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Abstract

Background: Neisseria gonorrhoeae causes gonorrhoea, the second most commonly notified sexually transmitted
infection in Australia. One of the highest notification rates of gonorrhoea is found in the remote regions of Western
Australia (WA). Unlike isolates from the major Australian population centres, the remote community isolates have
low rates of antimicrobial resistance (AMR).
Population structure and whole-genome comparison of 59 isolates from the Western Australian N. gonorrhoeae
collection were used to investigate relatedness of isolates cultured in the metropolitan and remote areas. Core
genome phylogeny, multilocus sequencing typing (MLST), N. gonorrhoeae multi-antigen sequence typing (NG-MAST)
and N. gonorrhoeae sequence typing for antimicrobial resistance (NG-STAR) in addition to hierarchical clustering of
sequences were used to characterize the isolates.

Results: Population structure analysis of the 59 isolates together with 72 isolates from an international collection,
revealed six population groups suggesting that N. gonorrhoeae is a weakly clonal species. Two distinct population
groups, Aus1 and Aus2, represented 63% of WA isolates and were mostly composed of the remote community
isolates that carried no chromosomal AMR genotypes. In contrast, the Western Australian metropolitan isolates
were frequently multi-drug resistant and belonged to population groups found in the international database,
suggesting international transmission of the isolates.

Conclusions: Our study suggests that the population structure of N. gonorrhoeae is distinct between the
communities in remote and metropolitan WA. Given the high rate of AMR in metropolitan regions, ongoing
surveillance is essential to ensure the enduring efficacy of the empiric gonorrhoea treatment in remote WA.
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Background
Neisseria gonorrhoeae (gonococcus), the causative agent
of gonorrhoea, is one of the most common causes of
bacterial-associated sexually transmitted infection (STI).
Estimated to cause 78 million new infections worldwide,
35 million cases of N. gonorrhoeae occur annually in the
Western Pacific Region which includes Australia [1].
Australian states and territories are divided into remote
and metropolitan areas, based on the distance to the
closest service centers and the population density. Com-
munities living in remote regions of the NT and WA
have the highest notification rate of gonorrhoea in
Australia [2, 3]. In 2015, gonorrhoea notifications were
reported to be 959 per 100,000 population of people liv-
ing in the remote WA Kimberley region, compared to
85 per 100,000 population for Western Australia [4].
Gonococcal vaccines are currently not available and

antimicrobial therapy is the only effective option for
treating gonorrhoea. However, the World Health
Organization (WHO) Global Gonococcal Antimicrobial
Surveillance Programme (GASP) has reported the effi-
cacy of many antibiotic treatments such as penicillin,
tetracycline, and ciprofloxacin is lower than 95% indicat-
ing these antibiotics can no longer be used for empirical
treatment in almost all GASP countries [5]. This has re-
sulted in a shift towards dual antimicrobial therapy,
mainly ceftriaxone and azithromycin. Among WHO
GASP countries, isolates with decreased susceptibility or
resistance to the extended-spectrum cephalosporins
(ESCs) and isolates with resistance to azithromycin have
been reported in 51% and 75% of these countries
respectively [6]. To understand the epidemiology
underlying the appearance and spread of antimicrobial
resistance (AMR) in gonococci, several molecular ap-
proaches such as whole genome sequencing (WGS),
multilocus sequence typing (MLST), N. gonorrhoeae
multi-antigen sequence typing (NG-MAST) and most
recently N. gonorrhoeae sequence typing for antimicro-
bial resistance (NG-STAR) have been developed [7–9].
Resistance to ESCs has spread primarily through clonal
expansion and is highly correlated with the presence of
the penA mosaic allele in NG-MAST sequence type
(ST)1407, MLST STs 1901 and 7363 and NG-STAR
ST90 clusters [8, 10, 11]. Similarly, emergent quinolone
resistant strains have spread clonally in the NG-MAST
ST225 lineage which is associated with gyrA and parC
chromosomal mutations [11, 12]. Azithromycin resist-
ance, which initially appeared sporadically, has rapidly
spread through local sexual networks in geographically
distinct regions [13]. Multi-drug resistance (MDR) has
been increasing clonally through a limited number of
STs and phylogenetic clusters in the last 4 years with re-
sistance to cephalosporins and azithromycin emerging a
limited number of times [12, 14, 15].

