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ABSTRACT The importance of microorganisms to human skin health has led to a
growing interest in the temporal stability of skin microbiota. Here we investigated
the dynamics and assembly of skin fungal communities (mycobiomes) with amplicon
sequencing of samples collected from multiple sites on 24 healthy Chinese individu-
als across four seasons (in the order of winter, spring, summer, and autumn in a cal-
endar year). We found a significant difference in community compositions between
individuals, and intrapersonal community variation increased over time at all body
sites. Within each season, the frequency of occurrence of most operational taxo-
nomic units (OTUs) was well fitted by a neutral model, highlighting the importance
of stochastic forces such as passive dispersal and ecological drift in skin community
assembly. Despite the significant richness contributed by neutrally distributed OTUs,
skin coassociation networks were dominated by taxa well-adapted to multiple body
sites (forehead, forearm, and palm), although hub species were disproportionately
rare. Taken together, these results suggest that while skin mycobiome assembly is a
predominantly neutral process, taxa that could be under the influence of selective
forces (e.g., host selection) are potentially key to the structure of a community net-
work.

IMPORTANCE Fungi are well recognized members of the human skin microbiota
and are crucial to cutaneous health. Common cutaneous diseases such as seborrheic
dermatitis and dermatophytes are linked to fungal species. Most studies related to
skin microbial community dynamics have focused on Western subjects, while non-
Western individuals are understudied. In this study, we explore the seasonal changes
of the skin mycobiome in a healthy Chinese cohort and identify ecological processes
that could possibly give rise to such variations. Our work reveals the dynamic nature
of host skin fungal community, highlighting the dominant roles neutral forces play
in the seasonal assembly of skin mycobiome. This study provides insight into the
microbial ecology of the human skin microbiome and fills a knowledge gap in the
literature regarding the dynamics of skin fungal community.
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Skin is the major interface between the human body and its external environment
(1). The microbial communities (microbiota) residing on skin, mostly consisting of

bacteria and fungi, are important in protecting human hosts from pathogen invasion (2,
3). Temporal shifts in skin microbial composition may be associated with cutaneous
fungal infections (4, 5), and the incidence and severity of skin diseases vary with
seasonality and environmental fluctuations (6–8). Thus, understanding the determi-
nants of skin microbial dynamics and how skin communities are assembled over time
provides a framework for skin health prediction, risk assessment, and disease treatment.

Previous metagenomic and amplicon-based studies have characterized the skin
microbiota across multiple body sites of Western subjects (9–11). Due to the physio-
logical difference between skin niches (9), both bacterial and fungal communities
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display topographical distributions (10, 12): for example, with lipophilic taxa enriched
particularly on sebaceous sites, while other taxa characterize dry and moist sites (13). In
addition, foot sites are recognized to have the highest fungal diversity and exhibit a
higher variability compared to other body sites (10, 11). A recent mycobiome study has
shown that skin fungal diversity converges from childhood to adulthood, with a
profound shift in community composition during puberty (14). In healthy adults,
Malassezia species such as Malassezia restrica, Malassezia globosa, and Malassezia
sympodialis have been identified as core members of the skin mycobiome, which are
largely stable over time (11, 15), while a decrease in Malassezia fungal diversity could
be associated with skin diseases (16) or therapeutic treatment (17). In addition to
host-intrinsic factors, stochastic forces like the transient acquisition of microbes by
dispersal from external environments (18), microbial transmission between cohabiting
members of a residence (19–21), and ecological drift (22) may also affect the diversity
and composition of skin microbiota.

As a result, these host-associated microbial communities are typically uneven, with
few abundant taxa and many rare taxa, reflected in a long-tail rank abundance
distribution (23). To date, our knowledge of many ecosystems, including skin, is mostly
based on the dominant taxa, but rare species are receiving increased attention as they
may have a disproportionate influence on community stability and function (24–27).
Taxa that are usually rare but occasionally become abundant, namely the conditionally
rare taxa (CRT) (26, 28), are of particular interest. In drinking water distribution systems,
nitrifiers bloom to abundance after disturbance, and these CRT have been suggested to
be indicators of environmental changes that are otherwise difficult to detect (29). The
rare-to-abundant occurrence pattern of CRT has been reported in multiple ecosystems,
where CRT ecology explains large temporal shifts in the structure of microbial com-
munities (25, 26) and may help to identify the biological, chemical, and physical drivers
of microbial dynamics.

