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Abstract: Carbapenemase–producing Klebsiella pneumoniae strains (Cp-Kpn) represent

a challenge for clinical practitioners due to their increasing prevalence in hospital settings

and antibiotic resistance. Clinical practitioners are often overwhelmed by the extensive list of

publications regarding Cp-Kpn infections, treatment, characteristics, identification, and diag-

nosis. In this perspective article, we provide key points for clinical practitioners to consider

for improved patient management including identification of risk factors and strategies for

treatment. Additionally, we also discuss genetic underpinnings of antibiotic resistance,

implementation of an antimicrobial stewardship program (ASP), and use of automated

systems for detection of Cp-Kpn. Collectively, implementation of such key points would

enhance clinical practices through providing practical knowledge to health professionals

worldwide.

Keywords: carbapenemase–producing Klebsiella pneumonia, clinical practitioners,
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Introduction
K. pneumoniae, described by Edwin Klebs in 1875, is a gram-negative bacterium

belonging to the Enterobacteriaceae family. This microorganism is part of the

healthy microbiome of individuals and colonizes many parts of the body. Despite

its role as a healthy component of the microbiome, it can cause severe infections in

critically ill patients, newborns, immunocompromised individuals or those with

other risk factors in healthcare establishments. Antibiotics such carbapenems are

widely used to treat infections, especially those caused by Enterobacteriaceae,

a producer of extended-spectrum β-lactamase (ESBL); however, the use or misuse

of such antibiotics has contributed to the appearance of isolates resistant to

carbapenems.1

Carbapanem-resistant K. pneumoniae (Cr-KPN) is a pathogen that affects people

worldwide, with prevalence in low, middle and upper income countries. Resistance to

carbapenem is mediated by two primary mechanisms. First, Cr-KPN is able to

produce β-lactamases with the ability to hydrolyze cephalosporins such AmpC

cephalosporinase e.g. DHA-1 and CMY-2 or ESBL e.g. CTX-M-2 in combination

with decreased membrane permeability in the cell wall.2,3 The second mechanism is

mediated by the production of a β-lactamases capable of hydrolyzing most β-lactams

antibiotics including carbapenems. According the Ambler classification it belongs to

class A (K. pneumoniae carbapenemase, KPC), class B or metallo-β-lactamases

(MBL) (New Delhi metallo-β-lactamases, NDM) and class D (OXA-48-like
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carbapenemases).4 The NDM carbapenemase was reported

from K. pneumoniae and Escherichia coli in 2009, similar

to other member of MBL it requires of zinc for hydrolysis

of β-lactam antibiotics and their activity could be inhibited

by ethylenediaminetetraacetic acid (EDTA) as chelating

agent.5 KPC–producer K. pneumoniae (KPC-Kp) is

a pathogen with a high capacity for clonal expansion and

exchange of mobile genetic elements (MGEs) promoting

increased resistance. KPC-Kp among their capacities to

generate resistance can also persist in human reservoirs

and create biofilms, which provide protection from hospital

disinfection protocols.6

Since the first report of KPN-Kp in the United States in

1996,7 its presence has been evidenced in many other coun-

tries including China, Italy,8 Brasil, Venezuela, Colombia,

Ecuador and Argentina.9 In these countries, KPC-Kp infec-

tions have contributed to an increased mortality and sub-

stantial costs for health care systems. Detection of KPC-Kp

is carried out in clinical microbiology laboratories (CMLs)

and is the first step in that physicians take when determining

a therapeutic strategy (dose and time of administration)

involving active antibiotics; however, accurate and consis-

tent interpretation of CML reports is a long-standing pro-

blem across health care systems, particularly in low and

middle income countries. Clinical practitioners without

appropriate training or CMLs removed from medical facil-

ities contributed to the erroneous therapeutic decision-

making that facilitates the spread of antibiotic resistance,

which ultimately results in adverse outcomes for patients.