The prevalence of AMR amongst gonococcal isolates
in metropolitan areas of WA is similar to global levels,
with 20% of isolates being penicillin and ciprofloxacin
resistant; while ESC decreased susceptibility and azithro-
mycin resistant isolates are sporadically reported [16]. In
contrast, the prevalence of AMR amongst isolates from
the remote areas of WA is lower at 2–3% for penicillin
and ciprofloxacin resistance while no resistance to ESCs
or azithromycin has been detected [16, 17]. The lack of
AMR in isolates from remote regions of Australia may
be explained by the limited international contacts and by
recent studies utilizing NG-MAST and MLST that have
revealed gonococcal isolates in the remote areas are gen-
etically distinct from metropolitan isolates which may be
due to the different risk groups in each area: men who
have sex with men (MSM) networks from the metropol-
itan areas versus the heterosexual indigenous communi-
ties living in remote areas [18, 19].
Our study aims to elucidate the genomic epidemiology

and population structure of N. gonorrhoeae in WA using
isolates collected from 2011 to 2013. Moreover, the
study aims to determine the association between the
N. gonorrhoeae types found in WA according to the
molecular typing schemes and their antimicrobial
susceptibility.

Methods
Bacterial isolates
In WA, gonorrhoea is a Department of Health notifiable in-
fectious disease and all isolates are referred to the Western
Australian Gonococcal Surveillance Programme (WAGSP)
laboratory for antimicrobial susceptibility testing. Anti-
microbial resistance profiles of all isolates to penicillin,
spectinomycin, azithromycin, ciprofloxacin, ceftriaxone and
high-level resistance to tetracycline (tetracycline HLR) were
assessed by the agar dilution method and interpreted using
the Calibrated Dichotomous Sensitivity guidelines [20].
Decreased susceptibility to ceftriaxone (0.06–0.126 mg/L) is
confirmed by the E-test (bioMérieux, France). Penicillinase
production is detected using the nitrocefin test (Oxoid,
Australia). Anatomical isolation site, geographical location
and postcode are available from the Communicable Disease
Control Directorate.
Fifty nine N. gonorrhoeae isolates from patients living

in the remote (n = 33) and metropolitan population cen-
ters (n = 26) of WA from 2011 and 2013 were obtained
from the WAGSP laboratory [16]. Isolates were stored
in GC broth with 20% glycerol at − 80 °C and were pas-
saged fewer than five times and were cultured under aer-
obic conditions with 5% CO2 at 37 °C on GC agar
(Oxoid, Australia) supplemented with 0.4% glucose,
0.01% glutamine, 0.2 mg/L of cocarboxylase and 5 mg/L
of iron (III) nitrate.
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DNA extraction, genome sequencing and assembly
Genomic DNA extraction was performed using the DNeasy
Blood and Tissue Kit (Qiagen, Germany) and the extract
was stored as per the manufacturer’s instructions for DNA
extraction from Gram negative bacteria. Genome sequen-
cing of the 59 isolates was performed using the Illumina
MiSeq platform (Illumina, USA) with 2 × 300 base pair read
lengths. The targeted sequencing depth was 120 with a
minimum Phred quality score of 30. Reads were de novo
assembled using SPAdes genome assembler version 9.0
[21]. The quality of the assembled genomes was assessed
using the Quast genome assembly evaluation tool [22].
Sequencing and assembly quality statistics of the 59 WA N.
gonorrhoeae isolates are shown in Additional file 1.
Bacterial Isolates Genome Sequence database (BIGSdb)
genomics platform tools – hosted on www.pubmlst.org/
neisseria – were used for annotation and genome wide
analysis of the assembled isolates [23]. The core genome
consisted of 1427 genes that were present in all of the 59 N.
gonorrhoeae isolates included in this analysis. The core
genome was determined using the genome comparator tool
at BIGSdb using the “all loci scheme” with 100% core
threshold and excluding incomplete loci. Once the analysis
was completed a list of complete variable genes that were
present in all isolates was used as the core genome. To
determine if the N. gonorrhoeae isolates circulating in
remote WA are genetically different from those circulating
in the WA metropolitan areas, 72 N. gonorrhoeae genomes
from diverse international locations (available at PubMLST
Neisseria spp. isolates database) from a recent epidemio-
logical study by Ezewudo et al. [24] were included. A
MAFFT alignment of the concatenated core genome of
1005 genes (excluding the invariant loci of the core gen-
ome) was constructed using the genome comparator tool
at BIGSdb. Invariant genes were removed to reduce com-
putation load as they will not provide cladistic information
[25]. RAxML version 8.0 software was used to create a
maximum likelihood core genome phylogenetic tree using
the GTRGAMMA model, which combines a GTR (Gener-
alized Time Reversible) model for the rate of substitutions
between nucleotides at a site, with a Gamma distribution
model for substitution-rate heterogeneity between sites). In
this model four discrete rate categories are used providing
an acceptable balance between speed and accuracy of ana-
lysis. The majority-rule consensus tree was generated from
200 bootstrapped replicates of the model [26]. FigTree soft-
ware v1.4.2 was used to visualise the generated Newick
trees [27]. The TempEst program was used to compute the
most likely root for the tree [28]. In a larger scale analysis,
the core genome MAFFT alignment (90% core threshold,
2182 genes) of 1053 N. gonorrhoeae isolates including the
59 WA and the 72 international N. gonorrhoeae isolates
was used to construct a neighbor joining phylogeny with
100 bootstrapped replicates of the model using MEGA7:

Molecular Evolutionary Genetics Analysis version 7.0 for
bigger datasets [29]. These 1053 N. gonorrhoeae isolates
were selected using maximum variation sampling covering
all available MLST STs, locations and years of isolates avail-
able at PubMLST database.

Sequence typing, antimicrobial genetic markers and
genomic islands
Using the Short Read Sequence Typing for Bacterial Path-
ogens (SRST2) software [30, 31]. MLST was performed by
comparing the assembled sequences of the seven house-
keeping loci (abcZ, adk, aroE, fumC, gdh, pdhC and pgm)
to the reference MLST profiles on the PubMLST database
(http://pubmlst.org/neisseria/) [23]. Pileup and scores files
generated by SRST2 were used for manual curation. All
novel allelic combinations were referred to the PubMLST
website curator to be assigned a ST.
NG-MAST was performed on the sequences produced

by whole genome sequencing using the genome compara-
tor tool at BIGSdb ((http://pubmlst.org/neisseria/) [32].
The sequences were trimmed, as described in the NG-
MAST website (http://www.ng-mast.net/) and submitted
to the NG-MAST database for ST determination. An inte-
ger was assigned to porB (encoding major outer mem-
brane protein porin) and tbpB (encoding transferrin
binding protein B). All novel alleles were referred to the
NG-MAST website curator to be assigned an allelic
number and ST.
NG-STAR, a novel molecular antimicrobial resistance

typing scheme based on the sequence of seven genes as-
sociated with antimicrobial resistance in N. gonorrhoeae
(penA, mtrR, porB, ponA, gyrA, parC and 23S rRNA)
[8], was performed by comparing each allele to the pub-
licly accessible database at https://ngstar.canada.ca by
SRST2. All novel alleles and new allele combinations
were referred to the NG-STAR curator to be assigned an
allelic number and ST.
Plasmids were assembled using SPAdes as single contigs

then compared to their corresponding references (β-lacta-
mase producing pJD4 and the gonococcal cryptic pJD1).
The variable regions between β-lactamase plasmids were
aligned and were assigned based upon the method of
Trembizki et al. [33]. The three conjugative plasmids found
in N. gonorrhoeae, a 39 kb plasmid (pEP5233) (GenBank
accession number GU479465.1) and two 42 kb tetM-posi-
tive, the Dutch (pEP5289) and the American (pEP5050)
plasmids (GenBank accession numbers GU479466.1 and
GU479464.1) [34] were also identified as single contigs.
Prior to plasmid alignment the Cyclic DNA Sequence
Aligner software was used to find the optimal rotation for
the circular plasmid sequences [35].
The genome comparator tool at PubMLST was used

to detect the existence of defined loci of conjugative
plasmids and gonococcal genetic islands (GGI) in

Al Suwayyid et al. BMC Genomics  (2018) 19:165 Page 3 of 12

http://www.pubmlst.org/neisseria
http://www.pubmlst.org/neisseria
http://pubmlst.org
http://pubmlst.org
http://www.ng-mast.net
https://ngstar.canada.ca


http://pubmlst.org/neisseria/. The AMR genes 23 S
rRNA, ponA, penA, porB, gyrA, parC, mtrR, promtrR,
bla-TEM, tetM and ftsX were detected using the gen-
ome comparator tool and confirmed using SRST2.
Novel alleles were aligned and notionally translated to
amino acid sequences to enable detection of amino
acid substitutions.