Given the various factors associated with community dynamics in the microbiomes
of healthy individuals (30), there is growing interest in using theoretical models to
query experimental data to identify processes that may drive such variations. Neutral
theory is frequently applied to predict the assembly pattern of microbial communities
and is favorable for its relative simplicity. This model assumes that all species in the
community are functionally equivalent and that stochastic factors (i.e., random disper-
sal and birth/death events) are the primary drivers of ecological diversity and commu-
nity structure (31). This approach has been successfully applied to model microbial
communities in ecosystems, including the human lung (32, 33) and skin (34), animals
(35, 36), and wastewater (37). On the other hand, a simpler approach is the binomial
distribution model, which assesses the importance of random sampling on microbial
community structure in the absence of drift and dispersal limitations (38), which is a
useful complement to the neutral model for understanding microbial community
assembly.

In this study, we investigated the dynamics of skin fungal communities of a healthy
Chinese cohort across four seasons. Furthermore, we investigated the relative contri-
butions of individual-specific CRT to the temporal dynamics of individual mycobiomes
and whether there were signature taxa that uniquely identified hosts. Finally, we
quantified the importance of neutral processes in skin community assembly and used
coassociation networks to shed light on the potential interactions between fungi.
Overall, this study provides important insights into the seasonal dynamics of the skin
mycobiome in an Asian cohort and expands our understanding of how stochastic and
deterministic processes drive the assembly of human-associated microbial communi-
ties. In particular, this study highlights the importance of seasonality in network stability
of the skin mycobiome, with a more fragile network in autumn than other seasons.
These findings can help us understand the links between seasonal variation of the skin
mycobiome and the seasonality of certain skin disorders and can be useful for the
prevention and treatment of cutaneous diseases.
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RESULTS
Intrapersonal skin mycobiome composition varies over time. The temporal

stability of skin mycobiomes was investigated on a per-individual, per-site basis using
the Bray-Curtis dissimilarity metric. With symmetrical sites combined, intrapersonal
community dissimilarity dramatically increased after one season, almost doubling after
three seasons (Fig. 1), suggesting that the long-term intrapersonal skin community
similarity was lower than the short-term one. This pattern held for all body sites, with
the change in forehead community composition lowest among the three sites over the
same time period (see Fig. S1A in the supplemental material), consistent with the
relative stability of sebaceous sites compared to dry sites (11). When community
dissimilarity between individuals was considered, cohabitants harbored more similar
communities than noncohabitants, though this effect was no longer observed after an
interval of three seasons (Fig. 1).

To examine whether intrapersonal community stability correlated with diversity, the
correlation between the abundance-based Shannon diversity index and Bray-Curtis
dissimilarity metric was tested. A positive rank correlation was observed for both palm
and forearm communities (Spearman’s rho � 0.41 and 0.30, P � 0.003 and 0.04,
respectively [Fig. S1B]), but this trend was insignificant in forehead communities (P �

0.19). In addition, a significant temporal change in diversity was detected for both palm
and forearm sites (Kruskal-Wallis test, P � 3.3 � 10�5 and 1.6 � 10�4, respectively), but
not for forehead (P � 0.78). These results suggest that skin community stability varies
over time as a function of diversity for upper limbs, where low-diversity sites appear to
be more stable than high-diversity sites.

