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Simple Summary: The ovarian tissues of different breeds of hens during egg production were inves-
tigated through transcriptomics and metabolomics to provide a more comprehensive understanding
of the molecular mechanisms of the ovary during egg production. Four genes involved in egg produc-
tion were predicted by the transcriptome, including P2RX1, INHBB, VIPR2, and FABP3, and several
close metabolites associated with reproduction were identified in the metabolome, including 17α-
hydroxyprogesterone, iloprost, spermidine and adenosine. Correlation analysis of specific differential
genes and differential metabolites identified important gene-metabolite pairs VIPR2–Spermidine and
P2RX1–Spermidine in the reproductive process.

Abstract: Egg production is a pivotal indicator for evaluating the fertility of poultry, and the ovary
is an essential organ for egg production and plays an indispensable role in poultry production and
reproduction. In order to investigate different aspects of egg production mechanisms in different
poultry, in this study we performed a metabolomic analysis of the transcriptomic combination of
the ovaries of two chicken breeds, the high-production Ninghai indigenous chickens and the low-
production Wuliangshan black-boned chickens, to analyze the biosynthesis and potential key genes
and metabolic pathways in the ovaries during egg production. We predicted four genes in the
transcriptomic that are associated with egg production, namely P2RX1, INHBB, VIPR2, and FABP3,
and identified three important pathways during egg production, “Calcium signaling pathway”,
“Neuroactive ligand–receptor interaction” and “Cytokine–cytokine receptor interaction”, respectively.
In the metabolomic 149 significantly differential metabolites were identified, 99 in the negative
model and 50 in the positive model, of which 17α-hydroxyprogesterone, iloprost, spermidine, and
adenosine are important metabolites involved in reproduction. By integrating transcriptomics
and metabolomics, the correlation between specific differential genes and differential metabolites
identified important gene-metabolite pairs “VIPR2-Spermidine” and “P2RX1-Spermidine” in egg
production. In conclusion, these data provide a better understanding of the molecular differences
between the ovaries of low- and high-production hens and provide a theoretical basis for further
studies on the mechanics of poultry egg production.

Keywords: metabolomics; transcriptomics; chicken; ovary; egg production

1. Introduction

Eggs are a high-quality protein source for humans and a vital food resource on a global
scale. The ovary is a pivotal part of the bird reproductive system and is strongly associated
with egg production. Ovarian development is a highly complicated process that involves a
plethora of endocrine, autocrine, and paracrine components [1]. Increasing egg production
capacity is an essential breeding goal, and traditional breeding approaches can provide
good genetic progress in improving chicken egg production, but at a sluggish rate, and the
amount of genetic improvement in each generation is difficult to determine [2].
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Transcriptomics sequencing technology gives biologically whole transcriptional infor-
mation at the single nucleotide level [3]. Currently, there is a widespread use of transcrip-
tomics sequencing to identify candidate genes and pathways related to egg production in
the poultry ovary [4]. However, transcriptomics sequencing can only provide information
at the genetic level and cannot investigate the true level of metabolism in an organism,
which makes it difficult to identify the key pathways responsible for regulating specific
traits. Meanwhile, metabolomics is closely related to phenomics and can provide a more
direct and accurate reflection of the physiological state of an organism [5,6]. For exam-
ple, Yuan et al. reported the findings of a metabolomic investigation of Stearoyl-CoA
desaturase (SCD) during goose follicle development, identifying cholesterol and pan-
tothenol or pantothenate as prospective metabolite biomarkers for the study of SCD-related
lipid metabolism in goose granulosa cells (GC) [7]. Therefore, using metabolomics and
transcriptomics to study ovarian function in poultry provides a more comprehensive under-
standing of the underlying mechanisms of egg production. Integration of transcriptomic
and metabolomic large-scale datasets has been successfully applied in several animals. A
comprehensive analysis of the transcriptomics and metabolomics by Zhan et al. revealed a
complex molecular regulatory network for the quality of Enshi black pork [8]. Sun et al.
reported the integration of metabolomics with transcriptomics to reveal subtle hepatic
metabolic risks in cows fed different crop by-products [9].