The vast existing literature detailing KPC-Kp, its

pathogenicity, mechanisms of antibiotic resistance and

assays used for its detection in CMLs has not been clearly

outlined for physicians in clinical practice. The aim of this

perspective article is to provide key points of information

for students and clinical practitioners (non-laboratory

related) about infections characteristics and CML reports

regarding KPC-Kp. By increasing practitioners’ under-

standing and interpretation of CML reports and clinical

facilities, such clear, evidence-based information will

enhance therapeutic strategies and patient outcomes.

Risk Factors and Strategies for
Treating Carbapenemase-Producing
Klebsiella pneumoniae (Cp-Kpn)
Infections
Nosocomial dissemination of Cp-Kpn results primarily

from failure to properly disinfect surfaces and medical

equipment. Environments routinely exposed to water and

humidity, such as drains, sinks, faucets, and other locations

where liquids are dispensed, are places were pathogens

like Cp-Kpn can survive and disseminate, thus increasing

the risk of bacterial outbreaks.10,11 Medical equipment and

devices are also common vectors of Cp-Kpn in hospitals.12

It has been reported that Cp-Kpn can colonize medical

equipment such as duodenoscopes and be transmitted to

other patients.13 Healthcare professionals’ uniforms and

protective clothing such as gown and gloves can also

become contaminated with Cp-Kpn after patient examina-

tion if not properly used or discarded.14 The reinforcement

of hygiene protocols in healthcare facilities appears to be

the most important measure for preventing outbreaks as no

direct associations have been found between prevalence of

Cp-Kpn outbreaks and differences in institutional infra-

structure in low versus high-income countries.8

In recent years, reports of Cp-Kpn outbreaks, particu-

larly KPC-Kp, have increased worldwide due to the lack of

appropriate medical intervention, prolongated hospitaliza-

tion, presence of comorbidities, and overuse of antibiotics,

among other factors.6 Healthcare-acquired infections are

a common and major concern across hospital settings in

Greece, the USA, Israel, Spain, China, Colombia, Brazil,

and Italy (Xu et al, 2017). Mortality rates among patients

infected by Cp-Kpn is approximately 40–50%.15,16 Prior

use of fluoroquinolones, carbapenems or cephalosporins

antibiotics, long-term intensive care, chronic renal failure,

high APACHE III score and, more recently, the emergency

of Cp-Kpn colistin-resistant isolates have all been found to

contribute to poor patient outcomes.17,18

The Centers for Disease Control and Prevention (CDC)

has released guidelines for controlling the spread of carba-

penem-resistant Enterobacteriaceae in healthcare facilities

based on the following key points: 1) education and training

for healthcare professionals and supportive personnel to

reinforce protocols of hand hygiene, 2) patient contact pre-

cautions, 3) minimal use of invasive devices, and 4) envir-

onmental cleaning. Active surveillance and continuous

testing for quality hospital standards are recommended.

Early laboratory identification and notification of bacteria

strains is also emphasized as key for prescription and timely

antibiotic therapy. Additionally, the implementation of an

antimicrobial stewardship program is suggested as this will

provide support in the fast identification of colonization or

infected status of a patient.19 In support of this evidence,

empirical treatment based on risk factors and prompt deci-

sion-making has been shown to help reduce mortality
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related to Cp-Kpn infections in healthcare institutions.20,21

Direct communication between CMLs and clinicians facil-

itates rapid diagnosis in these settings, which leads to faster

adoption of targeted therapeutic strategies and effective

combination of antibiotics, ultimately improving patient

outcomes, especially among critically ill patients.22

Antibiotic Resistance and Genetic
Basis of blaKPC
The antibiotics imipenem, meropenem, ertapenem, and

doripenem are members of the β-lactam family, and most

frequently used to treat Enterobacteriaceae infections,

especially in ESBLs-producing strains. The efficacy of

these antibiotics comes from their possession of

a reactive β-ring, similar to that of penicillin, cephalos-

porin and monobactam. Their trans configuration at the

C-5–C-6 bond gives these antibiotics increased potency

and the capability to inhibit cell wall synthesis by prevent-

ing cross-linking of peptidoglycan and transpeptidases

(Papp-Wallace, Endimiani, Taracila, & Bonomo, 2011).