Intrapersonal skin mycobiome varies significantly at the OTU level across
seasons. Next, we assessed the temporal stability of dominant fungal taxa within each host
community at the rank of genus. The skin commensal Malassezia remained largely stable
over time as a core genus across all individuals (with M. restricta and M. globose dominating)
(see Fig. S2 in the supplemental material), and forehead harbored a higher abundance of
Malassezia than palm and forearm (Kruskal-Wallis test, P � 9.7 � 10�8). This finding

FIG 1 Effect of time on skin community dissimilarity. Community Bray-Curtis dissimilarity was calculated for the same anatomical site within and
between individuals (n � 24). The comparison groups include within each individual, between cohabitants, and between noncohabitants. Time
interval is the number of seasons between sampling. The intrapersonal community dissimilarity at the time interval zero refers to the pairwise
comparison between the symmetrical sites (left/right palms or forearms) within the same individual and season.
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suggests that sebaceous skin sites are more selective for members that have the ability to
metabolize lipids present in the sebum compared to dry sites (39). Less dominant and
ubiquitous genera varied widely in abundance at different body sites (Fig. S2). Specifically,
taxa including Aspergillus, Candida, and an unclassified member within the order Tremellales
tended to be enriched at specific sites of certain individuals, but could also be periodically
absent, low in abundance, or fluctuate widely in other subjects.

As individuals with unique microbial fingerprints (i.e., signature taxa) can be differ-
entiated from one another at intervals spanning months or years (11), supervised
random forest classifiers were used to study whether host-specific skin fungal signature
taxa exist and persist across seasons. Although the resolving power of the top 30 OTU
predictors varied over time, one signature taxon (OTU_4, within Tremellales; mean
relative abundance of 54.7% � 31.5%) was identified for individual MOS 3W that was
stably maintained at all body sites, but remained low in prevalence and abundance in
all other individuals (Fig. 2). Three low-abundance signature taxa were also detected,
including OTU_11 (within Sporidiobolales, 11.9% � 14.7%) for individual TMB 3Y,
OTU_23 (within Basidiomycota, 11.4% � 9.2%) for individual FH 3Z, and OTU_20 (within
Malassezia, 12.1% � 13.1%) for individual QB 3Y.

Individual-specific CRT contribute to intrapersonal temporal community dis-
similarity. In addition to the dominant taxa, between 32 and 82 CRT were identified for
each host (see Fig. S3A in the supplemental material), of which most were non-human-
associated taxa— e.g., plant pathogens and mushroom-forming fungi. Few CRT were
unique to a single host (Fig. S3B), with cohabitants sharing more CRT than noncohabi-
tants (Mann-Whitey U test, P � 0.04 [Fig. S3C]). Notably, a few CRT were exclusively
detected in cohabitants, while being absent in individuals from other households.
However, many CRT that were shared by cohabitants bloomed in a disjointed manner
(Fig. S3D), suggesting that cohabitation might affect the presence of CRT in individuals

FIG 2 Discriminatory power and distribution pattern of OTU predictors across individuals and seasons. (Left panel) The top 30 OTU predictors are selected and
ranked in decreasing order of the mean discriminatory power (black line, mean decrease in accuracy score across four seasons) based on the random forests
algorithm, with taxonomy assigned at the genus rank (y axis). The mean decrease in accuracy score for each OTU predictor in each season is color-coded.
(Middle panel) Prevalence (i.e., occurrence frequency) of OTU predictors in an individual community. (Right panel) Mean (color of nodes) and coefficient of
variation (CV) (size of nodes) of the relative abundance of OTU predictors in an individual community. The absence of nodes in the middle and right panels
indicates these OTU predictors were not detected in the host community at any season. The three panels are constructed and arranged following the format
proposed by Oh et al. (11).

Tong et al.

March/April 2019 Volume 4 Issue 2 e00004-19 msystems.asm.org 4

https://msystems.asm.org


or groups of cohabiting individuals, but not the timing of CRT blooms. Cohabitation is
usually associated with similar exposome and lifestyle, which might contribute to the
dynamics of CRT in high-exposure and high-perturbation skin communities. The con-
tribution of CRT to intrapersonal temporal community dissimilarity ranged between 0
and 66% (Fig. 3A) and was positively correlated with CRT abundance or richness in each
host community (Spearman’s rho � 0.96 and 0.58, P � 1.6 � 10�6 and 4.0 � 10�3 for
CRT abundance and richness, respectively [Fig. 3B and C]).

