost of naringenin production 
in the BNA. From this perspective, we demonstrated 
that flux rebalancing at the isocitrate node between cell 
growth and naringenin production was significant for the 
efficient naringenin biosynthesis.

Furthermore, we evaluated the synergistic effect of acs 
overexpression and iclR deletion through the generation 
of BNIA. The constructed BNIA produced 32.81  mg/L 
naringenin, an 11.8-fold improvement of naringenin 
production over that of the BN strain, while its specific 
acetate consumption rate was 53% higher than that of the 
BN strain (Fig. 3a–e). Our results showed that activation 
of the glyoxylate shunt pathway by iclR deletion enhanced 

Fig. 2  Fermentation profiles of BN strain (engineered E. coli to produce naringenin from acetate). BN strain refers to Escherichia coli BL21 Star™(DE3) 
with heterologous expression of essential enzymes for naringenin production, namely, 4CL, CHS, and CHI. 200 mg/L p-coumaric acid and 1 mM 
IPTG were added when culture broths reached an OD600 of 1.0. Flask cultures were performed for 48 h in biological triplicates. Error bars indicate 
the standard deviations of biological triplicates. 4CL 4-coumaroyl-CoA ligase, CHS chalcone synthase, CHI chalcone isomerase, IPTG isopropyl 
β-d-thiogalactopyranoside
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the supply of TCA cycle intermediates, such as OAA, 
thereby efficiently facilitating the flux of OAA–PEP–
acetyl-CoA for the naringenin biosynthetic pathway. 
Indeed, previous studies had suggested that facilitation 

of glyoxylate cycle increased the flux of OAA to PEP, 
strengthening the replenishment of acetyl-CoA [13, 18, 
19, 25]. Therefore, we expected an additional room for 
flux optimization at the OAA node, in addition to iclR 

Fig. 3  Evaluation of the effect of acs overexpression and iclR deletion. a Specific acetate consumption rate of engineered E. coli strains and b their 
maximum naringenin production titer. c–e Fermentation profile of engineered E. coli over 48 h culture. 200 mg/L p-coumaric acid and 1 mM IPTG 
were added when culture broths reached an OD600 of 1.0. Flask cultures were performed in biological triplicates. Error bars indicate the standard 
deviations of biological triplicates. BN strain refers Escherichia coli BL21 Star™(DE3) with heterologous expression of essential enzymes for naringenin 
production; BNA BN strain with acs overexpression, BNI BN strain with iclR knockout, BNIA BN strain with both acs overexpression and iclR knockout, 
IPTG isopropyl β-d-thiogalactopyranoside
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deletion considering the importance of a fine-tuned and 
tight linkage between TCA cycle intermediates via ana-
plerotic reaction of the glyoxylate cycle and naringenin 
biosynthesis for increased production of naringenin.

Enhancement of flux at the OAA to PEP node via pckA 
overexpression
The rewiring strategy to replenish acetyl-CoA from TCA 
cycle intermediates was highly effective in activating 
naringenin biosynthesis. Accordingly, we expected that 
further engineering to strengthen the carbon flux from 
OAA to PEP would facilitate the naringenin biosynthetic 
pathway by enhancing acetyl-CoA availability. In this 
context, we attempted upregulating the pckA gene 
encoding phosphoenolpyruvate carboxykinase for 
efficient flux redistribution at the OAA node. However, 
excessive overexpression of pckA could lead to extensive 
OAA loss, which could cause metabolic imbalance, 
such as inhibition of TCA cycle and insufficient supply 
of cell building blocks, thereby decreasing naringenin 
production. Therefore, optimization of flux redistribution 
at the OAA node through precise upregulation of pckA at 
appropriate levels would be important.

