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Abstract: Public databases for glaucoma studies contain color images of the retina, emphasizing the
optic papilla. These databases are intended for research and standardized automated methodologies
such as those using deep learning techniques. These techniques are used to solve complex problems in
medical imaging, particularly in the automated screening of glaucomatous disease. The development
of deep learning techniques has demonstrated potential for implementing protocols for large-scale
glaucoma screening in the population, eliminating possible diagnostic doubts among specialists,
and benefiting early treatment to delay the onset of blindness. However, the images are obtained
by different cameras, in distinct locations, and from various population groups and are centered on
multiple parts of the retina. We can also cite the small number of data, the lack of segmentation of the
optic papillae, and the excavation. This work is intended to offer contributions to the structure and
presentation of public databases used in the automated screening of glaucomatous papillae, adding
relevant information from a medical point of view. The gold standard public databases present
images with segmentations of the disc and cupping made by experts and division between training
and test groups, serving as a reference for use in deep learning architectures. However, the data
offered are not interchangeable. The quality and presentation of images are heterogeneous. Moreover,
the databases use different criteria for binary classification with and without glaucoma, do not offer
simultaneous pictures of the two eyes, and do not contain elements for early diagnosis.

Keywords: glaucoma; retinal images; databases; glaucoma screening; machine learning

1. Introduction

Glaucoma is an optic neuropathy of asymptomatic progression and characteristic
visual field loss that can lead to total and irreversible blindness. It is estimated that in
2013, 64.3 million people aged 40 to 80 years were diagnosed with glaucoma, and this
number is expected to increase to 76 million by 2020 and 111.8 million by 2040 [1]. In most
cases, the disease has a slow and asymptomatic evolution. At the time of diagnosis, many
patients have already had some degree of visual damage with varying degrees of disability
for work and activities of daily living. The situation worsens with a lack of specialists
and equipment, and many cases may be under-reported. Therefore, there is a need to
popularize glaucoma screening through cheaper techniques that serve many people. Early
diagnosis and treatment can delay the progression of glaucomatous disease. Currently, it is
estimated that half of all glaucoma patients remain undiagnosed. Detecting this substantial
number of undiagnosed patients is a significant challenge [2].

In recent years, deep learning techniques have demonstrated the potential to solve
complex problems involving images and medical domains, such as automated glaucoma
screening. For example, in visual field examination, deep learning has been shown to
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differentiate between normal visual fields and those with pre-perimetric glaucoma [3]. Still,
the scope of glaucoma screening using these techniques is not yet defined.

In medicine, the use of artificial intelligence (AI), through deep learning techniques,
has shown potential for population screening and reducing glaucoma progression in pa-
tients waiting for help from professionals, facilitating populations’ access to early diagnoses,
especially in more distant locations, which standardizes diagnostic results and even de-
creases diagnostic divergence between specialists. However, AI offers only one reference
for a clinical diagnosis. Thus, medical specialists will always be responsible for diagno-
sis and treatment [4]. In other medical areas, deep learning methodologies are used to
segment lungs, brain, cell mitosis, prediction of development, progression of myopia [4],
and diagnostics in the digestive system. So far, in ophthalmology, two AI algorithms have
been approved by the FDA for clinical use. One is IDX-DR, which can detect diabetic
retinopathy (DR), and the other is Viz.AI, which analyzes images for indicators associated
with a stroke [4].

Color fundus photography (CFP) is a cost-effective and non-invasive way to analyze
the retina [5,6]. CFPs are considered a significant element in glaucoma screening in clinical
practice and deep learning methodologies. Public databases contain a set of color pho-
tographs used for training deep learning (DL) algorithms intended to screen for various
retinal pathologies such as diabetic retinopathy, diabetic macular edema, and glaucoma. In
clinical practice, CFPs are analyzed with other clinical data such as intraocular pressure
measurements (IOP), automated perimetry, and optical coherence tomography (OCT) to
diagnose glaucoma. However, large-scale population screening programs based on tradi-
tional clinical methodologies are not employed, as they are uneconomic [7]. In addition,
they can generate many false positives, creating a burden on public health infrastructure
and a harmful condition on the patient’s quality of life until the glaucoma diagnosis is
ruled out [8].

Public databases have diverse characteristics that make it difficult to correlate data.
For example, some databases present the optic disc (OD) segmentation and cupping made
by experts and grouped into sets of “normal” and “glaucomatous” papillae based on
appearance. Others give classifications based on patient chart data and show evolving
stages of glaucoma, i.e., an early, moderate, and severe glaucoma group.

Other retinal pathologies concomitant with glaucoma should be evaluated in clinical
practice. The specialist can diagnose them through clinical data or examination find-
ings. Color retinography is an element of immense importance for diagnostic aid and
will undoubtedly demand an excellent function of the algorithms to embrace a more
comprehensive diagnostic range.

In the development of deep learning databases and architectures, a significant research
effort is being made to introduce tools for the segmentation of the OD and the optic cup
in CFPs and to identify glaucoma cases based on clinical features [9–11]. However, the
approaches used in different databases cannot be adequately compared due to the lack of a
single validation protocol [8] and the limited size of the available datasets. In addition, the
absence of large-scale glaucoma imaging datasets has hampered the rapid deployment of
DL techniques to detect the pathology [12] and the lack of a strategy for marking papillae
and excavation boundaries (BENCHMARK) and hinders uniform comparison of existing
methods [8].

The optic papilla region includes several anatomical variations considered normal in
the population. In addition to spatial and non-overlapping differences between the images
of right and left papillae, these variations include the insertion of the nerve in the eye, the
size, and excavation of the papilla, vascular emergence, pigmentation, and the peripapillary
region. Many variables may be presented as different fingerprints in a population capable of
influencing the training and the results of neural networks. Therefore, there is a requirement
to constantly update the datasets and establish protocols for the images integrated with
clinical data and ancillary tests. In addition, there is a need to define the training and
validation set of the public databases, develop automated tools for segmentation and
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classification of the CFP to reduce data deficiency, and ensure more reliable results for
effective glaucoma detection. Public databases adapt to these requirements through the
challenges for segmentation and classification as in REFUGE and, more recently, another
challenge, “Artificial Intelligence for RObust Glaucoma Screening” (AIROGS).

This study aims to analyze the gold standard public databases for glaucoma analysis
and offer recommendations to improve their contributions to the learning of neural net-
works showing significant advances for automated screening of glaucomatous papillae.
It is divided into five main topics: a few fundamentals of glaucoma, deep learning in the
context of artificial intelligence, fundamentals of the existing public databases for the study
of the retina, and fundamentals considered the gold standard for the study of glaucoma.
Finally, various recommendations will be analyzed to improve existing databases and those
used in the future.

2. Fundamentals of Glaucoma

Some fundamentals of glaucoma will be analyzed with an emphasis on clinical diag-
nosis. Specifically, classification using fundus photographs, the most used ancillary tests,
and the principles used in the treatment will be discussed.