The mechanisms of carbapenem resistance in

K. pneumoniae and other Enterobacteriaceae strains depend

on β-lactamases production, such as ESBLs. ESBLs are

encoded in plasmids or by hyperproduction of chromoso-

mally-encoded AmpC cephalosporinases (AmpC) together

with the presence of porin alterations in the bacterial wall

delaying the diffusion of antibiotics into the bacterial cell;

however, the production of enzymes with carbapenemase

activity hydrolyzing β-lactam antibiotics seems the most

common mechanism of antibiotic resistance.23 For example,

the enzymes KPC, BKC and SME carbapenemase, which all

fall under the category of Class A β-lactamases, contain

serine residues in their active site that hydrolyze β-lactam

antibiotics.24–26 The presence of KPC carbapenemase in

K. pneumoniae and different Enterobacteriaceae species

isolates, depends, in part, upon whether or not it is located

on a mobile genetic element (MGE), such as conjugative

plasmids e.g. IncFII, IncL/M, IncA/C,27 and its proximity

to Tn4401 transposons28 or non-Tn4401 elements

(NTE-KPC).29 The presence of plasmid-self transmitting

pKpQIL (group incFII plasmid) harboring blaKPC in

K. pneumoniae complex clonal (CC)258 (an international

clone), has been reported to increase bacterial fitness by

providing an advantage over isolates harboring different

plasmids. Targeting sources of resistance like those found

in pKpQIL would decrease the likelihood of bacterial dis-

semination in nosocomial settings.30

The Role of Clinical Microbiology in
Antimicrobial Stewardship Programs
(ASPs) in Order to Effectively
Control KPC-Kp
As previously described, the spread of KPC-Kp is an impor-

tant concern across health care systems in both developed

and emerging countries.4 Implementation of hospital-based

ASPs that emphasize the optimization of antibiotic use for

controlling multidrug resistant bacteria (MDR) infections

and preventing new resistance are needed in order to

address increasing bacterial resistance in hospital settings.

An ASP program should promote effective antibiotic treat-

ment that avoids use of unnecessary antibiotics, basing its

practice on de-escalation therapy and evidence-based guide-

lines to overcome empirical therapeutic errors and adverse

events (Clostridium difficile infections).31 To optimize the

benefits of an ASP in a hospital setting, active participation

of clinical microbiologists is a necessary component of

multidisciplinary teams of health professionals. Close col-

laboration between clinical microbiologists, ID physicians,

and clinical practitioners would facilitate the exchange of

information, recognition of unusual mechanisms of resis-

tance in pathogens, the application of accurate antimicrobial

testing assays, swift communication, and early therapeutic

intervention.19

In CML the phenotypic tests to detect carbapenemase

production in Enterobacteriaceae are widely used spe-

cially in low incoming countries, in some cases the

reagents availability and low costs are the main factors

implicated in their use. Thus, in isolates with carbapene-

mase production suspected the use of tests based in inhi-

bitors such boronic acid compounds or EDTA to detect

KPC or MBL carbapenemases respectively has become

widespread in these laboratories.32 Recently, the modified

carbapenem inactivation method (mCIM) has replaced to

modified Hodge test (MHT) in CML due its greater capa-

city to detect the carbapenemase activity in isolates carba-

penem resistant, is easy to perform and their low costs.

The use of colorimetric assays such Carba NP or related is

a common practice to detect carbapenemases from isolates

or blood culture bottles, however, the costs could be

a limitation for routine use.33 In the practice, the pheno-

typic tests are recommended only for epidemiological or

infection control, however the misinterpretation of the

results and time of effort without a congruent diagnose

(strain identification, resistance and state of patient) could

interfere with therapeutic decision-making.