Seasonal assembly of skin community is driven predominantly by neutral
processes. The Sloan neutral model (31) was fitted to the seasonal data set to
investigate the contribution of stochastic processes to skin mycobiome assembly.
Because this study spanned only 1 year, microbial speciation and diversification pro-
cesses were unlikely to have a meaningful contribution to assembly and so were
excluded from the model. The neutral model outperformed the binomial model for all
seasons (see Fig. S4A in the supplemental material), suggesting that passive dispersal
and ecological drift were more influential than random sampling of the metacommu-
nity. The neutral model was well fitted to the skin communities for all seasons, with the
R2 value ranging between 0.607 and 0.726 (Fig. 4). The estimated migration rate, m, a
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FIG 3 Contribution of individual-specific CRT to intrapersonal Bray-Curtis dissimilarity. (A) The contri-
bution of individual-specific CRT to intrapersonal temporal community dissimilarity was measured at
each body site of an individual between two successive seasons (in the order of winter-spring, spring-
summer, and summer-autumn). (B and C) The abundance (B) and richness (C) of individual-specific CRT
were calculated as the proportion of CRT counts or number in the total OTU counts or number of each
sample in the rarefied individual-specific OTU tables, respectively. The crimson diamonds represent mean
values.
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FIG 4 Fit of Sloan neutral model to skin mycobiomes. The occurrence frequency of OTUs was predicted
for (A) winter, (B) spring, (C) summer, and (D) autumn skin communities according to the Sloan neutral

(Continued on next page)
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measure of the influence of dispersal on community composition, was lowest in winter
and highest in summer, which might be associated with a preference for bare upper
limbs in warmer weather. Within each season, 82 to 87% of OTUs were well predicted
by the model (Fig. S4B). This finding suggests that neutrally distributed OTUs contrib-
uted a large proportion of skin community richness and thus that skin mycobiome
assembly was predominantly driven by neutral processes.

Taxa in the above-neutral, below-neutral, and neutral partitions formed three dis-
tinct clusters that differed significantly in the principal-coordinate analysis (PCoA)
across all seasons (permutational multivariate analysis of variance [PERMANOVA], P �

0.002, t � 3.2 [Fig. S4C]). The differences between clusters were driven by a small
number of taxa that were specific to the nonneutral partitions. Partitions above the
neutral prediction were strongly distinguished by OTUs from the genus Penicillium
(Kruskal-Wallis test, P � 0.024), while below-neutral partitions were strongly distin-
guished by OTUs from the genus Candida (P � 0.024), as well as taxa from the classes
Basidiomycota (P � 0.040), Sporidiobolales (P � 0.021), and Tremellales (P � 0.006).
Malassezia species are thought to be well adapted to proliferation in skin ecosystem as
core commensals (39–41). Based on this assumption, the proportion of OTUs classified
as Malassezia was calculated for each partition. As expected, Malassezia OTUs made up
a large proportion of the above-neutral partition, which was much higher than in the
neutral and below-neutral partitions (Fig. S4D). This pattern was consistent across
seasons, highlighting the role of selection in the seasonal assembly of skin mycobiome.

All CRT identified in individual mycobiomes fell into the neutral or below-neutral
partitions (except one CRT from individual ADMA 3Z, which fell into the above-neutral
partition [see Fig. S5 in the supplemental material]), and more CRT followed a
neutral than nonneutral distribution within a host. These findings suggest that the
dynamics of neutrally distributed CRT are largely regulated by stochastic processes
(e.g., passive dispersal and ecological drift). The below-neutral CRT are likely to be
dispersal limited most of the time, but these taxa could be driven to bloom due to
environmental changes specific to the host or transient major dispersal events (e.g., the
host comes in contact with a major reservoir of the taxon).

Coassociation networks of skin fungi. To infer potential ecological associations
between fungal OTUs in the skin mycobiomes, coassociation networks were con-
structed on a seasonal basis using the Sparse InversE Covariance estimation for
Ecological Association and Statistical Inference (SPIEC-EASI) framework (42). In each
season, the average path length of the inferred network was compared to that of
randomly assembled networks. The inferred networks were more highly interconnected
than �96% of random networks with the same number of nodes and similar density,
suggesting that the structure of the inferred networks is unlikely to be random (see
Fig. S6 in the supplemental material). Interestingly, apparent network collapse was
observed in autumn, with a lower network density, D (D � 0.0259), compared to those
of winter (D � 0.0346), spring (D � 0.0311), and summer (D � 0.0299), suggesting that
seasonality may affect the stability of the skin mycobiome network. In all seasons,
nonneutral OTUs were overrepresented in the inferred networks, although this may be
because of the frequency threshold applied (�25% prevalence), and they participated
in more positive than negative coassociations in any season (Fig. 5A; see Fig. S7 in the
supplemental material), suggesting that fungal OTUs tend to coexist or even develop
mutualistic relationships in skin communities. In addition, the networks displayed a
strong modularity (within a range of 0.5 to 0.62), with modules tending to be domi-
nated by OTUs from a single taxonomic group (Fig. 5B). In each network, the OTU with
the highest betweenness centrality was recognized as the hub node, which is likely the