For precise flux rebalancing, we obtained pckA gene 
from the genomic DNA of E. coli BL21 Star™ (DE3) and 
conducted the fine-tuning of pckA gene expression at 
the transcriptional level. To be specific, we generated a 
wide and balanced variation of expression using various 
promoters with different promoter strengths, namely, 
BBa_J23103, BBa_J23113, BBa_J23109, BBa_J23115, 
BBa_J23106, BBa_J23104, and BBa_J23100 (from weak 
to strong, in order). We speculated that there would 
be an optimal point of pckA expression to enhance the 
naringenin biosynthetic pathway by facilitating the 
acetyl-CoA availability while preventing extensive OAA 
loss over the wide range of gene expression.

Upon verifying the naringenin production by promoter 
variants, naringenin concentrations of all variants were 
found to be increased compared to that of BNIA, where 
pckA expression was not overexpressed (Fig. 4b, c). The 
result demonstrated that further amplification of acetyl-
CoA from TCA cycle intermediates could effectively 
improve acetyl-CoA supply for naringenin biosynthesis. 
Notably, enormous increase of naringenin production 
was observed in the BNIAP109 strain with 66.59  mg/L 
naringenin and specific production of 81.48 mg/g DCW, 
which is a 27.2-fold and 54.7-fold improvement over 
those of the BN strain, respectively (Fig. 4b–d). Further-
more, naringenin yield on acetate in the BNIAP109 strain 
(10.71  mg naringenin/g acetate) was 38.3-fold higher 
than that in the BN strain (Additional file  1: Table  S2), 
which suggested that the conversion of acetate to nar-
ingenin was effectively improved through precise flux 

redistribution. Meanwhile, in the variants with promot-
ers stronger than BBa_J23109 for pckA expression, nar-
ingenin production was rather decreased compared 
to that in the optimized strain BNIAP109 (Fig.  4b and 
Additional file 1: Table S2). In addition, with the valida-
tion of changes in pckA expression level under various 
promoters through enzyme activity assay, we demon-
strated that the optimal pckA expression level for the effi-
cient production appeared in the BNIAP109 strain with 
the highest naringenin production (Additional file 1: Fig. 
S3). The result suggested that fine-tuning of carbon flux 
at the OAA–PEP node is crucial for naringenin produc-
tion and successful achievement of optimal expression of 
pckA. Collectively, we demonstrated the importance of 
precise flux redistribution to enhance the naringenin bio-
synthetic pathway while avoiding extensive loss of OAA, 
which enabled an optimal tight linkage between narin-
genin biosynthesis and TCA cycle intermediates supplied 
from anaplerosis of the glyoxylate cycle.

Culture‑condition optimization for enhanced naringenin 
production
We conducted further optimization of culture conditions 
for the flux-optimized BNIAP109 strain to improve 
naringenin production. In the naringenin-producing 
strains used in this study, 4CL, CHS, and CHI, which 
are the key enzymes for naringenin biosynthesis, were 
expressed under the T7 promoters using IPTG as an 
inducer. Optimum induction point and induction level 
were reported to be associated with the allocation of 
cellular resources and to be more complicated than 
simply affecting protein production levels [26–28]. 
Indeed, due to this complexity, the optimum culture 
condition was evaluated for naringenin production from 
conventional substrates, such as glucose and glycerol, 
emphasizing that optimum induction conditions are 
specific to a particular system and must be determined 
experimentally [24, 29].

Consequently, using various induction points, from 
OD600 0.6 to 3.0, naringenin production capacity of 
BNIAP109 was found to be notably changed, show-
ing the highest naringenin titer at the induction point 
of OD600 0.8. In addition to the induction point, under 
different IPTG concentrations, BNIAP109 showed the 
highest naringenin production with the addition of 
0.01  mM IPTG. As a result, heterologous expression 
of 4CL, CHS, and CHI for efficient production of nar-
ingenin from acetate was optimized at an appropriate 
concentration of IPTG rather than at high concentra-
tions of IPTG. Remarkably, the highest naringenin titer 
of 97.02  mg/L with naringenin yield (21.02  mg 
naringenin/g acetate and 0.631  g naringenin/g p-cou-
maric acid) was observed under the optimized culture 
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conditions, induction time being at OD600 0.8 with the 
addition of 0.01 mM IPTG (Fig. 5a, b), which achieved 

competitive result over those of previous studies on 
conventional substrates (Additional file 1: Table S1).