Dovepress Reyes et al

International Journal of General Medicine 2019:12 submit your manuscript | www.dovepress.com

DovePress
439

http://www.dovepress.com
http://www.dovepress.com


New laboratory tests have been reported to provide

information about the detection and analysis specially of

KPC carbapenemases production, changing the ways in

which hospitals prevent the spread of pathogens. Control

of Cp-Kpn infections inside the hospital and communica-

tion about their management, particularly in the spread of

KPC-Kp, pose a challenge in part because laboratory

reports are not easily understood by infectious disease

(ID) physicians and clinical practitioners.34

The Use of Automated Systems for
Detection of KPC Carbapenemase
In CMLs, antibiotic susceptibility testing (AST) can be per-

formed by using a broth dilution test (BD), antimicrobial

gradient method (AG), or disk diffusion test (DD), which

determinesMinimum Inhibitory Concentration (MIC) values

through of BD and AG methodologies.35 Protocols for inter-

preting these tests are based upon breakpoints recommended

by the Clinical and Laboratory Standards Institute (CLSI) or

the European Committee on Antimicrobial Susceptibility

Testing (EUCAST). This breakpoint allows for greater detec-

tion of the number of carbapenemase -producer

Enterobacteriaceae isolates; however, some of these strains

could be classified as carbapenem sensitive, especially if

using Meropenem. The level of MIC may depend upon its

association with different mechanisms (e.g. other

β-lactamases enzymes or the presence of porins).36 For this

reason, MIC determination must be fast, accurate, and show

the full range of MIC values for any antibiotic, especially

before the administration of treatment. The Food and Drug

Administration (FDA) of the United States has approved

several AST automated assays, and they are currently being

employed in several reference CMLs. Automation of AST

has brought several advantages, including rapid generation of

susceptibility test results (3.5–16 h), fewer sample manipula-

tions, and increased accuracy in species identification and of

results overall.37

Each automatized assay has advantages and disadvan-

tages in the determination and interpretation of MIC values,

and shortcomings must be managed carefully when detect-

ing and reporting the mechanisms of antibiotic resistance.