2.1. Clinical Definition and Diagnosis

Glaucoma is a chronic optic neuropathy characterized by irreversible damage to the
retinal nerve fiber layer (RNFL) and characteristic visual field changes. Changes in the
nerve fiber layer can be visually translated by irregularities in the inner border of the
neuroretinal layer (Figure 1) and increased excavation of the papillae either symmetrically
or asymmetrically between eyes.
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Figure 1. Example of an OCT scan.

Screening for glaucoma should be performed routinely and includes detailed medical
history, slit lamp examination, CFPs, and tonometry. CFPs are essential in screening and
studying disease progression and are used to study the optic nerve structure in glaucoma.
However, identifying glaucomatous features in the optic papilla is challenging even for
specialists and requires expertise and years of practice. Some of the main glaucoma-related
changes are visualized in the neural layer of the optic papilla, including increased cupping
and neuroretinal thinning, as well as other changes earlier in the peripapillary region, such
as retinal fiber layer defects and peripapillary atrophy [13]. In addition, the disease may
progress asymmetrically between the two eyes, with a normal eye (without cupping) and a
counter lateral eye with a larger cup or even a cup of assorted sizes between the eyes.

The most common types of glaucoma have a primary cause, i.e., they originate from
ocular factors (not always determined). They can be grouped according to the angle of
outflow of the aqueous humor into open-angle glaucoma and closed-angle glaucoma [14].
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There is no specific anatomical cause in open-angle glaucoma, although the intra-ocular
pressure represents the leading risk factor when elevated. Other risk factors include
myopia, increasing age, the Black race, history of the disease in first-degree relatives,
vasculopathy, hypertension, and diabetes. Closed-angle glaucoma is associated with
anatomical blockage of the aqueous humor drainage angle in the anterior chamber resulting
in increased ocular pressure.

In current clinical practice, CFP features are used in conjunction with other clinical data,
such as IOP, automated perimetry, and the use of OCT to diagnose glaucoma. However,
these approaches are not cost-effective for large-scale population screening for glaucoma [7].

Subsidiary tests may be indicated in suspicious cases and the study of glaucoma
progression, especially in OCT and the visual field.

2.1.1. Subsidiary Examinations

The early detection of glaucoma includes structural and functional tests. Structural
tests aim to detect structural changes in the retinal fiber layer. Structural tests include
confocal laser ophthalmoscopy, OCT, and laser polarimetry. Functional tests such as
frequency doubling perimetry and short-wavelength automated perimetry, also known
as blue-on-yellow perimetry, are intended to detect visual field damage before changes in
visual field examination. These tests have limitations, including the inability to assess eyes
with high myopia, large ODs, and areas of peripapillary atrophy [15]. In these cases, we
must evaluate the patient as a whole and correlate the ocular pressure and structural and
functional data.

2.1.2. Visual Field

Visual field examination, campimetry, and automated achromatic perimetry (white-
on-white) have significant importance in diagnosing and evolving glaucoma. Graphic
alteration locates the non-vision region corresponding to the neural layer damage by
glaucomatous neuropathy. This scan evaluates 30 degrees where most glaucomatous
defects occur and can show changes only in the stages where considerable retinal fiber
loss has already occurred [16,17], limiting its use in the evaluation of the early stages of
the disease. The characteristic visual field alterations correspond to focal or arcuate visual
losses in the projection path of the fibers that run through the retina towards the optic
papilla and increase with the disease’s progression.

2.1.3. Optical Coherence Tomography

Optical coherence tomography is a diagnostic aid exam in several retinal pathologies.
It shows sections of the retinal layers. In glaucoma, it is used in suspected cases with
structural changes confirmed by fundus photography (retinography) when the cup-to-disc
ratio ≥ 0.5 and <0.9, in the presence of asymmetry between the two eyes ≥ 0.2 and localized
thinning of the neural ring, or for diagnostic clarification in ocular hypertensive patients
(ocular pressure above 21 mmHg). It makes it possible to diagnose and monitor glaucoma
through the evolution of macular thickness. Although central vision is often preserved in
late glaucoma, the thinning of the macular area is a parameter found in the early stages of
the disease and precedes visual field defects [18]. Figure 1 exemplifies an OCT diagram
(left part) correlating with a papilla (right part). The upper papilla has a standard feature,
and the lower papilla has a glaucomatous feature (increased cupping and vessel deflection).
Note that the red dots correspond to the size of the papilla, and the blue dots correspond to
the size of the cupping, and the blue and yellow dots correspond to the layer of ganglion
fibers, which are visibly more minor in the lower diagram.

2.2. Principles Used in the Treatment of Glaucoma

Once the diagnosis is established, treatment should be started as early as possible. The
treatment of glaucoma aims to stop the progression of the disease. It is achieved using
traditional surgical strategies and laser application to increase intraocular fluid filtration
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and topical or systemic pharmacological approaches to reduce the target eye pressure
and stop disease progression. In addition to these strategies, systemic factors such as
diabetes, hypertension, tumors, rheumatic processes, and ocular factors, such as cataracts,
vasculopathy, malformations, post-traumatic injuries, infections, and hemorrhages should
be stabilized.

3. Fundamentals of Deep Learning in the Context of AI

Some fundamentals of deep learning within artificial intelligence will be analyzed,
with an emphasis on application, the challenges of large-scale application, and ways of
applying DL architectures in automated glaucoma classification.

As a subarea of artificial intelligence, machine learning (ML) algorithms deal with
large datasets such as thousands of images, facilitating the resolution of problems that
would be impractical through classical statistical analysis. In turn, deep learning is a
sub-area of machine learning that operates data analysis through the representation of
successive layers (neural networks) inspired by the human brain. Each layer could filter
specific properties and select more relevant characteristics that have significant applications
in medical diagnosis problems, allowing complex representations to be learned and divided
into intermediate spaces (layers). Deep learning has demonstrated a vast applicability
potential in the medical area by improving image accuracy, processing, and identification
of diagnostic relevant features in radiographic images, tomography, ultrasonography,
histological analysis of organs and tissues, and photographic analysis images. Deep
learning can identify features within a complex structure in large datasets using multiple
intermediate layers positioned between the input and output layers (as seen in Figure 2),
allowing each layer to learn to transform its input signal to the next layer. It has shown
considerable utility in discovering intricate structures in complex data such as medical
images. The key to the successful operation of these methods is having enough data to train
and evaluate the system. Furthermore, the validation of these methods requires a reference
standard that can be used for comparison, i.e., having public retinography databases that
satisfy several requirements, which should also be clearly defined [19].
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Figure 2. Illustration of a typical deep learning network with multiple layers between the input and
output levels (acquired from [4]).