Population structure analysis
Hierarchical clustering of sequences was inferred by
using the hierBAPS tandem command line program im-
plemented in BAPS v6.0 to estimate the population
structure [36]. Concatenated core genome MAFFT align-
ments for all 131 N. gonorrhoeae isolates in the dataset
indicating variable loci that were present in 100% of the
isolates in the dataset in FASTA format were used for
hierarchical clustering. Clustering was performed with
two levels in the hierarchy using k = 40 as the prior
upper bound for the number of clusters. Deeper levels of
clustering was performed based on the first result using
k = 3 to k = 7 K value and the best k value in both ana-
lyses was six. For the detection and representation of re-
combination between populations, the hierBAPS output
file was converted to BAPS format and the ‘admixture
with pre-defined populations’ approach was used in the
BAPS software [37].

Statistical methods
Categorical variables were examined using the Fisher’s
Exact test. GraphPad Prism 7 (GraphPad Software Inc.,
California) was used to perform the analyses. A 5% level
of confidence was used and statistical significance was
determined with a p value of < 0.05. Wallace coefficients
measure the extent of congruity between different
metrics covering the same data. Adjusted Wallace coeffi-
cients (AW) [38] were used to determine the congru-
ence of the three typing methods using the online tool
available at http://www.comparingpartitions.info/
index.php?link=Tool.

Results
Molecular epidemiological typing indicates novel
sequence types in remote areas
The core genome phylogeny revealed three persistent and
stable genetic clusters, clusters A, B and C, which included
37 of the 59 isolates (Fig. 1). Clusters A and B were phylo-
genetically related and contained 28 isolates of which 78%
were from remote WA (n = 22, Fig. 1). Cluster C contained
9 isolates of which 67% were from remote WA (n = 6). Ap-
proximately three quarters (17/22) of the non-A, B, C
cluster isolates were collected from metropolitan areas. A
significant association (p = 0.0001) of the remote isolates
with the three clusters A, B and C was observed using
Fisher’s exact test.

MLST identified a total of 23 STs, of which eight were
new to the international PubMLST database (ST12039–
12046), and these eight STs accounted for 51% of iso-
lates (n = 30/59) of the collection. The MLST STs found
in clusters A (ST12045 and ST12046) and B (ST7363,
ST12040 and ST12044) were closely related with isolates
sharing five of the seven alleles found in ST7363. Cluster
C contained two MLST STs (ST12042 and ST12043)
which shared six of the seven alleles. The 22 isolates that
did not group into clusters A, B or C shared 17 different
MLST STs of which two had not been described before
(ST12039, ST12041) [Additional file 2].
NG-MAST typing identified 32 STs. Three quarters of the

NG-MAST STs (n= 21/32) were singletons. NG-MAST STs
with the most isolates were ST758 and ST9716. Both STs
were cluster specific, with ST758 making up eight of 13 iso-
lates identified in cluster A and ST9716 making up eight of
the nine isolates identified in cluster C [Additional file 2].
The majority of single NG-MAST STs (17/21) were not
present in the three clusters.
NG-STAR identified 26 STs. Only seven of the NG-STAR

STs have previously been described and these were ST73,
ST85, ST90, ST139, ST177, ST178, and ST231. Of the nine-
teen NG-STAR STs, four had new combinations (NCs) of
previously reported alleles and 15 were novel having at least
one novel locus (NVs). Table 1 defines all the NC and NV
NG-STAR STs identified in this study. NG-STAR NCs STs
were not found in clusters A, B and C. The 15 novel NG-
STAR STs possessed novel mtrR alleles. Three novel profiles
have been designated NG-STAR ST715, ST754, and ST755
which have not been described elsewhere. NG-STAR ST755
was only found in cluster A and accounted for 61%
(n = 8/13) of isolates in this cluster. NG-STAR ST754
characterised three metropolitan isolates in cluster B.
In addition, NVs ST11 and ST12 had a novel gyrA
allele, ST1 had a novel penA allele, and ST15
possessed a novel porB allele. All isolates in clusters
A, B and C had novel NG-STAR STs [Additional file 2].