Fig. 4  Effect of fine-tuned expression of pckA under promoter variants. a Schematic diagram of pckA expression control using promoter variants 
with different strengths. b Naringenin titer and c specific naringenin production by engineered E. coli strains with different transcriptional levels of 
pckA. d Time-course culture profile of pckA-upregulated E. coli, the BNIAP109 strain. 200 mg/L p-coumaric acid and 1 mM IPTG were added when 
culture broths reached an OD600 of 1.0. Flask cultures were performed for 48 h in biological triplicates. Error bars indicate the standard deviations of 
biological triplicates. BN strain refers Escherichia coli BL21 Star™(DE3) with heterologous expression of essential enzymes for naringenin production; 
BNIA, BN strain with both acs overexpression and iclR knockout; BNIAP103, BNIAP113, BNIAP109, BNIAP115, BNIAP106, BNIAP104, BNIAP100 refer 
BNIA strain with pckA upregulation under constitutive promoter BBa_J23103, BBa_J23113, BBa_J23109, BBa_J23115, BBa_J23106, BBa_J23104, 
BBa_J23100, respectively; PEP phosphoenolpyruvate, TCA cycle tricarboxylic acid cycle, IPTG isopropyl β-d-thiogalactopyranoside
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Conclusions
In this study, efficient flux rerouting for maximum 
naringenin production from acetate was demonstrated 
in E. coli. Initially, the naringenin-producing strain using 
acetate, namely, the BN strain, was constructed through 
heterologous expression of key enzymes 4CL, CHS, 
and CHI for naringenin biosynthesis. The BN strain 
produced 2.45  mg/L naringenin from acetate; however, 
the naringenin concentration was remarkably low. 
Accordingly, facilitation of the naringenin biosynthetic 
pathway was attempted via malonyl-CoA supply arising 
from enhanced acetyl-CoA availability. For this purpose, 
the acs gene, responsible for the conversion of acetate to 
acetyl-CoA, was overexpressed, and flux redistribution 
between cell growth and naringenin biosynthesis was 
applied at the isocitrate branching node, resulting in 
the BNIA strain. The BNIA strain showed a 53% higher 
acetate consumption rate over that of the BN; notably, 
it produced 32.81 mg/L naringenin (a 11.8-fold increase 
of naringenin production over that of the BN strain). 
In addition, we devised the precise rewiring strategy 
to replenish acetyl-CoA from TCA intermediates by 
fine-tuning pckA expression at transcriptional levels. 
Surprisingly, the optimized strain, BNIAP109, showed 
significant increase of naringenin production, a 27.2-fold 
enhancement (with a 38.3-fold increase of naringenin 
yield on the carbon substrate) over that of the BN. 
Consequently, under the optimized culture condition for 
BNIAP109, 97.02  mg/L naringenin was produced, with 
21.02  mg naringenin/g acetate (the highest naringenin 

yield among carbon substrates), which was a competitive 
result over those of previous studies using conventional 
substrates (Additional file  1: Table  S1). Taken together, 
we could successfully demonstrate the high-efficiency 
production of naringenin from acetate through a precise 
flux redistribution strategy at the key regulatory nodes 
and highlighted the importance of fine-tuned and tight 
linkage between TCA cycle and naringenin biosynthesis 
and the significance of acetyl-CoA availability for efficient 
production of naringenin from acetate. This study was 
the first attempt to produce naringenin using acetate 
and suggested the potential of the platform strain for 
production of various flavonoids derived from naringenin 
using acetate.