The deep learning workflow can be defined in three steps: (1) pre-processing of
image data; (2) model training, model validation, and testing; and (3) evaluation. Pre-
processing includes noise reduction, feature selection and extraction from the image, and
data normalization. A model to be trained is initially divided into three sets: training data,
validation, and testing. The training set allows the model to learn to fit the data parameters
of the classifier. The validation set prevents overfitting. The test set is used to evaluate the
performance of the trained model. The data provided by the public databases will be used
in the training step of the deep learning algorithms. For best results, the data need to be
dependable and offered in a sufficient quantity to train and evaluate the system.
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3.1. Challenges in Applying Deep Learning on a Large Scale

Many of the main challenges for problem-solving through DL architectures are gener-
ated by protocol deficiencies in defining public databases. If the databases do not appropri-
ately train the networks, it may be misleading to networks’ responses. Gold standard public
databases such as DRIHTI-GS, RIM-ONE DL, and REFUGE offer a reduced dataset and few
data for training/testing. For example, data are classified into glaucoma and non-glaucoma
groups based on imaging alone in the case of the RIM-ONE DL database, and there is no
information on which clinical bases the clinical classification used in the DRISHT-GS1 and
REFUGE databases were based. Furthermore, no public database presents images of the
papillae of both eyes. The lack of standardized strategies makes it difficult to compare
existing methods [8].

According to [4], automated DL techniques may provide false negative results from
ocular diseases such as optic neuropathy coexisting with pathological myopia, retinal
detachment, and senile macular degeneration. False-positive results arise from other ocular
conditions, including increased physiological cupping. In addition, other challenges affect
the accuracy of diagnostic results and represent obstacles in large-scale applications of AI
technology, such as few standardized sets for training, a limited number of datasets with
low anatomical representativeness of normal and glaucomatous papillae, and differences
in the quality of images used in different countries, regions, and medical institutions.
This inevitably affects the accuracy of image analysis, which may represent a higher
computational expense and produce inaccurate results, especially in the early stages of the
disease that require the analysis of peripapillary fibers. Furthermore, AI cannot provide the
physician or other users with the rationale for the diagnosis. There is no explanation for why
the differences exist or the pathological basis of the differences that could affect physicians’
acceptance of these devices in clinical applications. The bases do not show images of the
right and left eyes of the same patient, an element widely used in clinical practice for the
comparison of cup size because of the asymmetric feature in disease progression.

3.2. Automated Classification of Glaucoma

Automated recognition of glaucomatous papillae in CFPs by DL techniques can be
performed in two ways: by directly recognizing glaucomatous features in the optic papilla
by DL architectures and by segmenting the disc and excavation of the optic papilla. Existing
DL approaches are based on adaptations of supervised DL techniques [8], i.e., techniques
capable of “automatically learning” features by analyzing large training sets of segmented
images [20] not offered by databases. Through deep learning classifiers, multiple retinal
vascular diseases may be distinguished with an accuracy above 80% and may be a valuable
instrument in areas with a shortage of ophthalmic care [21].

3.2.1. Classification of Glaucoma Directly through Deep Learning Architectures

Automated glaucoma classification directly by DL architectures classifies an input
image as glaucoma or non-glaucoma based on the visual characteristics of the optic papilla
and the segmentation of the optical disc and cupping. It can be divided into methods based
on image similarity, manual techniques, transfer learning methods, and OD limitation.

DL methods produce glaucoma diagnosis through image similarity. They need a
large dataset for learning networks. Historical and clinical data extracted from the medical
consultation can complement DL model features and give reasons for neglected diagnosis
results [22].

Manually handcrafted methods used for excavation/disc segmentation are used for
feature extraction techniques and ML classifiers using supervised or unsupervised tech-
niques [9–11]. However, they exhibit limited accuracy due to the inability to characterize
the onset of disease.

Transfer learning methods are based on pre-trained architectures with non-medical
data. They use weights learned from ImageNet. Russakovsky et al. [23] and Gómez-
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Valverde et al. [13] applied a set with more than 14,000 images to train these networks,
although at the cost of lower performance [8].

Methods with OD and OC restriction restrict the analysis area to the OD affected
by glaucoma. Limiting the image of the optic papilla allows a better exploration of its
features and results in better learning performance of the automated models than at full
size but determines a substantial restriction in the field of view of the networks and hinders
their ability to learn alternative features of other regions [24]. However, it determines a
substantial restriction in the field of view of networks. Furthermore, it hinders their ability
to learn alternative characteristics of other regions, for example, the analysis of areas of
atrophy of peripapillary fibers, limiting the early diagnosis of glaucoma.

3.2.2. Classification of Glaucoma by Disc Segmentation and Cupping

Excavation segmentation from a retinal image is challenging due to the lack of depth
view in 2D images but is relevant because it helps assess glaucomatous damage to the optic
nerve head (ONH) [10]. Furthermore, the papilla region has several anatomical variabilities
that are considered normal. It can be interpreted as a false positive by neural networks, such
as oblique insertion of the optic nerve, more prominent papillae, and peripapillary atrophies
myopia. Most methods use techniques to locate the optic papilla area and then crop the
images around it [25–29]. It avoids false positives in regions containing severe illumination
artifacts and improves the analysis of the optic papilla but does not differentiate it from
other structures of the eye fundus. The precise delineation of the OD is especially difficult in
pathological changes such as peripapillary atrophies or hemorrhages [9,11]. Large vessels
in the OD area lack depth information in the CFP [8].

4. Fundamentals of Public Databases

In this section, generalities of the public databases used in the retinal study are
analyzed, as well some reflections on the choice of data with predefined segmentation
and partitions, the use of images (without clinical data) for neural network learning, the
importance of the quantity and diversity of images, and the evaluation metrics used in
the databases.

4.1. Presentation of Public Databases Used for the Retinal Study

Public image bases on the internet contain image clusters used for ophthalmic studies,
standardization, and DL architecture research. The databases integrate information ob-
tained through manual processing of the images by experts, can be analyzed by computer
algorithms, and allow the comparison of the performance of different algorithms analyzing
the same background image. They include, for example, the detection of diabetic retinopa-
thy and diabetic macular edema in fundus photographs [30], lung segmentation [31],
brain [32], cell mitosis [33], and the prediction of myopia development and progression [34].
The photo bases were initially designed for use as a database of reference images for seg-
menting the OD. However, their use has since been more oriented toward the training and
testing of deep learning models [19].

The images are obtained under multiple conditions, with different cameras, in several
groups of patients, with objectives defined by various experts. Therefore, there is difficulty
using data and methodologies between the various bases. Just as railways should have ho-
mogeneous gauge sizes to avoid frequent changes in compositions, public databases should
follow some rules to improve the interchangeability of data and methodologies required, al-
lowing updates of color photographs, classification parameters of glaucoma/non-glaucoma
groups confirmed through clinical data, and subsidiary examinations allowing more excel-
lent reproducibility of results, representation of each patient through color photographs of
both eyes (because they are non-overlapping images), and centralization of retinal images
in pre-established structures. In the very recent work about the “Retinal Fundus Glaucoma
Challenge” (REFUGE) [8], a critical step was taken in this direction, suggesting specific cri-
teria that can be used to compare these methods used to classify glaucoma and segment the
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disc and cup as the availability of publicly accessible image sets, labeled by various experts,
with sufficient data for use in DL. The precise separation between training and test sets,
enabling the comparison of results [35], the presence of diversity in the image set by various
devices, different ethnicities, is obtained from different illumination and contrast, noise, and
other conditions, including preliminary diagnosis based on manual reference segmentations
of the disc and the cup and providing results from homogeneous methodologies.

New challenges are currently under development, such as the Artificial Intelligence
Challenge for RObust Glaucoma Screening (AIROGS), which is to be held to develop
solutions for glaucoma screening from CFPs. Still, the study does not detail the protocols
that will be followed [36].