Population structure analysis identifies two unique cluster
groups in Western Australia
Since there were many novel STs in the West Australian
dataset, core phylogeny of these isolates was compared to 72
isolates in an international dataset of strains characterized by
Ezewudo et al. [24]. The total dataset of 131 N. gonorrhoeae
isolates formed six genetic groups after structure grouping
by heirBAPs (Fig. 2). International isolates appeared in four
genetic groups Int1-red, Int2-green, Int3-yellow and Int4-
gray. While Ezewudo et al. [24] [Additional file 3] originally
identified five structure groups, Groups 3 and 5 from that
study which were noted to be highly similar collapsed into
one group, Int-1, in this study. Two new groups, Australian
Group 1 (Aus1-blue) and Australian Group 2 (Aus2-cyan),
were formed of isolates only from the WA dataset.
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Int1 was the largest structure group containing 53 isolates
representing 35 different MLST STs, distributed among
other structure groups in the phylogeny. In this structure
group, 16 isolates were fromWA of which 68% (n= 11) were
metropolitan isolates and 62% (n= 10) were antibiotic resist-
ant isolates. Int2 contained 15 isolates from the international
dataset and 3 isolates from WA dataset with the majority of
these being representatives of the MLST ST1901 (n= 16). In
addition all the WA isolates in Int2 were also NG-STAR
ST90 which was the most common ST in the NG-STAR
study of Demczuk et al. [8]. Int3 contained 12 isolates in total

of which 3 isolates were from metropolitan Perth. The WA
isolates in Int3 belonged to NG-STAR ST178 but were
closely related to MLST STs that were not associated with
AMR. All WA isolates in Int2 and Int3 were isolated from
the metropolitan area and contained no novel MLST STs,
NG-MAST or NG-STAR STs. Aus1 contained the 28 isolates
of clusters A and B and Aus2 contained the nine cluster C
isolates. The three clusters also contained most of the isolates
with novel MLST, NG-MASTand NG-STAR STs.
The BAPS admixture analysis (Fig. 2b) shows Int1 is char-

acterized by significant recombination and appears to be a

Fig. 1 Core genome maximum likelihood phylogeny of 59 strains of N. gonorrhoeae from WA. The most likely root for the tree was computed
using TempEst [28]. The tree is annotated with geographical location, year of isolation and sequence types derived from three molecular typing
methods (MLST, NG-MAST, NG-STAR). Novel and internationally reported sequence types that are associated with AMR are indicated. A, B and C
clusters include persistent genetic clusters shared between metropolitan and remote areas of WA
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nexus for gene exchange with isolates scattered across the
phylogenetic tree [24]. Three WA isolates (ExNg242,
ExNg248 and ExNg316) from Int1 showed no recombination
with other structure groups and were identical by MLST
(ST7359), NG-MAST (ST4186) and NG-STAR (ST231) sug-
gesting clonal expansion within the recombinant group. In
contrast, isolates from the other structure groups formed
tight clusters. Clonal expansion was observed in five
hierBAPS groups, most significantly in Aus2, as illustrated by
the core genome phylogeny and BAPS admixture analysis.
Based on adjusted Wallace coefficients (AW), the isolates
grouped by MLST have a 97% chance of grouping by hier-
BAPS, 53% by NG-MASTand 42% by NG-STAR.
To further validate the clusters identified by heirBAPs

using the 131 strain dataset, a Neighbor joining tree was con-
structed using the core genome of 1053 N. gonorrhoeae iso-
lates sourced from PubMLST. Australian structure groups
(Aus1 and Aus2) still formed two unique clusters with Aus1
being supplemented with 11 isolates from Queensland
(Australia) (Fig. 3).

Australian structure groups are characterized by an
absence of antibiotic resistance and the presence of the
gonococcal genetic island
The association between the genetic groups, AMR and
selected genomic features of the 59 WA isolates were
analyzed. The gonococcal genetic island (GGI) was

identified in 86% (50/59) of isolates (Fig. 4). Conjugative
plasmids, which often carry the tetM determinant, were
present in 42% (24/59) of the isolates. The markerless
39 kb plasmid (pEP5233) was found in two Int1, three
Int3 and three Aus1 isolates. pEP5289 (Dutch), which
carries tetM, was found in five Int1 tetracycline HLR iso-
lates. pEP5050 (American) was found in all Aus2 isolates
and two Int1 isolates, and apart from ExNg314 all iso-
lates were tetracycline HLR. Two previously identified
beta-lactamase plasmid types, African (pJD5) and Rio/
Torino plasmid (pJD7) were found in seven Int1 and
two Int3 penicillinase-producing N. gonorrhoeae (PPNG)
isolates [Additional file 2].
Other than tetracycline resistance in Aus2, all Aus1

and Aus2 isolates did not show resistance to beta-
lactams, quinolones or macrolides (Fig. 4) and lacked
previously reported mutations associated with these an-
tibiotics (Additional file 2). However, the Aus1 and Aus2
isolates did possess an A39T mutation in the coding se-
quence of the repressor gene (mtrR, NEIS1635) which
has been shown to result in the over-expression of the
MtrCDE efflux pump system but not with wild type
mtrR promoter [39].
Twenty-two WA isolates clustered in Int1, Int2 and