The Vitek 2 system, produced by bioMérieux, analyzes

several microliters of a given antibiotic after it has been

poured into plastic cards. Assays are monitored for turbidity

and subsequently interpreted by an Advanced Expert

System (AES). Another automatized assay, the Phoenix

system (BD Diagnostic Systems) utilizes the BDXpert

system, a rule-based software that is capable of interpreting

and give recommendations related to the organism identi-

fied by broth microdilution results based in CLIS and

EUCAST documents reports. In addition, the assay system

includes EpiCenter software, which conducts epidemiologi-

cal analyses for monitoring multidrug resistant bacteria in

hospital settings.38 The MicroScan assay (Beckman

Coulter) is powered by LabPro AlertEX System software

and detects atypical results in panels. The Sensititre

(Thermo Scientific™) consists of plates with antibiotic dilu-

tions powered by the ARIS™ 2X System and provides

automatic, non-extrapolated reads of the MIC values, simul-

taneously reducing the workload for lab technicians and

improving the accuracy of results. Despite each method’s

unique advantages, utilizing different automated platforms

for detecting carbapenem resistance in K. pneumoniae har-

boring blaKPC can lead to discrepancies across studies,

which results in frequent reporting of very major errors

(VME). VME of true-resistant isolates has led to cases of

failure in antibiotic therapy. For example, Tenover et al

showed discrepant results for imipenem and meropenem

determination in 15 blaKPC-positive K. pneumonia. After

being characterized by isoelectric focusing, all strains were

found to be resistant or intermediate to imipenem and

meropenem using broth microdilution (BMD) as a gold

standard. VME were observed in imipenem determinations,

MicroScan: 1 (6.7%) Phoenix: 2 (13.3%), Vitek: 10 (67%),

Vitek2: 5 (33%) isolates. Sensititre showed 13 (87%) strains

sensitive to imipenem, and 12 (80%) to meropenem.39

Bratu et al showed similar results of VME when testing

resistance to imipenem in blaKPC-positive Klebsiella pneu-

monia after conducting analyses using the Vitek system (1

isolate) and MicroScan (2 isolates).40

To reduce VME, breakpoint updates for carbapenem and

other antibiotics were established in 2010 by the CLSI. This

modification decreased the occurrence of errors, and several

studies have reported a subsequent increase in specificity.

Doern et al showed that the updated CLSI breakpoints

resulted in better detection of KPC-producing

K. pneumoniae and KPC-producing non-K. pneumoniae.41

Their results were corroborated by Woodford et al in their

study assessing three commercial systems to detect carba-

penem resistant isolates, which showed that the sensitivity

and specificity values for the presence of carbapenemase

were 100%/0% to BD Phoenix, 82 to 85%/6 to 19% in

MicroScan, and 74%/38% to Vitek 2. No VMEs were

reported in KPC-producing Enterobacteriaceae.42 Pasteran

et al, proposed the importance of simultaneously testing two
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or more carbapenems (impenem and meropenem) in Vitek 2

systems in order to enhance the detection of carbapenemase

production in Enterobacteriaceae, including those KPC-

producing strains.43

Phenotypic tests for the detection of AmpC inhibition

would result helpful in the distinction of AmpC β-
lactamases from ESBL and Metallo-β-lactamases (MBL).

Tests like the AmpC disk, Gots (Modified Hodge Test,

MHT) and three-dimentional test allow its detection

when no molecular analysis are available. Important to

point out, MHT can provide false negative information

about AmpC and EMBL active bacteria being positive

for the AmpC Disk Test. The Disk Test would be helping

to permeabilize gram-negative cells β-lactamases release.

AmpC β-lactamases and MBL can be detected by multi-

plex AmpC PCR with high consistency.44,45

During CML analysis, AST can present several chal-

lenges that should be carefully considered as they have the

potential to influence results. The inoculum effect,

the algorithm used to detect carbapenem resistance, and

the type of card used to identify the resistance can influ-

ence MIC determination.46 For example, in clinical prac-

tice, the fixed and specific range of antibiotic dilutions

incorporated in different panels in the automatized assays

make it difficult to know whether the MIC values of

meropenem or imipenem are out of range; however, cus-

tomizing cards by incorporating specific antibiotics and

their dilution concentrations has enabled microbiologists

to overcome this problem. The resulting MIC values are

very important in decision-making regarding therapeutic

management of infections by KPC-Kp. This topic has been

highlighted by Tumbarello, who showed a low mortality

rate in bloodstream infections using meropenem in anti-

biotic schemes, especially in strains with ≤ 8 mg/L.18 In

their study, Del Bono et al used the values of pharmaco-

kinetic/pharmacodynamic (PK/PD) targets of meropenem

(MEM). These values were not reached in critically-ill

patients with bloodstream infections (BSI) due to isolates

of KPC-Kp with MEM minimum inhibitory concentrations

(MICs) ≥16 mg/L.47 Additionally, a practical alternative

for improving the identification of KPC-Kp could be to

perform gradient diffusion methods or customized cards.

In summary, the clinical practitioner must know and

understand the presence of the VME issues specific to

each automatized assay used in the CML, the necessity

of testing two or more carbapenems in order to detect

resistance, how to interpret the MIC, and how to make

appropriate decisions regarding the therapeutic strategy.

Molecular Methods and the
Detection of KPC Carbapenemase
for Therapeutic Decision-Making
In ASP, quick generation of an AST report is crucial for

accurately prescribing antibiotic therapy, especially for

patients with sepsis. Despite the advances of automation

in CML analysis, DD, BD and AG testing methods all

require considerable time (24–48 hrs) to yield results.