FIG 4 Legend (Continued)
model. OTUs that occurred more frequently than predicted by their abundance are colored in green,
while those that occurred less frequently than predicted are shown in orange. Purple circles represent
OTUs that are well fitted to the neutral model (i.e., within the 95% confidence interval). The predicted
frequency is shown as a solid line, and dotted lines represent the 95% confidence intervals.
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bottleneck (43) in the network. Surprisingly, all hub OTUs were very rare (abundance of
�0.01% [see Table S1 in the supplemental material]), in contrast with the high-
abundance OTUs, which tended to be less connected (Fig. 5C and D). This finding
suggests that rare species might play important roles in stabilizing skin mycobiome
communities over time.

DISCUSSION

From an ecological perspective, each human can be viewed as an island-like habitat
patch (22), with a myriad of microorganisms colonizing inside and outside the body
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FIG 5 Coassociation networks of skin mycobiome in winter. Nodes in the networks represent OTUs, and edges are inferred associations between OTUs. Positive
and negative associations are indicated by gray and red edges, respectively. Nodes without connections are excluded from the plots. (A) Nodes in the network
are color-coded by the partition relative to the neutral model. (B) Nodes belonging to the same module are grouped by colored regions for visualization and
color-coded by class lineages. (C) The intensity of the green is proportional to the node degree, and the node size is proportional to the centrality of the node
in the network. (D) The intensity of purple is proportional to the prevalence of OTUs, and the node size is proportional to the mean relative abundance of the
OTUs across all individual communities.
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(12). As with any microbial community, an individual’s microbiome is assembled from
a source pool (i.e., all the microbes a host encounters in its environment) via the
fundamental processes of dispersal, diversification, selection, and drift (44). To under-
stand the ecological processes driving the assembly of host-associated communities,
neutral theory, which assumes species are functionally interchangeable, can act as a
null model to contrast against deterministic effects such as niche specialization and
selective pressure (33).

As the skin surface is highly exposed, the composition of the skin community is
assumed to be susceptible to stochastic events such as randomly losing and acquiring
microbes. Supporting this, this study found that the majority of the OTUs were well fit
by the neutral model, suggesting that passive dispersal and ecological drift are more
important than selection in skin community assembly. OTUs that deviate from the
neutral model are likely to be under either host or other environmental selection
pressure (positive/negative) or are able to disperse by specific routes not applicable to
other OTUs in the source pool (32). Specifically, the skin-associated taxa that occurred
more frequently than expected are likely to be well adapted to or actively selected by
the hosts as moisture and nutrients on skin surface may benefit some microorganisms
(1). On the other hand, environmentally associated taxa, which tended to be rarer, are
more likely to be influenced by the diverse and dynamic nature of environmental
exposures (45). Nevertheless, seasonality seems to play a less important role compared
to selection forces in community composition of the below-neutral partition, given that
a distinct cluster was identified on a PCoA plot. The existence of host-specific signature
taxa is likely due to interactions between host-specific selective pressures, host-specific
environmental exposures, and stochastic events.

Neutrally distributed taxa are less likely to be specifically adapted to a host. As a
result, their abundances in any given community could be partly regulated by the
surrounding source community via dispersal, independent of the niche functional traits
(35, 36). Given the importance of neutral assembly processes, dispersal and drift have
been suggested to be major drivers of the community variation both within and among
hosts, as reported in the host-associated communities of fruit fly (35) and zebrafish (36).
Within the same season, cohabitants harbored more similar communities than nonco-
habitants, consistent with the existence of a shared microbial source pool within a
residence. For an individual host, the long-term community similarity was significantly
lower than the short-term similarity, likely due to the fact that the shared source pool
is itself dynamic and that neutral processes are powerful enough to generate a large
amount of diversity even on short time scales (36).