The Ninghai indigenous chicken (NH) is a native chicken of Zhejiang Province, which
is used for both meat and eggs, with good egg production and peak egg production, and
excellent meat value. The Wuliangshan black-boned chicken (WL) is a native breed of
Yunnan Province, having meat and chicken egg of excellent meat quality, but low egg
production performance [10]. Therefore, the difference in egg production performance
between WL and NH could be a suitable model for discovering the potential molecular
mechanisms involved in egg production. In this study, we used transcriptomics and
metabolomics analyses of different laying hen ovaries, and these findings will provide new
insights into the molecular mechanisms of egg production in poultry ovaries and highlight
the significance of an integrated approach for this research.

2. Materials and Methods
2.1. Ethical Statement

All the chickens used in this experiment were handled following the Chinese Ani-
mal Welfare Guidelines and as approved by the Animal Welfare Committee of Zhejiang
University (approval number: ZJU20190149).

2.2. Animal and Sample Collection

Chickens of both breeds were hatched in the same batch, and after hatching the hens
were kept and managed under the same conditions by Ningbo Zhenning Animal Husbandry
Co., Ltd. in Zhejiang Province, giving them free access to feed and water. Vaccination followed
poultry vaccinations established by local animal husbandry and veterinary authorities. At
204 days of age, five healthy hens of each breed were randomly selected and their ovarian
tissues were obtained, rinsed in PBS, and quickly frozen in liquid nitrogen.

2.3. Metabolite Extraction, Detection, and Analysis

Ovarian tissue (100 mg) was ground separately in liquid nitrogen and subsequently
resuspended in pre-chilled methanol (80%) and formic acid (0.1%). Samples were incubated
on ice for 5 min and then centrifuged at 15,000 rpm for 5 min at 4 ◦C. A part of the
supernatant was diluted to a concentration containing 60% methanol and transferred
to a new centrifuge tube for 10 min at 15,000× g at 4 ◦C. Subsequently, the filtrate was
injected into the LC-MS/MS system for analysis. The Vanquish UHPLC system (Thermo
Fisher, Waltham, MA, USA) and Orbitrap Q Exactive HF-X mass spectrometer (Thermo
Fisher, Waltham, MA, USA) were used to perform the LC-MS/MS analysis as follows: the
experimental samples were injected into a Hyperil Gold column with linear gradient time
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and flow rate set to 16 min and 0.2 mL/min, respectively. Eluent A (0.1 % FA, water) and B
(methanol) were used for the positive polarity mode eluent. The negative polarity mode
eluent was A (5 mM ammonium acetate, pH 9.0) and B (methanol). Solvent gradients: 2%
B for 1.5 min; 2–100% B for 12.0 min; 100% B for 14.0 min; 100–2% B for 14.1 min; 2% B for
16 min. Q Exactive HF-X mass spectrometer spray voltage was set at 3.2 kV, temperature at
320 ◦C, the intrathecal gas flow rate at 35 arb, and auxiliary gas flow rate at 10 arb.

We used Compound Discoverer 3.0 (CD 3.0, Thermo Fisher, Waltham, MA, USA) to
match peaks, take peaks, and quantify each metabolite from the raw data files obtained by
UPLC-MS/MS. After normalizing the data, it was utilized to forecast molecular formulae
based on addition ions, molecular ion peaks, and fragment ions. The peaks were then
compared to the mzCloud (https://www.mzcloud.org/, accessed on 20 August 2020) and
ChemSpider (http://www.chemspider.com/, accessed on 20 August 2020) databases to
obtain precise qualitative and relative quantitative results.