Int3 structure groups. Approximately two thirds (62%,
16/22) were resistant to one or more antibiotics. A penA
type 63 mosaic allele (NEIS1753 allele 1147) was

Table 1 NG-STAR Novel (NV) and new allelic combinations (NC) profiles identified in the present study

NG-STAR penA mtrR porB ponA gyrA parC 23S Isolates associated with the NG-STAR ST

715 19.001 124 0 0 1 20 0 ExNg287

754 2.001 123 14 1 0 1 0 Exng224, ExNg254, ExNg272

755 2.001 123 13 1 0 0 0 ExNg214, ExNg217, ExNg225, ExNg229, ExNg234,
ExNg236, ExNg252, ExNg282, ExNg285

NC1 2.002 19 9 1 7 3 1 ExNg321

NC2 63.001 1 0 1 0 2 0 ExNg302

NC4 19.001 47 12 1 7 20 0 ExNg238

NC3 2.001 16 13 0 1 18 0 ExNg226

NV1 2.001 123 14 1 0 0 0 ExNg202, ExNg278, ExNg282

NV2 2.001 123 0 1 0 0 0 ExNg290, ExNg305

NV3 2.001 123 14 1 20 1 0 ExNg204, ExNg218, ExNg219

NV4 2.001 123 0 1 20 1 0 ExNG205

NV5 22.001 123 0 0 0 1 0 ExNg289

NV6 2.001 123 0 1 0 1 0 ExNg239, ExNg266, ExNg277

NV7 2.001 123 14 0 0 1 0 ExNg210, ExNg213, ExNg259

NV8 2.001 123 14 0 0 1 0 ExNg253

NV9 2.002 125 14 1 0 7 0 ExNg209, ExNg230, ExNg261, ExNg264, ExNg271,
ExNg288, ExNg294, ExNg296, ExNg314

NV10 22.001 127 3 0 0 7 0 ExNg301

NV11 2.002 54 19 0 0 2 0 ExNG235

NV12 2.008 54 14 1 7 20 0 Exng283
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identified in one susceptible strain from Int1. Int2 iso-
lates contained NG-STAR ST90 that has been reported
associated with ESCs and ciprofloxacin resistance. De-
creased susceptibility to the ESCs due to the penA
(NEIS1753) motif XXXIV was restricted to Int2. Int2
isolates also contained GGI and (pEP5233) conjugative
plasmids. Int3 did not contain any chromosomal muta-
tions affecting beta-lactamase, quinolone and macrolide
susceptibility consistent with the antibiotic sensitive
phenotype. mtrR with an internal stop codon but no
A39T or G45D mutations was found in all Int3 isolates
[Additional file 2].
All isolates with high-level resistance to ciprofloxacin

(QRNG HLR) had mutations in gyrA (NEIS1320) and
parC, (NEIS1525) conferring resistance to quinolones.
High-level resistance to azithromycin (AziRNG HLR)
mediated by the A2059G mutation in genes encoding
for 23S rRNA was identified in AziRNG HLR isolate

ExNg321. A recently reported R251H substitution in the
ftsX gene (NEIS2146 allele 18) which confers ESCs
resistance [40, 41], was found in five extra-genital N.
gonorrhoeae isolates however only two of these isolates
demonstrated decreased susceptibility to ceftriaxone.

Discussion
The high rate of recombination within the N.
gonorrhoeae population has led to the presumption that
this species has a non-clonal population structure [42].
However, clonal spread and persistence of N.
gonorrhoeae strains has been described in many whole
genome sequence-based epidemiological studies from
Europe, France, USA, Canada, and recently from a glo-
bal collection of N. gonorrhoeae [11, 12, 14, 15, 43].
Population structure analysis of N. gonorrhoeae isolates in
the study dataset has provided some evidence for both re-
combination and clonality in N. gonorrhoeae, suggesting