Although neutrally distributed OTUs were mostly responsible for skin community
richness, they were less likely to structure the coassociation network through interac-
tions with other species. The prevalence of nonneutral OTUs in the coassociation
networks suggests that nonneutral ecological processes may have a strong influence
on network structure and composition, perhaps because healthy individuals tend to
actively select for species that interact in ways that might benefit skin health (39,
46). The network analysis also found that hub OTUs were present in extremely low
abundances, suggesting that rare species can have a disproportionate effect on
community interactions (25). This suggests a possible answer to the question of why
these low-abundance taxa do not drift to extinction (22) and implies that rare taxa that
are stably present over long periods are very likely to be functionally significant. In
addition, higher modularity in an association network has been interpreted as indica-
tive of greater niche partitioning (47), with modules possibly representing functional
niches (48). Thus, we hypothesize that these rare hub species might contribute to
community function by bridging between niches. A recent study (49) has demonstrated
that the extinction of rare species heavily influences the functional structure of species
assemblages, but another report (50) has suggested that many rare species only add
functional redundancy to an ecosystem. Further work is required to fully understand
the functional roles of rare species in host-associated microbial communities. It is worth
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noting that fungi probably also interact with the skin bacterial community (51, 52),
which was not considered in this study.

In summary, this study reveals considerable intra- and interindividual variations in
skin fungal community composition over seasons. Most individuals cannot be distin-
guished from one another due to the absence of skin signature taxa, and individual-
specific CRT only partly contribute to the temporal intrapersonal community dynamics.
Neutrally distributed OTUs significantly contribute to skin community richness, and a
large proportion of seasonal intra- and interindividual variations could be explained by
neutral processes. However, neutral OTUs are less involved in community coassociation
networks, while taxa that deviate above the neutral prediction are likely to interact with
other OTUs and act as hub species to stabilize the network structure. In addition,
seasonality seems to have an influence on the network stability of skin mycobiome,
with a more fragile network in autumn than other seasons. Since the collapse of a
network could be associated with potential cutaneous pathogens and skin diseases (4,
53), further epidemiological work is required to understand whether autumn is asso-
ciated with increased risk of certain skin disorders and the links between skin fungal
infection and weather conditions in Asian individuals. Overall, this study highlights the
importance of neutral processes in the temporal dynamics and assembly of skin fungal
communities and suggests that ecological models and network analysis can provide a
useful framework to detect transient taxa and understand the health status of human
skin microbiome.

MATERIALS AND METHODS
Sample collection and sequencing. Subject recruitment, sample collection, genomic DNA extrac-

tion, library preparation, and sequencing were conducted as previously described (52, 54, 55). In brief, a
total of 480 samples were swabbed from five skin sites (forehead, left and right outer forearms, and left
and right palms) of 24 healthy occupants from 11 Hong Kong households across four seasons (in the
order of winter, spring, summer and autumn) in 2014. These body sites were chosen to be representa-
tives of sebaceous (forehead) and dry (palms and outer forearms) skin ecosystems. For each individual,
a single biological sample was collected from each body site during a given season. Participants were
instructed not to use makeup or skin care products at least 1 h before sampling. No antimicrobial
medication was used at least 3 months prior to sampling. The subjects’ basic personal information and
local weather conditions are summarized in Table S2 in the supplemental material. A negative control
was prepared using reagents from the DNA extraction kit and processed in parallel with the samples.
Samples were placed randomly on 96-well plates, and PCR amplification was prepared in a UV-sterilized
laminar flow hood. The first fungal internal transcribed spacer (ITS1) region was amplified with the primer
set 18Sfw (5=-GTAAAAGTCGTAACAAGGTTTC-3=) and 5.8Srv (5=-GTTCAAAGAYTCGATGATTCAC-3=) (10).
Libraries were sequenced on an Illumina MiSeq platform (SeqMatic, Fremont, CA) to generate 250-bp
paired-end reads.