2.4. RNA Sequencing (RNA-Seq) and Data Analysis

The RNA sample preparations used a total of 3 µg of RNA as input material for each
sample. All sequencing libraries were prepared using NEBNext® UltraTM RNA Library
Prep Kit for Illumina® (NEB, San Diego, CA, USA). In brief, mRNA was isolated from total
RNA employing poly-T oligo-attached magnetic beads. Fragmentation was performed out
in the NEBNext First Strand Synthesis Reaction Buffer (5X) by divalent cations at elevated
temperatures. First strand cDNA was produced using a random hexamer primer and
M-MuLV Reverse Transcriptase (RNase H-). Subsequently, second strand cDNA synthesis
was carried out with DNA Polymerase I and RNase H. Polymerase activities were used
to transform the remaining overhangs into blunt ends. NEBNext Adaptor with hairpin
loop structure was ligated after adenylation of 3′ ends of DNA fragments to provide for
hybridization. The library fragments were purified using the AMPure XP technology to
select cDNA segments preferably 250,300 bp in length. Then, 3 µL of USER Enzyme was
used with size-selected, adaptor-ligated cDNA at 37 ◦C for 15 min, followed by 5 min at
95 ◦C before PCR. The PCR was then performed using High-Fidelity DNA Polymerase,
PCR primers, and In-dex (X) Primer. Finally, PCR products were purified using the AMPure
XP system, and library quality was determined using the Agilent Bioanalyzer 2100 system.

Raw fastq data were initially processed using in-house Perl scripts. Clean data were
acquired in this stage by eliminating adapter-containing reads, ploy-N, and low-quality
reads from raw data, at the same time the clean data’s Q20, Q30, and GC contents were
determined [11]. All downstream analysis relied on clean, high-quality data. We used the
Hisat2 v2.0.5 to build an index of the reference genome and aligned pairs of clean reads to
the reference genome using Hisat2 v2.0.5 [12]. The featureCounts v1.5.0-p3 was used to
count the number of reads mapped to each gene [13]. The FPKM of each gene was then
computed based on its length and the number of reads mapped to it [14].

We performed differential expression analysis using the R package DESeq2 (1.16.1)
and the resulting p-values were adjusted using the method of Benjamini and Hochberg to
control for false discovery rates. Genes identified by DESeq2 with adjusted p-value < 0.05
were designated as differentially expressed. Subsequently, after adjusting for normalization
factors for each sequencing library, we performed differential expression analysis for both
conditions using the edgeR package (3.18.1) [15]. The p-values were adjusted using the
Benjamini and Hochberg approach [16]. A corrected p-value of 0.05 and an absolute fold
change of two conditions was set as the threshold for significant differential expression.

2.5. GO and KEGG Enrichment Analysis of DEGs

The clusterProfiler R program was used to perform Gene Ontology (GO) and KEGG
enrichment analysis of differentially expressed genes.

https://www.mzcloud.org/
http://www.chemspider.com/
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2.6. Statistical Analysis

The egg production traits of the high- and low-production groups were compared by
t-test. The significance level in the analyses was considered at p < 0.05. The analysis and
plotting were performed using RStudio software.

3. Results
3.1. Production Performance

In this study, the number of eggs produced by the two breeds of hens at 280 days was
counted and the egg production rate graphs were plotted, which showed that the difference
in egg production between the two breeds of hens was extremely significant (as shown in
Figure 1).
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Figure 1. Analysis of egg production of different breeds of hens. (A) comparison of the average
number of eggs laid by two breeds of hens over a statistical number of days. Data is shown as mean
± standard deviation (SD), ** indicates p < 0.01. (B) graphs of egg production rates of different breeds
of hens, with horizontal coordinates representing days of laying and vertical coordinates representing
egg production rates. The red curve represents the egg production rate of NH (n = 300). The green
curve represents the laying rate of WL (n = 200).