The images from the databases intended for the study of glaucoma are generally
focused on different anatomical points of the retina. As exemplified in Table 1, many
database images contain segmentations from the sternal rim to the papillae and excavation
that are made manually by one or more specialists from color nuances, intensity differences,
and anatomical structures (vessels) that serve as the basis of classification of glaucoma/non-
glaucoma groups. Others are classified manually based on their visuals without additional
clinical information, and some are classified based on clinical data.

Table 1. Comparison of the dataset with other publicly available databases of background images.
Question marks indicate missing information, and N/A means “not applicable”. Adapted from [8].

Dataset Num. of Images Ground Truth labels Different
Cameras

Training/
Test Split

Diagnosis
from

Evaluation
Framework

g+ g- Total Class of
Glaucoma

Segmentation
Disc/

Excavation

Location
of the
Fovea?

ARIA [37] 0 143 143 on yes/no yes on on ? on
DRIONS-DB

[38] - - 110 on yes/no on ? on N/A on

DRISHTI-GS1
[39] 70 31 101 yes yes/no on on yes images on

DR HAGGIS
[40] 10 29 39 yes no/no on yes on clinical on

Madrid [41] 0 516 516 on yes/no yes on yes ? yes
HRF [42] 15 30 45 yes no/no on on on clinical on

SLE-AV [43] 11 11 22 yes no/no on on on clinical on
ONHSD [44] - - 99 on yes/no on on on N/A on
ORIGIN [45] 168 482 650 yes yes/no on ? on ? on
RIM-ONE DL

[19] 172 313 485 yes yes/no on yes yes images on

RIGA [46] - - 750 on yes/no on yes on ? on
REFUGE [8] 120 1080 1200 yes yes/no yes yes yes clinical yes

g+ glaucoma, g- normal, N/A “not applicable,” (?) missing information.

As can be seen in Table 1, there are few public sets of fundus images to assess glaucoma
through the classification or segmentation of the OD and OC. The ORIGIN base [45]
database ceased to be public some time ago. However, the Esperanza database cited by
Gómez-Valverde et al. [13] has 113 glaucoma images and 1333 normal papillae images.

Significant discrepancies in the evaluation protocols were observed between the
databases. These differences (summarized in Table 1) are mostly related to two key aspects:
(i) the datasets used for training/evaluation and (ii) the evaluation metrics [8]. Table 1
also shows the characteristics of various databases used in ophthalmology. Among the
databases available on the internet, only DRIHST-GS1, RIM-ONE DL, and REFUGE con-
tain segmentation of the excavation and OD, training, and testing clusters for use in DL
architectures and classification of image groups with and without glaucoma. It also shows
that the public databases contain a limited number of data covering only a small variability
in clinical conditions. Finally, we note that the databases have few public datasets that
simultaneously provide segmentation of the OD, cupping, and clinical diagnoses.
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ONHSD [44] and DRIONS-DB [38] include only OD segmentations, and no glaucoma
labels are given. ARIA [37] provides OD segmentation and incorporates vessel segmenta-
tion and foveal center annotations. However, the images correspond to normal subjects
and patients with diabetic retinopathy and age-related macular degeneration, with no
cupping segmentation. DR HAGGIS [40], HRF [42], and LES-AV [43], on the other hand,
include reliable diagnostic labels and vessel segmentation, but not OD/cavity segmentation.
Moreover, their size is relatively small (39, 45, and 22 images, respectively). RIGA [46] is a
recent dataset containing 750 fundus images with OD/OC segmentations but no glaucoma
classification. As we will see below, RIM-ONE DL includes CFPs from versions v1, v2, and
v3 cut around the ONH and includes only OD segmentations made by two specialists [19].
Finally, only DRISHTI-GS [39] and ORIGA [45] include glaucoma classification sets and
OD/OC segmentations. However, the diagnostic labels in DRISHTI-GS were assigned
solely based on images [39], and DRISHT-GS1 considers a feature of the glaucomatous
papilla, the presence of the notch in the neural layer or “notch”. ORIGA, on the other hand,
is no longer publicly available.

4.2. General Considerations with the Use of Public Databases

The reason to choose databases is based on predefined segmentation and partitions.
As seen above, the automated classification of glaucoma directly by DL architectures and
through image similarity or pre-trained architectures requires a large dataset for training
the networks with great computational expense, representing the major bottleneck of
automated diagnosis by DL architectures. In addition, the lack of predefined partitions
in training and test sets induces a chaotic practical application of existing data. It affects
the direct comparison of the performance of existing methods [35], making it difficult to
conclude which features are most appropriate to solve each task.

Surprisingly, there is no information about the source used for diagnostic classification
in most existing databases, as indicated in Table 1. Therefore, using images with segmen-
tations but without retrospective analysis of clinical records can be problematic as it may
cause bias in automated methods and reproduce mislabeling practices [8]. On the contrary,
clinical labels can help algorithms learn and discover other supplementary manifestations
of the disease that are still unknown or too difficult to distinguish with the naked eye.
Besides that, clinical data can be a diagnostic aid (in suspicious and early cases) and bring
a solution closer to the real thing.

Choosing the quantity and diversity of images is important. Existing databases rarely
include images obtained from different acquisition devices, ethnicities, or presentations
challenging glaucoma-related scenarios, which can interfere with the training of DL net-
works and result in poor generalization ability. Attempts to address this problem using
combinations of different datasets were proposed by Cerentinia et al. [47] and Pal, Moor-
thy, and Shahina [48], but the results could deviate and influence subsequent evaluations.
Incorporating depth information, for example, through stereo imaging and OCT results
that would provide dimensions of the excavation and its depth, would ensure reliable
annotations. On the other hand, providing segmentations obtained by the consensus of
several experts, as in the case of the REFUGE challenge, could better approximate the
accurate anatomy by reducing interobserver variability [8].

4.3. Evaluation Metrics

There is no uniform criterion for comparing methods and evaluating the use of metrics
for assessing DL methodologies. Receiver-operating characteristic (ROC) curves are the
most commonly used metrics, including the area under the curve (AUC) [13,24,26,34,48].
Sensitivity and specificity [13,24,26,47,49,50] are also used in different studies to com-
plement AUC in driving binary classification results. The authors have reported accu-
racy [47,51] as another evaluation metric, although this metric may be biased if the propor-
tion of non-glaucomatous images is significantly higher than glaucomatous [52].
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5. Methodology

The gold standard databases RIM-ONE DL, DRISHTI-GS1, and REFUGE will be
analyzed (considered of great interest to applicability in DL architectures) in this section
from the point of view of the presentation and characteristics of datasets and results
obtained in each base.

The methodology used will compare the databases with the gold standard: RIM-ONE
DL [19], DRIHST-GS1 [39,53], and REFUGE [8]. Table 2 summarizes some presentation
characteristics of these databases, emphasizing the representation of the segmentation of the
disc and optic excavation and the binary classification between glaucoma/non-glaucoma
performed by experts and divided into training and test groups. The comparison will
be performed based on the presentation and characteristics and the results obtained in
each database.