Methods
Reagents and primers
Plasmid and genomic DNA were purified using GeneAll® 
Plasmid SV kit and GeneAll® Exgene™ Cell SV kit 
(GeneAll Biotechnology, Seoul, Korea), respectively. 
Q5® High-Fidelity DNA Polymerase, restriction 
endonucleases, and T4 DNA ligase were purchased 
from New England Biolabs (Ipswich, MA, USA). T4 
Polynucleotide Kinase and EmeraldAmp® PCR Master 
Mix were purchased from Takara Bio Inc. (Shiga, Japan). 
Oligonucleotides were synthesized by Cosmogenetech 
(Seoul, Korea) (Additional file  1: Table  S3). Other 
reagents were purchased from Sigma-Aldrich (St. Louis, 
MO, USA) unless specified.

Fig. 5  Culture condition optimization of the BNIAP109 strain. a Evaluation of naringenin production capacity under different conditions of 
IPTG concentrations and induction times. b Fermentation profile of the BNIAP109 strain under optimized culture conditions, such as induction 
time at OD600 of 0.8 with the addition of 0.01 mM IPTG. Flask cultures were performed for 48 h in biological triplicates. Error bars indicate the 
standard deviations of biological triplicates. BNIAP109 strain, Escherichia coli BL21 Star™(DE3) with heterologous expression of essential enzymes 
for naringenin production, acs overexpression, iclR knockout, and pckA upregulation under constitutive promoter BBa_J23109; IPTG isopropyl 
β-d-thiogalactopyranoside
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Construction of bacterial strains and plasmids
Bacterial strains and plasmids used in this study are listed 
in Additional file  1: Table  S4. E. coli Mach1-T1® was 
used to proliferate all plasmids for cloning experiments, 
naringenin production was performed in BL21 Star™ 
(DE3) and its derivatives. Transcriptionally optimized 
pFlavoopt, containing 4-coumaroyl-CoA ligase (4CL), 
chalcone synthase (CHS), and chalcone isomerase 
(CHI) for naringenin production, was obtained from a 
previous study [24], and other genes were derived from 
the genomic DNA of E. coli BL21 Star™ (DE3). Genetic 
information of constitutive promoters (Anderson 
promoter series) and terminator (BBa_B1001) was 
acquired from the Registry of Standard Biological Parts 
(http://​parts.​igem.​org). 5′-untranslated regions (5′-
UTRs, Additional file 1: Table S5) with specific predicted 
expression levels were designed using the UTR Library 
Designer [30].

Restriction enzyme digestion and ligation were 
used for the construction of plasmids pACYCA and 
pACYCAP115. Specifically, acs and pckA genes were 
amplified from the genomic DNA of E. coli BL21 
Star™ (DE3) via two sequential PCRs to introduce the 
constitutive promoter and synthetic 5′-UTR. For the 
insertion of acs, the vector fragment was obtained from 
pACYCduet-1, as a template, using Vector_acs_speI_F/
Vector_acs_notI_R. The purified PCR fragments of acs 
and its vector were digested using SpeI and NotI and 
assembled, resulting in pACYCA. Similarly, the vector 
fragment was amplified from pACYCA as a template, 
using Vector_pckA_kpnI_F/Vector_pckA_notI_R, for 
the insertion of pckA. The resulting fragment and the 
pckA PCR fragment were digested using KpnI and NotI, 
and assembled to construct pACYCAP115. Plasmids 
with promoter variants of pckA (pACYCAP104, 
pACYCAP106, pACYCAP109, pACYCAP113, and 
pACYCAP103) were constructed through blunt-end 
cloning using the forward primers with corresponding 
constitutive promoter sequence (J23104_pckA_
blunt_F, J23106_pckA_blunt_F, J23109_pckA_blunt_F, 
J23113_pckA_blunt_F, and J23103_pckA_blunt_F, 
respectively) and the reverse primer (pckA_blunt_R). 
Deletion of chromosomal iclR gene was conducted by the 
Lambda-Red recombination method using the plasmids 
pKD46 and pCP20 [31].