3.2. Quality Control, Principal Component Analyses of Metabolomics

In this study, metabolomics analyses were performed on ovarian tissues from hens
in the high- and low-production groups to detect overall biochemical changes (n = 8).
Two-dimensional principal component analysis score plots showed that the overall trends
in metabolite distribution differed between samples from the high- and low-production
groups in the negative model (Figure 2A) and the positive model (Figure 2B). In addition,
a clear separation of metabolites between the high and low egg production groups was
observed in the negative model (Figure 2C) and the cation model (Figure 2D) by plotting in
the PLS-DA score, with the permutation test confirming the accuracy of PLS-DA models
(Figure 2E,F).
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Figure 2. Metabolome quality control analysis. (A) PCA analysis in the negative model; (B) PCA
analysis in the positive model; (C) PLS-DA analysis in the negative model; (D) PLS-DA analysis in
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3.3. Metabolomics Analysis of High- and Low-Production Groups

To identify the significantly differential metabolites (SDMs) between high- and low-
production groups, the Variable Importance in the Projection (VIP) of the first component
of the PLS-DA model was used, and the significantly differential metabolites were found
by combining the p-value of the t-test. A total of 149 significantly different metabolites
(99 negative model and 50 positive model) were identified by setting thresholds VIP > 1,
difference fold change (FC) >1.5 or FC < 0.667, p-value < 0.05 (Supplementary Table S1).
The negative and positive model volcano graphs for the differential metabolites are shown
in Figure 3, with each point in the diagram representing an identified metabolite.
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Figure 3. Volcano plots of differential metabolites in the ovaries of hens with different egg production
rates. Red represents significantly up-regulated differential metabolites, green indicates signifi-
cantly down-regulated differential metabolites. (A) Differential metabolites in the negative model;
(B) Differential metabolites in the positive model.
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3.4. KEGG Analysis of SDMs

KEGG database annotations were set as background, and all the SDMs were subjected
to KEGG annotation analysis; 20 pathways were identified including nine terms in the
negative model and 11 terms in the positive model. KEGG enrichment analysis showed that
differential metabolites in the two groups were mainly involved in “metabolic pathways”,
“arginine and proline metabolism”, “purine metabolism”, and “neuroactive ligand–receptor
interaction” (Figure 4, Supplementary Table S2).
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3.5. Transcriptomics Analysis of High- and Low-Production Groups

Eight cDNA libraries were constructed for the ovaries of low- and high-production
chickens, obtaining 68.86 GB of clean reads, including 459,114,490 reads generated after
quality control assessment, with an average of 57,389,311.25 per group (Table 1). A total
of 1454 DEGs (differentially expressed genes) were identified between the low- and high-
production groups (p-value < 0.05 and |log2FC| > 0). Compared with the high-production
group, the low-production group showed 636 and 818 up- and down-regulated genes,
respectively (Figure 5A, Supplementary Table S3). All DEGs were mapped to KEGG
pathways and obtained 125 enriched pathways, and we listed the top 20 KEGG pathways
(Figure 5B, Supplementary Table S4), among which “Melanogenesis”, “Calcium signaling
pathway” and “Neuroactive ligand–receptor interaction” and “Cytokine–cytokine receptor
interaction” were the most enriched pathways in the up- and down-regulated groups. The
“Calcium signaling pathway” and “Neuroactive ligand–receptor interaction” were the two
most representative pathways.
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Table 1. Sequencing data.