Table 2. Summarizes the characteristics of gold standard public databases.

Format
Normal and
Glaucoma

Eyes

Training
Group Test Group Segmentation Diagnostic

Elements

Simultaneous
Imaging
OD/OE

Right Left
RIM ONE-DL .png 313-/172+ 195-/116+ 118-/56+ (+) (+) clinical not

DRISHTI-GS1 * .png 31-/70+ 50 51 (+) (+) image not

REFUGE .jpeg 1080-/120+ 360-/40+
400

offline400
online

(+) (+) clinical not

* Presence or absence of the notch is analyzed on a DRISHTI-GS1 basis. Normal eyes (-) with glaucoma (+) optic
disc (OD), cupping (ESC), segmentation present (+), and absent (-).

5.1. Presentation and Characteristics of the Datasets
5.1.1. RIM-ONE DL

The unified retinal image database for assessing glaucoma using deep learning-RIM-
ONE DL [19] is available at https://github.com/miag-ull/rim-one-dl (accessed on 15 June
2022) and was created in 2020 to optimize the three previous versions for use in deep
learning. Based on the three previously published versions, a version called RIM-ONE DL
(RIM-ONE for Deep Learning) was created and optimized for a deep learning context. All
images were again manually segmented (disc and excavation). One image of each eye per
patient was kept, and all images were cropped around the optic nerve head using the same
proportionality. According to clinical criteria, the images were reclassified into glaucoma
and non-glaucoma [8].

The RIM-ONE DL base is divided into two large groups partioned_by_hospital and
partitioned_randomly, into test_set and training_set groups. Each group presents sub-
groups of glaucoma and normal datasets. Table 3 shows the quantitative partitioning of the
RIM-ONE DL database datasets.

Table 3. Presentation of the RIM-ONE DL database datasets.

TEST_SET TRAINING_SET
Normal Glaucoma Normal Glaucoma

PARTIONED_BY_HOSPITAL 118 56 195 116
PARTITIONED_RANDOMLY 52 94 219 120

The images demonstrate the magnification of the region of interest of various features
of the glaucomatous papilla. The fundus photographs in the test and training groups
present irregularity in sizes, colors, and clarity. It allows only limited analysis of the peri-
papillary region and hinders the investigation of areas of sectorial atrophy of peripapillary
fibers, which is essential for early diagnosis. Moreover, the RIM-ONE DL database presents
images randomly obtained between the right and left eye. The classification of normal and

https://github.com/miag-ull/rim-one-dl
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glaucoma groups in both test and training sets is based only on segmentations performed
manually by experts, no clinical data or ancillary tests are mentioned, and symmetrical
images of the eyes are not presented.

5.1.2. DRISHTI-GS1

The Retinal Image Dataset for the Assessment of Glaucoma from the Optic Nerve Head
Analysis-DRISHT-GS1 presents a set of retinal images for papillae evolution in normal and
glaucomatous eyes with manual segmentation by experts that allows measurements of
the ratio of the diameter and cupping and the area of the OD, known as the cup-to-disc
ratio (CDR). It presents notch analysis in the superior, inferior, nasal, and temporal (notch)
sectors. The author warns about the difficulty of comparing the performance of individual
methods due to the lack of a more comprehensive set of bases [39,53].

The features presented in Table 2, besides the division into training and test groups,
present values of the disc and cupping boundaries and CDR values, i.e., the ratio of cup-
ping/disc measurements. Four experts and an additional expert performed classification
into datasets with and without glaucoma based on the segmentation and the extent and
direction of notching (I/S/N/T/Absent).

The measures used for the quantitative analysis of the segmentation method were
the segmentation region, boundary location, and the estimated CDR measure. The Hough
circle was proposed as the algorithm for the initial segmentation of the optical disc. The
DRISHT-GS1 base includes segmentation performed by two more specialists. It is based
on three strategies: the detection of the color gradient and the transition of small vessels,
the presupposition of the excavation depth by visualizing multiple images, and the pre-
supposition of the excavation depth by color variation (available in the test group) and
in-depth maps visualized by OCT (available in the training groups). The author warns of
the difficulty in comparing the performance of individual methods due to the lack of a more
comprehensive set of bases for classification based on clinical data and divided between the
test and training groups [39,53]. The DRISHTI-GS1 database provides a clear division be-
tween training/test sets and studies a “notch” feature. Still, it uses a glaucoma classification
based only on image features without considering clinical data and ancillary tests.

5.1.3. REFUGE

The Retinal Fundus Glaucoma Challenge (REFUGE) base is available on the website
https://refuge.grand-challenge.org/ (accessed on 15 June 2022). It is a competition held
as part of the Ophthalmic Medical Image Analysis workshop presented at MICCAI 2018.
It was the first initiative to evaluate automated methods for OD/OC segmentation and
glaucoma classification from CFPs. For this purpose, the challenge provided the community
with 1200 fundus photographs.

Each image in the REFUGE dataset includes binary glaucoma/non-glaucoma clas-
sification performed based on a comprehensive evaluation of patient records, including
follow-up fundus images, IOP measurements, OCT images, and visual field. Glaucomatous
cases correspond to individuals with glaucomatous damage in the ONH area and repro-
ducible glaucomatous defects. However, early cases or those with pre-perimetric changes
and bilateral representation of the right and left papillae are not explained. The images
are centered in the posterior pole, between the macula and the visible OD, to evaluate the
ONH and potential retinal nerve fiber layer defects.

The REFUGE base presentation is divided into three fixed subsets: training, offline,
and online test sets containing equal glaucomatous (10%) and non-glaucomatous (90%)
cases. Since training DL from scratch on a training set with only 400 images may lead to
overfitting, most groups started the convolutional networks with pre-trained ImageNet
weights and then adjusted using the CFPs [8].

The REFUGE base is divided into test (Figure 3), training (Figure 4), and validation
(Figure 5) sets. As shown in Table 2, the test set comprises four hundred images of the left
eye centered in the papillary macular region. It includes the segmentation performed by a

https://refuge.grand-challenge.org/
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specialist and classification based on clinical data and divided between training and test
groups. The training set is divided between 40 photos of the left eye with glaucoma and 160
without glaucoma centered on the papillary macular bundle. The validation set contains
four hundred color photographs of the left eye, focusing on the papillary macular bundle.
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Automated methods are currently being developed to predict depth maps of CFPs
by correlating ground truth segmentation image features with classifications obtained
through other modalities such as stereoscopic photographs. Research is underway in
developing automated methods to predict depth maps of CFPs by attempting to correlate
image features with ground truth labels obtained from other imaging modalities such as
stereo fundus photography [54] or OCT [55]. These techniques may help more reliable
glaucoma/non-glaucoma binary classification proposals in databases.

5.2. Results of the Databases

According to [19], the RIM-ONE base was widely used in segmentation tasks. How-
ever, since 2019 there has been a significant increase in the number of publications associated
with deep learning problems, thus reinforcing the need to have a revised and updated
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version of RIM-ONE to satisfy this new trend. As for the DRISHT-GS1 and REFUGE bases,
there is still no information about their use in publications.