Fig. 2 a Cladogram of 59 strains of N. gonorrhoeae from WA in addition to 72 N. gonorrhoeae isolates from an international dataset highlighted
with the six hierBAPS defined groups Int1 (red), Int2 (green), Int3 (yellow), Int4 (grey), Aus1 (blue) and Aus2 (cyan) groups. b Admixture analysis of
population groups from strains of N. gonorrhoeae in the sample set defined by BAPS. Each vertical bar of color represents an isolate (labelled left to
right). The primary color indicates the assignment of the isolate according to heirBAPs as defined in Fig. 2a. When the vertical bar shows two
colors, it indicates the proportion of admixture that has occurred between this isolate and other structure groups. The association of the strains
with each population group can be found in Additional files 2 and 3
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N. gonorrhoeae is a weakly clonal species similar to H.
pylori and Bacillus sphaericus [12, 44, 45]. However, an
analysis of an expanded dataset over a prolonged period
of time would provide a much clearer understanding of
the N. gonorrhoeae population structure.
In the remote areas of WA, when compared to the global

population, gonococcal isolates formed two distinctive

structure groups (Aus1 and Aus2). Aus1 was characterized
by broad antibiotic-susceptibility and was mostly composed
of isolates related to novel MLST, NG-MASTand NG-STAR
STs. The novelty of the MLST, NG-MAST ST and NG-
STAR designations is significant as the isolates were com-
pared to over 3700 isolates found in the PubMLST database,
which represents collections from around the world,

Fig. 3 Neighbor joining tree generated with 100 bootstrapped replicates of 1053 N. gonorrhoeae isolates from PubMLST database. The tree is
highlighted with Australian structure Groups Aus1 (blue) and Aus2 (cyan). Further information associated with all 1053 isolates can be accessed
using these tags in the Bacterial Isolates Genome Sequence database (BIGSdb) genomics platform (www.pubmlst.org/neisseria)
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particularly Europe and the US. All isolates in Aus1 belonged
to two core genome clusters, A and B. Isolates belonging to
MLST ST7367, which have been reported from global
sources, are associated with decreased susceptibility to ceftri-
axone and have been shown to cluster with Int1 by Ezewudo
et al. [24]. However, the MLST ST7363 isolates of Aus1
(cluster A) formed a discrete cluster group apart from Int1,
suggesting they are unique. In cluster A of Aus1, MLST
ST12045 isolates were associated with a previously reported
NG-MAST ST758 reported from Russia which is associated
with decreased susceptibility to ceftriaxone [46]. However,
the Aus1 MLST ST12045 isolates were susceptible to ceftri-
axone and possessed novel NG-STAR profiles. Collectively
this suggests Aus1 is a distinctive population of isolates cir-
culating in remote Australian regions. Aus2 represents a
local dissemination of a highly clonal tetracycline HLR popu-
lation which was characterized by novel MLST, NG-MAST
and NG-STAR assignments. The presence of pEP5050
(American) conjugative plasmid in Aus2 suggests a global
introduction of the initial strain to the region followed by
clonal persistence of this group. One Aus2 isolate that was
not tetracycline HLR, ExNg314, possessed an intact conjuga-
tive plasmid carrying the tetM determinant but did not have
the V57 M in rspJ gene, unlike the other tetracycline HLR
isolates in this group [47]. This suggests the V57 M mutation
in combination with the plasmid mediated resistance

determinant is required to achieve high-level tetracycline re-
sistance. The absence of other mutations in the AMR genetic
markers in the Aus groups suggests no independent emer-
gence of resistance (de novo) since divergence from its an-
cestor. Lastly Aus1 and Aus2 were characterized by
possession of porB1a (68%, 27/40) which is associated with
asymptomatic urethral infections and disseminated gonococ-
cal infection (DGI) [48, 49]. Though porB1a is not associated
with MDR strains, monitoring these isolates is crucial as
DGI is considered a common cause of complicated gonococ-
cal infection and infertility [49, 50].
Apart from Aus1 and Aus2, 22/59 isolates from WA in

this period clustered with the Int1, Int2 and Int3 structure
groups. WA isolates from Int1 were retrieved primarily from
metropolitan areas. The strains are genetically unrelated and
highly recombinant, and suggest the sporadic emergence of
various N. gonorrhoeae clusters or represent sporadic incur-
sions of international strains into WA. The ciprofloxacin re-
sistant isolate ExNg232 which had a NG-MAST 225 and
NG-STAR177 STs, was previously reported in Europe and
the US [11, 12], suggesting an introduction event to the
metropolitan areas of WA. In another instance, a high-level
azithromycin resistant isolate (ExNg321) had a NG-MAST
ST4850 which differed by one SNP from a ST1866 AziRNG
HLR isolate reported in China and a MLST ST12039 that
was a single locus variant of a ST10899 AziRNG HLR isolate
reported in Canada [24, 51]. This would suggest that
ExNg321 is a foreign introduction into WA and may be one
of the earliest isolates to cause a recent outbreak of azithro-
mycin resistant strains in South Australia that led to an up-
dated treatment recommendation to avoid single agent
azithromycin treatment [52]. The antibiotic sensitive isolates
of Int1 from MLST7359 have recently been linked to in-
creasing rates of gonococcal infections among women in het-
erosexual networks in metropolitan areas of New South
Wales in Australia [53].
Three isolates that clustered with Int2 represented the