Sample Raw_Reads Clean_Reads Total-Map Error_Rate Q30 GC_Pct

WL204d_1 59,739,580 58,953,024 54,412,280
(92.3%) 0.02% 94.49% 51.2%

WL204d_2 58,473,150 57,710,008 52,207,089
(90.46%) 0.02% 94.4% 51.23%

WL204d_3 61,333,900 60,429,438 54,577,702
(90.32%) 0.03% 94.07% 51.33%

WL204d_4 57,835,138 56,950,072 51,440,969
(90.33%) 0.03% 94.2% 50.71%

NH204d_1 59,434,470 58,593,266 53,253,424
(90.89%) 0.03% 94.22% 50.91%

NH204d_2 53,435,540 52,503,528 47,500,358
(90.47%) 0.03% 94.22% 50.53%

NH204d_3 62,255,842 61,476,260 56,020,220
(91.12%) 0.03% 94.17% 51.38%

NH204d_4 53,250,580 52,498,894 46,560,294
(88.69%) 0.03% 94.17% 51.69%
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Figure 5. Bioinformatics analysis of hens with different egg production rates. (A) The volcano
plot of differential genes in the ovaries of hens with different egg production rates. The x-axis
represents the log2 fold change, the y-axis represents the statistical significance. The red dots indicate
significantly up-regulated differential genes, the green dots indicate significantly down-regulated
differential genes and the blue dots indicate no significant differential genes; (B) The top 20 KEGG
terms presented in the enrichment analyses of ovary DEGs between high- and low-production hens.

3.6. Comprehensive Analysis of the Transcriptomics and Metabolomics

Correlation analysis utilized Pearman calculations to show the correlation of the
DEGs from transcriptomics and the SDMs from metabolomics. When the correlation
coefficient is less than 0, it is referred to as a negative correlation; when it is greater than
0, it is referred to as a positive correlation. The top 50 differential metabolites and the top
100 differential genes are shown. Results showed strong correlations between transcripts
and metabolites (Figure 6, Supplementary Table S5). In addition, we correlated specific
genes that potentially regulate egg production with metabolites, looking for important
gene–metabolites to explore further potential pathways of action (Figure 6). We considered
correlations > 0.8 and p-values < 0.05 as strongly correlated gene–metabolite pairs and
plotted the network using Cytoscape 3.8.0.
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model; (B) Heat map of the correlation between significantly differential genes and significantly
differential metabolites in the positive model; (C) Correlation network diagram in the negative model;
(D) Correlation network diagram in the positive model. Circles indicate differential metabolites,
hexagons indicate differential genes, red indicates up-regulated genes, green indicates down-
regulated genes, red lines indicate positive correlations, green lines indicate negative correlations and
the thickness of the line indicates the strength of the correlation.

DEGs in the transcriptome and SDMs in the metabolome were enriched into a to-
tal of 13 pathways. The pathways that were co-enriched in the negative model were
“Pantothenate and CoA biosynthesis”, “Tyrosine metabolism”, “Vascular smooth muscle
contraction”, “Biosynthesis of unsaturated fatty acids”, “Neuroactive ligand-receptor inter-
action”, “beta-Alanine metabolism”, “Tryptophan metabolism”, and “Purine metabolism”.
The pathways coenriched in the positive model were “ABC transporters”, “Arginine and
proline metabolism”, “Lysine degradation, beta-Alanine metabolism”, “Biosynthesis of
amino acids”, “Cysteine and methionine metabolism”, However, there were no significantly
enriched common pathways among all the pathways (Figure 7, Supplementary Table S6).
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4. Discussion

Egg production is an important indicator of poultry reproductive performance, and
the ovary is an organ closely related to egg production. An intensive study of ovarian
mechanisms will provide a better understanding of the egg production mechanism of the
poultry ovary. In this study, we used transcriptomics and metabolomics to investigate the
mechanism of egg production and to investigate the ovaries of chickens with different egg
production rates to provide new insights into the egg production mechanisms of poultry
in a more comprehensive way and to provide new data to support future research on egg
production performance.