We note that the best approaches for glaucoma classification integrate deep learning
techniques with well-known glaucoma-specific biomarkers such as vertical cup changes,
cup-to-disc ratio, and retinal fiber layer defects. In the REFUGE challenge, the two top-
ranked teams achieved better results than two glaucoma specialists, a promising sign for
using automated methods to identify glaucoma suspects with fundus images [8]. U-shaped
networks inspired by U-Net [56] were the prevalent solutions. Most teams initialized the
CNNs with pre-trained ImageNet weights and then adjusted them using CFPs, because
training a DL model from scratch with few data could lead to overfitting, where a model
learned patterns specific to the training data and does not generalize well on new, unseen
data [8]. Another highlight was that the top-ranked methods in the REFUGE challenge
obtained consistently better segmentation results in the subset of glaucomatous individuals
than in the non-glaucomatous cases. The most significant excavations (in more advanced
cases) present more precise interfaces between the disc and the optical excavation.

5.2.1. RIM-ONE DL

The network models VGG19 and VGG 16 had satisfactory results (Table 2). However,
a direct comparison with the DRISHT-GS1 and REFUGE challenges is not possible because
they present distinctive characteristics of the datasets obtained. Interestingly, the winning
team of the REFUGE challenge [57] achieved an AUC of 0.9885 with a sensitivity of 0.9752
(Table 4) for a test sample composed of 360 images from healthy individuals and 40 images
from glaucoma patients. Furthermore, in the representation of the ROC curves (Figure 6),
is possible to observe a more consistent behavior in the neural networks models using the
Madrid and Zaragoza test sets (Figure 6), evaluated in Table 5, whose images were quite
different from the images used during training [19].

Table 4. Evaluation of different networks using the randomized test set.

Network AUC Se Acc.
VGG19 0.9867 1.0000 0.9315
VGG16 0.9834 0.9615 0.9247

Xception 0.8771 0.9808 0.9178
ResNet50 0.9755 0.9808 0.9110

MobileNetV2 0.9738 0.9423 0.9041
DenseNet 0.9726 0.9615 0.9041
MobileNet 0.9712 0.9615 0.9315

InceptionResNetV2 0.9685 0.9808 0.9110
InceptionV3 0.9597 0.9423 0.8904

NASNetMobile 0.9290 0.9231 0.7534

Table 5. Evaluation of networks using the Madrid and Zaragoza test suite.

Network AUC Se Acc.
VGG19 0.9272 0.8750 0.8563
VGG16 0.9177 0.8214 0.8506

InceptionV3 0.9015 0.7500 0.8046
Xception 0.8982 0.7500 0.7989
DenseNet 0.8919 0.7143 0.7816
MobileNet 0.8912 0.7500 0.8276
ResNet50 0.8855 0.7321 0.8333

InceptionResNetV2 0.8396 0.625 0.7644
NASNetMobile 0.7969 0.6071 0.7989
MobileNetV2 0.7765 0.4464 0.5287
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5.2.2. DRISHTI-GS1

The results were based on the segmentation of the optical disc/scan, the location
of the boundary performed by the computed region compared to the ground truth, and
the estimation of the CDR and the notch of the inner edge of the neural layer (gap). The
initial boundary estimation for optical disc segmentation was based on a transformation
algorithm by the Hough circular. Notch segmentation was conducted based on three
methods according to the path of the vessels (thin) using a monochrome image, a motion
structure to demarcate depth/discontinuity, with false-positive results occurring in the
regions of most excellent whiteness, and the segmentation method based on color variation
and the corresponding depth of the OCT. The proposed method for notch detection was
based on the computational evaluation of neural layer thickness changes against an expert
opinion. The edge thickness distribution in normal papillae follows the ISNT rule, which
states that the edge thickness decreases along with the sectors of the neural layer in the
order Inferior > Superior > Nasal > Temporal, as represented in Tables 6–10.

The ROC curve for the training and testing data is presented below, and the curve
values are shown in Table 8. We found a good correlation between notch detection and
segmentation achieved through the algorithms by the experts [39].

Table 6. Distribution of normal/glaucomatous eye images and notch cases in the training and test
sets—adapted from [39].

Notching Diagnosis

Absent Present Glaucomatous Normal
31 19 32 18 Train
25 26 38 13 Test

Table 7. Optical disc segmentation results—adapted from [39].

Test Train

Boundary Localization
Error (Pixels) F-Score Boundary Localization

Error (Pixels) F-Score

8.93 ± 2.96 0.96 ± 0.02 8.61 ± 8.89 0.96 ± 0.05
The table entries represent means ± standard deviation obtained in images.
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Table 8. Excavation segmentation results—adapted from [39].

Test Train

Boundary Localization
Error (Pixels) F-Score Boundary Localization

Error (Pixels) F-Score

30.51 ± 24.80 0.77 ± 0.20 33.91 ± 25.14 0.74 ± 0.20
25.28 ± 18.00 0.79 ± 0.18 24.24 ± 16.90 0.77 ± 0.17
21.21 ± 15.09 0.81 ± 0.16 22.10 ± 19.47 0.80 ± 0.18

The table entries represent means ± standard deviation obtained in images.

Table 9. Error in CDR estimation in OD segmentation and excavation (deviation ± mean) evaluated
against different experts—adapted from [39].

Test Train
0.18 ± 0.14 0.15 ± 0.12 Expert 1
0.17 ± 0.11 0.13 ± 0.10 Expert 2
0.13 ± 0.12 0.10 ± 0.10 Expert 3
0.14 ± 0.12 0.11 ± 0.11 Expert 4
0.16 ± 0.02 0.12 ± 0.02 Average

Table 10. Performance of the proposed method for notch detection—adapted from [39].

Area Under Curve Sensitivity Specificity
Training Set 0.81 0.84 0.71

Test Set 0.79 0.81 0.72

5.2.3. REFUGE

Table 11 shows the results of the participating teams in the REFUGE test set. The VRT
team (winning team of the challenge) achieved an AUC of 0.9885 and a vertical cup-to-disc
ratio (vCDR) of 0.9752. The last row corresponds to the results obtained using the ground
truth vCDR. Two glaucoma experts who were not part of the group of experts that provided
the ground truth segmentations visually classified the images from the test set and assigned
a binary glaucomatous/non-glaucomatous label to each. A different approach based on
ground truth vCDR values was also included as a probability for glaucoma classification.
The VRT team had the best classification performance, achieving significantly better results
than vCDR. The evaluation of the classification task, in terms of AUC and the reference
sensitivity with 85% specificity, is presented in Figure 7. The AUC measures the quality
of the model predictions, regardless of the classification threshold. Despite referring to
glaucoma/non-glaucoma classification, the databases used different parameters, making it
difficult to compare the results between the databases.

Table 11. Ranking results of the participating teams in the REFUGE test set. The last row corresponds
to the results obtained using the vCDR.