global AMR cluster MLST ST1901 and the two related
STs (matching at six MLST loci) that are associated with
decreased susceptibility and resistance to ceftriaxone
[11, 12, 41]. One of the isolates (ExNg304) belonged to
NG-STAR ST90, which has been reported to be associ-
ated with decreased susceptibility and resistance to cef-
triaxone and ciprofloxacin. However, although ExNg304
had all the requisite mutations for this phenotype, the
isolate was phenotypically susceptible. Lastly, all the WA
isolates in Int3 were NG-STAR ST178, a cluster that is
antibiotic susceptible and does not contain any MLST or
NG-MAST STs associated with resistance [8]. This ap-
pears to represent a potential persistent susceptible clus-
ter that has been circulating globally since 1998 [24].
The gonococcal genetic island (GGI) reported by

Harrison et al. [54] has been significantly associated with
different MDR core genome clusters such as clusters of

Fig. 4 Antibiotic resistance profiles and genetic features of
N. gonorrhoeae WA strains across population groups. A radial
representation of the phylogenetic tree from Fig. 1 showing
the antibiotic resistance profiles and genetic features. The outer
line color reflects hierBAPS defined groups. (Cef DS) ceftriaxone
decreased susceptibility, (AziRNG) azithromycin-resistant N.
gonorrhoeae, (TrHLR) high-level resistance to tetracycline, (PPNG)
Penicillinase-producing N. gonorrhoeae, (CMRP) Chromosomal
mediated resistance to penicillin, (QRNG) quinolone-resistant N.
gonorrhoeae, (P conjugative) conjugative plasmid, (GGI) Gonococcal
genetic island. Alleles associated with these phenotypes are
presented in Additional file 2
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MLST ST1901 and ST1508. In the present study, GGI
was identified in most isolates (50/59, 84%) in WA N.
gonorrhoeae populations, being found in 68% (13/19) of
isolates in MDR groups Int1 and Int2 and 95% (38/40)
of isolates in the non-MDR groups Aus1, Aus2 and Int3.
This suggests that the presence of GGI in a given struc-
ture group may provide a fitness advantage and contrib-
ute to the stability of that cluster, which occurred before
the acquisition of the MDR loci by natural transform-
ation or mutation.

Conclusions
The population structure of a small set of gonococcal
isolates from WA has revealed the presence of two
unique clusters: Aus1 and Aus2. Due to the small sam-
ple size and the lack of representative isolates from
Australia and SouthEast Asia in the PubMLST database,
it remains to be determined if these two clusters are
more widely dispersed in this geographic region. How-
ever, the clustering of 11 gonococcal isolates from
Queensland into Aus1 is suggestive of a broader distri-
bution across Australia which will be confirmed as much
larger studies in these regions are underway. The persist-
ence of the antibiotic susceptible cluster Aus1 in WA
could be due to azithromycin and amoxicillin dual ther-
apy in remote WA, thereby reducing the selective pres-
sure for AMR or could be the result of the remoteness
of this region which has impeded incursion of AMR
strains [19]. The NG-STAR typing scheme correlates
well with core genome phylogeny of N. gonorrhoeae and
is sufficient for high throughput surveillance of AMR.
However with the recent report that Bexsero® vaccin-
ation may reduce the rate of gonorrhoea [55], WGS is
needed for antigenic profiling and monitoring the per-
sistence of antigenic combinations over short timeframes
in response to vaccination in clinical trials and given its
high level of discrimination is the most accurate way of
defining sexual networks.

Additional files

Additional file 1: Table S1. Sequencing and assembly quality statistics
of the 59 Western Australian N. gonorrhoeae isolates. (PDF 63 kb)

Additional file 2: Table S2. WA N. gonorrhoeae isolates metadata,
antimicrobial resistance profiles, sequence types and genetic
characteristics of antimicrobial resistance markers. (PDF 95 kb)

Additional file 3: Table S3. List of the 72 international N. gonorrhoeae
isolates from Ezewudo et al. [24]. (PDF 72 kb)
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