4.1. Transcriptomics Analysis

In this study, we identified 1454 DEGs in the ovaries of hens with different egg pro-
duction rates, of which 636 genes were up-regulated and 818 genes were down-regulated.
These results suggested that these DEGs may play an important role in egg-laying reg-
ulation. A total of 125 pathways were revealed in the ovary, with “neuroactive ligand–
receptor interaction” having the most DEGs, followed by “calcium signaling pathway” and
“cytokine–cytokine receptor interaction”. The “neuroactive ligand–receptor interaction”
pathway plays an essential role in egg production in chickens, which is consistent with a
study on the Jinghai Yellow chicken [17]. Previous studies have suggested that “neuroactive
ligand–receptor interaction” may be the most important pathway leading to differences in
egg production rates between high- and low-production hens; in addition, the pathway
is proposed to be involved in the regulation of egg-laying performance in ducks [18] and
geese [19]. Calcium (Ca2+) is an essential signaling molecule that controls a wide range of
biological functions, and the calcium signaling pathway is associated with egg production
in poultry [20,21]. Zhang et al. [22] found the pathway correlated with eggshell quality
in chickens. The high DEGs in the “cytokine–cytokine receptor interaction” in this study
coincided with reports on egg production in Nandan-Yao domestic chicken and Muscovy
duck [23,24]. In brief, the three pathways, “neuroactive ligand–receptor interaction”, “cal-
cium signaling pathway”, and “cytokine–cytokine receptor interaction” are considered to
be closely related to chicken egg production performance.

P2RX1 is one of the “calcium signaling pathway” enriched genes and subtypes of the
P2X1 receptor [25]. Calcium signaling plays an important role in animal development and
reproduction, and lack of P2X1 affects sperm transport in male mice leading to impaired
reproductive function [26]. The gene has also been reported as a potential regulator of
ovarian egg production in white ducks [24]. In this study, the expression of this gene was
significantly higher in hens of the high egg-laying group than in the low egg-laying group,
and it is hypothesized that this gene has an important role in the egg-laying process of hens.
INHBB (inhibin beta B subunit) is a glycoprotein hormone that belongs to the transforming
growth factor-β superfamily and inhibits follicle-stimulating hormone (FSH) production
and secretion [27]. Knockdown of INHBB increases apoptosis and inhibits steroidogenesis
in mouse granulosa cells [28], and the gene was also found to be closely associated with
reproductive processes in sheep [29]. High expression of INHBB transcripts in the ovaries
of WL hens may increase the apoptosis of granulosa cells, inhibit hormone production, and
lead to lower egg production. VIPR2 (vasoactive intestinal peptide receptor 2) belongs to
the VIP/ PACAP type II receptor, also named the pituitary adenylate cyclase-activating
polypeptide (PACAP) receptor. PACAP is a biologically active peptide transiently expressed
in the preovulatory follicle that stimulates ovarian function [30]. In a previous report, this
gene was found to be associated with granulosa cell proliferation and apoptosis in the
ovary [21]. However, Sun et al. found that it may be at the GWF developmental stage
and that high VIPR2 expression may be associated with brooding and lower egg-laying
traits in hens [31]. In this study, it was found to have higher expression in high egg-laying
ovaries and may have a positive effect on egg production. The function of this gene
remains to be further investigated. FABP3 (fatty acid binding protein 3) encodes a fatty
acid transporter of long-chain fatty acids (LCFA) and is related to the PPAR/RXR signaling
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pathway [32]. LCFA has an essential role in the regulation of energy metabolism [33].
FABP3 was significantly higher in the high laying group than in the low laying group,
presumably requiring a higher energy supply to prepare the eggs during laying.

4.2. Metabolomics Analysis

Metabolomics, a relatively new field that emerged in response to genetics and pro-
teomics, can illustrate the physiological state of an organism by monitoring changes in
endogenous metabolites. Currently, metabolomics is widely used in various fields in a
wide range of animals. In this study, we discovered 149 substantially different compounds
in the ovaries of chickens with different egg production rates, 50 in the positive mode and
99 in the negative mode, under a self-constructed database.