Rank Team AUC Reference Sensitivity
1 VRT 0.9885 0.9752
2 SDSAIRC 0.9817 0.9760
3 CUHKMED 0.9644 0.9500
4 NKSG 0.9587 0.8917
5 Mammoth 0.9555 0.8918
6 Masker 0.9524 0.8500
7 SMILEDeepDR 0.9508 0.8750
8 BUCT 0.9348 0.8500
9 WinterFell 0.9327 0.9250
10 NightOwl 0.9101 0.9000
11 Cvblab 0.8806 0.7318
12 AIML 0.8458 0.7250

Ground truth vCDR 0.9471 0.8750
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REFUGE contains OD/OC masks, fovea positions, and gold-standard clinical diag-
nostic classification. This feature aids glaucoma classification methods as it was recently
observed that training with categories made by CFPs harms performance in detecting truly
diseased cases [58].

6. Discussion

Analysis of the results and recommendations will be made to improve the databases
and make cross-sectional annotations in the dataset feasible. The public databases’ main
limitations and the results’ clinical implications are discussed below.

The bases RIM-ONE-DL [19], DRISHTI-GS [53], and REFUGE [8] have proved to
be beneficial for the automated study of the papilla by including the following features:
classification between normal and glaucoma eyes, segmentation of the OD, and excavation
and differentiation of the test and training groups. The DRISHTI-GS database contains
images with the centralized optic papilla and a periphery of about 30 degrees around
the papilla. It allows the visualization of the excavation features and sectorial defects
in the fiber layers, an element considered in early classification. The REFUGE database
includes groups of normal and glaucoma eyes pre-classified based on the evaluation of
the patient’s clinical records (not in the presentation), including fundus images, ocular
pressure measurements, OCT images, and visual field, with images of glaucoma eyes
corresponding to patients with reproducible glaucomatous damage. Only REFUGE and
RIM-ONE DL meet the additional requirements of offering images from different cameras
and clear training and test data [8]. Only the REFUGE database was classified based on
clinical records or subsidiary examinations.

A synopsis of the main advantages and disadvantages of the gold standard public
databases used in glaucoma is shown in Table 12.
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Table 12. Main advantages and disadvantages of gold standard databases.

Databases Advantages Disadvantages

RIM-ONE DL

- Segmentation by five specialists
- Classified from clinical data
- Division into test/training groups

- It does not show symmetrical images
between the two eyes.

- Image is cut around the optical disc.
- There are no clinical data or examinations

corresponding to each dataset.

DRISHTI-GS1

- Segmentation by five specialists
- Classification based on clinical notch

findings, CDR, and examinations
- -Divided between training and test group

- It does not show symmetrical images
between the two eyes.

- There is a small number of data and experts.
- Glaucoma/non-glaucoma classification is

conducted based on image feature analysis.
- There are no clinical data and examinations

corresponding to each dataset.

REFUGE

- A larger number of images
- Includes segmentation by experts
- Classification based on clinical data
- Divided between training and test group

- Sampling is limited to a specific population.
- It does not show symmetrical images

between the two eyes.
- The image is not centered on the papilla.
- There is no access to the patient’s clinical

data with prejudice to the access of
other comorbidities.

As analyzed in Trucco et al. [35], the lack of predefined partitions in training and test
sets induces a chaotic practical application of existing data that affects the direct comparison
of the performance of existing methods, making it difficult to conclude which features are
more appropriate to solve each task.

6.1. Recommendations to Improve the Databases

The recommendations for improving the databases suggest a set of protocols to avoid
errors in training and make the training of DL nets closer to reality.

1. Data should be continually updated to encompass the normal and pathological
anatomical diversities of the fundus of the eye.

2. There should be a more representative dataset including a diversity of ethnicities,
comorbidities, genders, and ages; comparative photographs of both eyes; and color
fundus photographs with varying qualities.

3. A percentage of glaucoma cases should be maintained that is similar to that expected
in a population-screening scenario estimated to be between 1% and 2% in the general
population, reaching 6% to 7% after 70 years [59].

4. Manual disc and cupping segmentations and binary ground truth classifications
performed from CFPs should consider cupping depth information from OCT scans,
which provide cross-sectional retinal images (and thus depth information) and refer-
ence Bruch’s membrane, which is considered to be the best anatomical delimitation
of the OD, and serves as a reference for one of the most recent measurements of the
number of retinal nerve fibers (BMO-MRW) [60]. The complementarity of CFP and
OCT for automated glaucoma screening still needs to be explored.

5. Protocols should be made available for the analysis of medical records used as the
basis for glaucoma/non-glaucoma binary classification to allow other comorbidities
that may accompany glaucoma to be addressed.

6.2. How Public Databases Can Contribute

The databases can contribute to more reliable and accurate results for the train-
ing/testing groups, increasing the accuracy of the screening results of the DL networks



J. Clin. Med. 2022, 11, 3850 18 of 23

regarding the segmentation and binary classification of the normal/glaucomatous papilla
through images.

6.3. Feasibility of Annotating across All Datasets

Cross-sectional annotation of datasets using homogeneous protocols could increase
the available data and improve the network results. Therefore, to validate a cross-sectional
annotation, the images should be repositioned and submitted to homogeneous criteria
of disc segmentation and cupping, and a re-analysis of the binary classification between
normal/glaucomatous papillae based on clinical data and ancillary tests such as visual
field and OCT should be performed, since the analysis by image similarity increases the
number of false positives, as reported. The grouping of images with irregularities not yet
visible at the inner border of the neural layer but with corresponding initial perimetric
alterations would bring advantages in the early diagnosis. Sets of betterand worse-quality
images obtained by different cameras in distinct locations and populations could be used in
the training of neural networks as parameters closer to reality. Another point of divergence
for the network is the presentation of the right papilla image and how the networks would
interpret the sample of the left papilla since the papillae of the two eyes do not overlap
spatially. Another factor is that the databases cannot be matched as they use different
strategies. Protocols with an approach closer to the real world would provide greater
sampling security.

6.4. Notch Detection

No single parameter would bring a diagnostic confirmation of glaucoma. Some
parameters such as ocular hypertension and glaucomatous papilla features, including
enlarged cupping, are factors for suspecting the disease. The diagnostic certainty of
glaucoma consists in the correspondence between the glaucomatous part of the papilla
with an alteration in the visual field in that region. The same reasoning can be applied
to the presence of a notch. This is a feature that can be considered suspicious. Still, it is
not pathognomonic of glaucoma by itself, as it may be only an image noise that does not
represent a region of neural damage. The detection of a (small) notch correlated with the
visual field may be a goal to be pursued by AI as far as it facilitates early diagnosis.

6.5. Limitations of Public Databases

1. Retinal image pigmentation can undergo a few changes in different ethnicities and
influence the performance of others.

2. The percentage of glaucoma cases in the REFUGE, DRIHST-GS1, and RIM-ONE
datasets is higher than expected in a screening setting.

3. Including only high-quality photographs makes applying the proposed methods in
real screening scenarios challenging.

4. Manual OD/OC segmentations performed from CFPs may be ill-defined.
5. Better binary ground truth classifications follow two-dimensional patterns for delin-

eating OD/OC.
6. Color photographs do not match data from analyzed medical records and do not

allow a broader approach to other comorbidities that may accompany glaucoma.