OTU formation. Raw forward and reverse reads were merged with the “-fastq_mergepairs” com-
mand in USEARCH (version 9.0.2132) (56) and trimmed to a uniform length of 273 bp with a maximum
error rate of 0.5 error per read using the USEARCH “-fastq_filter” command. Sequences that passed
quality filtering were demultiplexed and clustered into OTUs at 97% similarity following the UPARSE
pipeline (57). OTU taxonomy was assigned based on a curated ITS database (10) using UCLUST in QIIME
(version 1.9.1) (58). Chimeras were identified using the sensitive mode of the “uchime2_ref” command
in USEARCH to maximize the detection sensitivity. OTUs classified to taxonomic lineages with an average
relative abundance of greater than 3% in the negative control were considered contaminants. Chimeras,
singletons, and contaminants were removed from the data set. After quality control, a total of 1,597 OTUs
comprising 8,928,145 reads were retained for the downstream analyses.

Alpha- and beta-diversity analyses. Samples were rarefied to 1,086 reads per sample before
community analysis, and 10 samples with fewer than 1,086 reads were discarded. The rarefaction depth
was selected to minimize the loss of samples, with Good’s coverage estimator greater than 0.97,
suggesting that community richness had been mostly captured. The abundance-based alpha-diversity
metric Shannon index and the beta-diversity metric Bray-Curtis dissimilarity were calculated for the
rarefied OTU table using the QIIME scripts “alpha_diversity.py” and “beta_diversity.py,” respectively.

The temporal stability of the skin community was assessed using the Bray-Curtis dissimilarity metric,
with symmetrical body sites pooled. Between-sample dissimilarities were classified into three groups:
within an individual, between cohabitants of the same household, or between individuals from different
households. Each household had one to five occupants, and cohabitation is indicated by a common
prefix (e.g., for individual TK 3Z, TK is the household name). Intervals between sample times were
represented as an integer from 0 to 3, where 0 represents the same season, 1 represents winter to spring,
spring to summer, and summer to autumn, 2 represents winter to summer and spring to autumn, and
3 represents three seasons apart starting from winter.

Malassezia species-level identification. As the curated ITS database was unable to provide taxo-
nomic classification at the species rank, a custom species-level reference database with 90 ITS1 se-
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quences for the common skin genus Malassezia was used as described previously (52). Briefly, reads
belonging to Malassezia OTUs were filtered and classified against the reference database based on a
sequence similarity of greater than 99% using the “-usearch_global” command in USEARCH. In the first
round of classification, 29 out of 155 Malassezia OTUs were assigned to a known species or strain in the
database. The remaining unclassified Malassezia OTUs were then interrogated against the NCBI nr
database, and only those that matched reference sequences containing the complete ITS1 region with
at least 99% identity were considered correct hits. With this approach, the majority of Malassezia reads
(4.8 million out of 5.2 million) were classified to the species rank.

Identification of CRT and the contribution of CRT to intrapersonal community dissimilarity. CRT
were identified for each individual (referred to as individual-specific CRT) using the R script described by
Shade et al. (26). In brief, these transiently abundant taxa were identified from the rarefied individual OTU
tables as OTUs with coefficient of bimodality greater than 0.9 and a peak abundance greater than 0.5%
of the total community when blooming. This abundance threshold enables detection of taxa with subtle
temporal changes, as a steep decline in the number of CRT was observed with an increasing abundance
threshold (see Fig. S8 in the supplemental material). As Bray-Curtis dissimilarity is a scaled summation of
the absolute difference in abundance between two communities, the contribution of CRT to intraper-
sonal community dissimilarity between two samples was calculated as a ratio with scaling summation
with all taxa in the denominator and the summation attributed to CRT in the numerator.

Identification of signature taxa using the random forest algorithm. Random forest analysis was
implemented using the package “randomForest” (59) (version 4.6-14) in R (version 3.3.0), with a
rarefication depth of 1,086 reads per sample and 500 trees. This supervised machine-learning method
was used to identify OTUs with high power to discriminate between individuals, by iteratively generating
individual identification predictions and calculating the decrease in classification accuracy that would
result from excluding a given OTU from the group of predictors. The algorithm was performed on a
seasonal basis with all OTUs from a given season included in the analysis.