Culture conditions for naringenin production
E. coli strains were cultivated in Andrew’s Magic Medium 
(AMM) containing 100 mL of 10 × MOPS mixture [32], 
5.0 g/L K2HPO4, 3.5 g/L KH2PO4, 3.5 g/L (NH4)2HPO4, 
2  g/L casamino acid, 0.1  mL of 5  g/L thiamine–HCl, 
and 0.1  mL of 1  M CaCl2 supplemented with 10  g/L 
NaOH-neutralized acetate (pH 7.0) as a carbon 

source. Antibiotics (100  mg/L ampicillin and 34  mg/L 
chloramphenicol) were added to the medium for plasmid 
maintenance.

For naringenin production, single colonies of each 
strain were inoculated in 15-mL test tube containing 
3 mL fresh AMM and incubated overnight at 37 ℃ with 
continuous shaking (200  rpm). Thereafter, saturated 
broths were inoculated in 300-mL Erlenmeyer flasks 
containing 25  mL fresh medium, at an OD600 of 0.1, 
and incubated to reach OD600 of 1.0. Refreshed culture 
broths were re-inoculated into 25 mL fresh medium with 
OD600 of 0.1 and incubated at a culture temperature of 
37 ℃, with agitation at 200  rpm. When culture broths 
reached an OD600 of 1.0, 200 mg/L p-coumaric acid and 
1  mM isopropyl β-d-thiogalactopyranoside (IPTG) for 
the induction of 4cl, chs, and chi genes were added to the 
broth, lowering the temperature to 30 ℃ after induction. 
All experiments were performed in biological triplicates. 
OD600 of the broths was recorded using a UV-1700 
spectrophotometer (Shimadzu, Kyoto, Japan) and the pH 
was adjusted to 6.8–7.1, with a 10 M HCl solution, using 
an Orion™ 8103BN ROSS™ pH meter (Thermo Fisher 
Scientific). Culture samples were periodically collected 
and stored at -80 ℃ for further analysis.

Enzyme activity assay
The promoter strength variants were cultivated until each 
variant had the same OD600 value, then the cell pellets 
were harvested by centrifugation at 15,814 × g for 10 min 
at 4  °C. Cell lysates were prepared through the addition 
of 0.1 mM phosphate buffer solution (pH 8.0) to the cell 
pellets and disruption by the sonication (Q125 Sonicator, 
Qsonica, CT, USA). Enzyme activity was assayed 
according to the previous study with minor modifications 
[33]. The reaction mixture containing 4 mM ATP, 4 mM 
MgCl2, 4 mM oxaloacetate, and 0.1 mM phosphate buffer 
solution were added to cell lysates up to 180  µl, then 
enzyme reactions were performed for 60  min at 30  °C. 
The consumption of oxaloacetate were measured using 
an Aminex HPX-87H column (Bio-Rad Laboratories, 
Richmond, CA, USA) and Shodex RI-101 detector 
(Shodex, Klokkerfaldet, Denmark), using 5 mM H2SO4 as 
the mobile phase at a flow rate of 0.6  mL/min at 14 ℃ 
[33].

Metabolites analysis
Ultimate 3000 high-performance liquid chromatography 
system (Dionex, Sunnyvale, CA, USA) was used to 
analyze the metabolites contained in culture broths. For 
the detection of naringenin production and p-coumaric 
acid consumption, the culture broth and an equal 
amount of absolute ethanol were mixed and centrifuged 
for 10 min at 13,000 rpm. Thereafter, the supernatant was 
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analyzed with an Acclaim 120 C18 column (Dionex) and 
a UV–Vis diode array detector. Acetonitrile and water, 
each containing 0.1% formic acid, were used as the mobile 
phase, at a flow rate of 1  mL/min, using the following 
multi-gradient flow program: 10–40% acetonitrile for 
0–10  min and 40–60% acetonitrile for 10–15  min with 
absorbance detection at 280  nm. Acetate consumption 
was identified with Aminex HPX-87H column (Bio-Rad 
Laboratories, Richmond, CA, USA) and Shodex RI-101 
detector (Shodex, Klokkerfaldet, Denmark), using 5 mM 
H2SO4 as the mobile phase at a flow rate of 0.6 mL/min 
at 14 ℃.
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