6.6. Clinical Implications and Future of Databases

Reliable results obtained within a dataset presented in one database may not neces-
sarily reflect the same results in other databases subjected to the same learning values
considering heterogeneous protocols (as cited). The automated systems can detect sus-
pected glaucoma cases from fundus photographs as long as they follow some previously
analyzed protocols. At the moment, this is still an open question. Although challenges such
as REFUGE are moving in a more realistic direction, we do not yet know the significance of
the answers that AI could provide in a population setting. With technological development
continuously transforming, fundus cameras are improving portability and ease of use, as
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well as the use of defined protocols. It is hoped to expand the use of AI to diagnose and
follow the progression of glaucomatous disease, remembering that the modality of early
imaging in databases is still pending due to the subtle manifestation of the initial stages of
disease images.

We saw that some of the proposed models were able to identify glaucoma with a
focus on a few biometric features of the optic papilla, such as the disc-to-cavity ratio in
REFUGE and the notch in DRISHT-GS1. We have seen that the REFUGE challenge results
also seem to indicate that the use of vCDR may be a feature of greater importance than
others, such as ONH hemorrhages, sectorial atrophies, or RNFL defects. Based on vCDR,
as a probability of glaucoma, sensitivity and specificity values were statistically equivalent
to those obtained using ground truth. Perhaps these parameters alone do not diagnose
the disease but may have importance as single screening factors. However, we may incur
errors by basing the binary classification on only a few features. Therefore, it is essential to
have a conveniently classified sample of data.

In the REFUGE challenge, the top-performing teams complemented ONH measure-
ments by DL models. We can significantly outperform expert diagnosis of glaucoma, with
increases in sensitivity of up to 10% [8]. Although these results are limited to a specific
population, we can still argue that these deep learning models can identify complementary
features that are invisible to the naked eye and are essential to ensure a more accurate
disease diagnosis.

Other metrics derived from relative OD/OC shapes have recently outperformed
vCDR in the diagnostic process, such as the rim-to-disc ratio [61]. However, some clinical
guidelines, such as the European Glaucoma Society 2017 [62], do not recommend vCDR to
classify patients, as several healthy discs may have large vCDR. Instead, the focus is on
neuroretinal rim thickness (ISNT rule) and the degree of vCDR symmetry between eyes. In
any case, vCDR is still a relevant parameter (it reached an AUC of 0.9471 in the test set for
glaucoma classification). In addition, other ophthalmological parameters such as ocular
pressure; the asymmetry between the papillae; the presence, size, and location of ONH
hemorrhages; or the presence and size of retinal fiber layer defects can help analyze disease
progression in each patient visit to ensure more reliable predictions.

Retinal evaluation by CFPs allows for the cost-effective assessment of glaucoma.
Although OCT better highlights the excavation and fiber layer damage and provides a
three-dimensional view of the retina, its large-scale use is economically unfeasible. Other
markers used alone to make transverse scans and quantify the thickness of the RNFL or the
size of the excavation have proven to be financially unviable and alone do not confirm the
diagnosis. Thus, the development of DL methods for glaucoma screening must integrate
CFPs analysis and glaucoma biomarkers.

Therefore, we recommend a database with more robust data following some protocols
that allow the integration between datasets that may encompass CFPs obtained from multi-
population centers, with the segmentation of the OD and cupping and images of both eyes,
with diversified image quality, divided into well-defined training/test/validation groups,
presenting structured binary classifications using clinical criteria that allow division into
groups of papillae with early to severe glaucoma, besides the possibility of analyzing other
retinal comorbidities evaluation through methods.

7. Conclusions

Public databases form the training and learning base for automated screening per-
formed by deep learning architectures. Of the various databases used in ophthalmology,
many are most helpful in diagnosing diabetic retinopathy, senile macular degeneration,
and glaucoma. Among the bases used for glaucoma, the gold standards RIM-ONE DL,
DRISHTI-GS1, and REFUGE are the most useful because they present segmentations of
the disc and the excavation drawn by specialists and present classifications of normal
papillae and those with glaucoma based on images, clinical data, and ancillary tests. Its
disadvantages are the heterogeneous photographic quality, varied sizes and positioning
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of the image, and lack of images of both eyes. It would be advantageous to develop a
protocol capable of performing population screening for glaucoma and diagnosing early
forms of the disease and other retinal comorbidities in the medical context. Therefore, we
suggest that the database data be continually updated and reclassified based on image
segmentation and using clinical data and ancillary tests to provide more robust data to
public databases and make the results more dependable.

Deep learning architectures could be made more dependable by using other clinical
biomarkers, symptoms, eye pressure, family, and personal history to make DL models
closer to the real thing and to make the results more accurate.

Future Work

We suggest the inclusion of clinical parameters such as notch (neural portion defects),
CDR measurements as performed in the DRISHT-GS1 database, images with pre-perimetric
defects, images with non-glaucomatous peri-papillary changes (myopic degeneration, peri-
papillary atrophy), and continual updating of images to encompass rare diagnoses and
avoid false positives.

The possibility of including the simultaneous screening of other retinal pathologies
concomitant to glaucoma in DL networks in clinical practice should be screened by spe-
cialists through clinical data or be diagnosed as an examination finding. In this case, color
retinography is significant in diagnostic aid and will certainly demand an excellent function
of the public databases and algorithms to embrace a more comprehensive diagnostic range.

Author Contributions: Conceptualization, J.C.; methodology, J.C.; validation, I.M.P. and A.C.; formal
analysis, J.C.; investigation, J.C.; writing—original draft preparation, J.C., R.R., I.M.P. and A.C.;
writing—review and editing, J.C., R.R., I.M.P. and A.C.; supervision, I.M.P. and A.C.; project adminis-
tration, I.M.P. and A.C.; funding acquisition, I.M.P. and A.C. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is financed by National Funds through the Portuguese funding agency, FCT—
Fundação para a Ciência e a Tecnologia, within project UIDB/50014/2020. This work is also funded
by FCT/MEC through national funds and, when applicable, co-funded by the FEDER-PT2020
partnership agreement under the project UIDB/50008/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tham, Y.-C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.-Y. Global prevalence of glaucoma and projections of glaucoma

burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [CrossRef]
2. Prokofyeva, E.; Zrenner, E. Epidemiology of major eye diseases leading to blindness in Europe: A literature review. Ophthalmic

Res. 2012, 47, 171–188. [CrossRef]
3. Asaoka, R.; Murata, H.; Iwase, A.; Araie, M. Detecting preperimetric glaucoma with standard automated perimetry using a deep

learning classifier. Ophthalmology 2016, 123, 1974–1980. [CrossRef]
4. Xu, J.; Xue, K.; Zhang, K. Current status and future trends of clinical diagnoses via image-based deep learning. Theranostics 2019,

9, 7556. [CrossRef]
5. Abràmoff, M.D.; Garvin, M.K.; Sonka, M. Retinal Imaging and Image Analysis. IEEE Rev. Biomed. Eng. 2010, 3, 169–208.

[CrossRef]
6. Schmidt-Erfurth, U.; Sadeghipour, A.; Gerendas, B.S.; Waldstein, S.M.; Bogunović, H. Artificial intelligence in retina. Prog. Retin.
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