To identify signature taxa for each host community, the prevalence (i.e., proportion of samples in
which a predictor is detected within an individual) as well as the mean relative abundance and the
coefficient of variation (CV) of relative abundance across body sites and seasons were calculated for each
predictor in each host. OTU predictors present at all body sites within a particular subject with a higher
discriminatory power and low CV in relative abundance over time are defined as individual-specific
signature taxa, as described by Oh et al. in a previous temporal study of human skin microbiota (11).

Coassociation networks. Skin community coassociation networks were constructed using the
SPIEC-EASI (version 1.0.2) (42) software on a seasonal basis with all samples from a given season included
in the analysis. The algorithm was executed in Meinshausen-Bühlmann neighborhood selection mode,
with a minimum lambda of 0.01 and a subsampling number of 50. As the coassociation network could
be biased by taxa that are confined to a specific individual, OTUs detected in �25% of the samples in
each seasonal data set were excluded from the network analysis. The final network model was selected
via the “stability approach to regularization selection” and was visualized using the R package “igraph”
(version 1.2.2) (60) with unconnected nodes discarded. The modularity of the coassociation networks was
calculated using the edge betweenness community detection method, and the node with the highest
centrality was defined as the hub OTU. Network density (D) was calculated using the “edge_density”
function of R package “igraph,” which is defined as the ratio between the number of edges and the
number of all potential connections of a network.

To test the significance of coassociation network path lengths, 10,000 networks were randomly
assembled with the same number of nodes and similar density as the original network for a given season.
Average path length was calculated for the original and random networks using the “mean_distance”
function of R package “igraph.”

Seasonal assembly of skin community predicted by Sloan neutral model. The Sloan neutral
model (31) was applied to assess the importance of neutral process in the assembly of skin communities
over seasons using the R code described by Burns et al. (36). In general, the model predicts that species
that are more abundant in the metacommunity are more likely to disperse by chance, whereas less
abundant species are more likely to go extinct due to ecological drift (31). For a given season, the
frequency of occurrence of OTUs in a set of local communities (i.e., skin community of an individual host)
and their mean relative abundances across the metacommunity (i.e., skin communities of all individuals)
were fitted to the model. All OTUs in a season were sorted into the three partitions based on whether
and how they deviated from the 95% confidence interval around the neutral model prediction:
above-neutral (occurred more frequently and/or at greater abundance than predicted by the neutral
model), below-neutral (occurred less frequently and/or at lower abundance than predicted), or neutral
(within prediction). The 95% confidence interval was determined using the “Hmisc” (61) (version 4.1-1)
package in R. The fit of the neutral model was compared to the fit of the binomial model based on the
Akaike information criterion (AIC) scores. The binominal model was computed using the R code
described by Burns et al. (36) as a build-in model. The goodness of fit of the neutral model to seasonal
skin data was assessed using the coefficient of determination (R2), and the estimated migration rate was
represented with the parameter m.

PCoA was applied to visualize the compositional difference between the three partitions across four
seasons based on the binary Jaccard distance metric. Each partition in a season was treated as a distinct
community and rarefied to an equal depth of 6,181 reads (total number of reads of the smallest
partition).

Statistical tests. All statistical differences between groups used either the nonparametric Mann-
Whitney U test (two groups) or Kruskal-Wallis test (three or more groups). Permutational multivariate analysis
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of variance (PERMANOVA) was conducted with the “adonis” function in R package “vegan” (62) (version 2.5-3).
Spearman’s rank correlation coefficients were computed using the “cor.test” function in R.

Ethics approval and consent to participate. Ethics approval for subject sampling and publication
of data originating from subjects included in this study was granted by the City University of Hong Kong
Ethics Committee (reference no. 3-2-201312 [H000334]).

Data availability. Computer scripts are available at FigShare (https://figshare.com/s/4e41b1d0894
aceb669f3). Raw sequencing reads (480 skin samples and one negative control) in this study have been
deposited in the NCBI SRA archive under accession no. SRP126376.
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