The three pathways “cysteine and methionine metabolism”, “arginine and proline
metabolism” and “glutathione metabolism” may be involved in the egg production process
of hens. Feng et al. found that arginine improved the reproductive performance of hind
sows by adding arginine (ARG) to the diet [34]. There is evidence that ovarian glutathione
is an important defense against oxidative damage, that glutathione in oocytes is essential
in early embryonic development, and that glutathione biosynthesis is heavily dependent
on the metabolism of cysteine and methionine [35,36]. Among the significantly different
metabolites, the synthetic steroid hormone hydroxyprogesterone caproate, which is com-
parable to megestrol acetate and medroxyprogesterone acetate, is an ester derivative of
17-hydroxyprogesterone produced from caproic acid (hexanoic acid). In previous studies,
it was discovered to delay the onset of preterm birth [37]. Iloprost is a PGI2 analogue,
prostacyclin (PGI2), which is synthesized in the oviductal fluid and promotes embryonic
development before implantation. Iloprost can alter the maturation rate of bovine oocytes
and the expansion of the oocyte [38]. The addition of iloprost to the maturation medium
improved the developmental potential and embryonic quality of porcine IVF embryos,
including the mitochondrial membrane potential, mRNA expression of apoptosis-related
genes, and susceptibility to apoptosis [39]. Spermidine is a polyamine, an aliphatic poly-
mer, expressed in ovarian granulosa cells and follicular membrane cells [40]. It plays an
important role in the maintenance of the cellular macromolecular structure, cell growth and
proliferation, and the prevention of oxidative stress [41]. The exogenous supplementation
of spermidine and spermine in cultures of pig and mouse uterine stroma and epithelial
cells upregulates the gene expression of SAT1 [42]. A lack of polyamines may lead to
stalled follicular cell development, which in moderate amounts is the basis of membrane
and granulosa cell development in the ovary, but too much spermidine induces ovarian
oxidative stress and granulosa cell apoptosis [43]. Adenosine is primarily created by the
breakdown of adenosine triphosphate (ATP) and serves a variety of roles throughout the
body [44]. Together with some purines, adenosine constitutes an important and fairly
common modulator of neuronal activity, and it is a general inhibitor of neuronal activity. A
typical physiological effect is inhibiting the release of neurotransmitters. Adenosine is en-
riched in “neuroactive ligand–receptor interaction” and could act as an essential metabolic
marker. In summary, the above significantly differential metabolites may be associated
with essential metabolites during egg production in poultry.

4.3. Combining Analysis of Transcriptomics and Metabolomics

We correlated specific differential genes with metabolites, analyzed specific genes po-
tentially regulating egg production with correlations and integrated gene-metabolite pairs
based on the gene–metabolite correlations, and identified two important gene–metabolite
pairs, VIPR2–spermidine and P2RX1–spermidine. VIPR2 and P2RX1 being potentially
VIPR2 and P2RX1 are potential egg production regulatory genes with a strong positive
correlation to Spermidine, which is an important metabolite in reproduction as described
above. Taken together, these two gene metabolites are likely to be essential regulators of
egg production in hens.
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5. Conclusions

In this study, we used transcriptomics and metabolomics to study the ovaries of
different breeds of laying hens, discussing the genes that potentially regulate egg production
processes including P2RX1, INHBB, VIPR2, and FABP3, as well as the important ovarian
metabolites 17α-hydroxyprogesterone, iloprost, spermidine, and adenosine. In addition, we
identified two essential metabolite pairs through gene and metabolite association analysis,
namely, VIPR2–Spermidine and P2RX1–Spermidine during egg production. These results
may contribute to our understanding of the developmental molecular process of egg
production in poultry and provide supporting material for future breeding.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ani12162010/s1, Table S1: Significantly differential metabolites;
Table S2: KEGG enrichment analysis of SDMs; Table S3: Significantly differential expression genes;
Table S4: All KEGG pathways of DEGs; Table S5: Correlation of DEGs and SDMs; Table S6: The
common KEGG pathways of Transcriptomics and Metabolomics.
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