Performing such assays requires a pure culture of a given

pathogen and time to grow and estimate their susceptibil-

ity. Several new technologies that draw upon molecular

methodologies have been introduced in CMLs in order to

overcome the challenges related to time-intensive testing.

For example, the molecular antibiogram (MA) is an alter-

native tool that detects resistance mechanisms clinically

relevant to predicting clinical resistance by hydrolysis of

antibiotics.48 Several panel-based molecular diagnoses for

MA, approved by the FDA, detect pathogens from samples

such as blood culture bottles, respiratory secretions, stool,

and cerebrospinal fluid. In cases of sepsis, the FilmArray

Blood Culture Identification (BCID) panel (BioFire

Diagnostics, LLC) and Verigene Gram-positive blood cul-

ture (BC-GP) and Gram-negative blood culture (BC-GN)

tests (Luminex Corporation) can identify a wide range of

pathogens and include the detection of mecA, VanA, VanB,

blaKPC, blaNDM, blaOXA, blaIMP and blaCTX-M genes, all

related to MRS, directly from blood-cultured bottles.49

Several published studies showed clinical and therapeu-

tic advantages for the use of MA in the identification of

pathogens and the presence of the most common resistance

genes. MA testing panels for Gram-positive and Gram-

negative bacteria provide fast CML reports, helping physi-

cians to effectively elect courses of treatment. Nevertheless,

increasing the quantity of studies regarding the MA testing

panels for KPC-Kp is important for continuing its applica-

tion in multiple clinical settings. Despite its costliness, the

application of MA has been found to decrease mortality

rates, the time to de-escalation of antibiotics, and unneces-

sary antibiotic initiation. ASP has been shown to decrease 1)

infections by resistant organisms such as vancomycin resis-

tant enterococci (VRE), 2) patients length of stay (LOS),

and 3) costs related to health care.50–55 As with any other

molecular test, the potential for contamination of sample

bottles by commensal bacteria could generate uncertainty

when clinicians make decisions regarding treatment. To

apply MA testing, a protocol with quality-control standards

must be implemented for the handling of samples and
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conducting procedures in order to detect the highest number

of pathogens possible and to rule out the possibility of

contamination by previous Gram stains. Though ASP has

been shown to improve patient mortality rates in cases of

sepsis related to KPC-Kp, more evidence of its clinical and

therapeutic impact is needed, particularly in hospital settings

of low and middle-income countries.

The sensitivity and specificity of molecular assays for

detecting blaKPC genes from blood cultures are approxi-

mately 100% and 98%, respectively.56–58 Hill et al eval-

uated the accuracy of Verigene in Gram-Negative Blood

Culture (BC-GN) (Nanosphere, Inc., Northfield, IL) In 54

samples tested, 51 isolates resulted correctly identified and

the overall results showed that 31% of the patients could

have been identified 33 hrs sooner and thus could have

received earlier.59 Neuner et al included 877 patients, of

which 6 patients were identified as possessing the blaKPC
gene by employing the Verigene assay. Overall, these

results show that the application of ASP combined with

MA decreased the time of antimicrobial switch, active

therapy administration, and LOS.60

Despite evidence of MA’s potential to improve clinical

and therapeutic results in cases of antibiotic resistant bac-

teria, MA diagnosis related to blaKPC determination is not

sufficient, and important factors related to its limitations

should be taken in consideration. Even if MA could be

applied in blood samples, MIC determination is also

necessary in order to apply an optimal antibiotic combina-

tion. The expression of blaKPC in K. pneumoniae is not

uniform and could stem from DNA regulatory changes

upstream of blaKPC gene, possibly affecting the MIC

values and therapeutic response.61 Colistin is recom-

mended in combination therapy in patients with KPC-Kp

infection; however, this still represents a risk for emerging

KPC-Kp colistin resistance, as there is currently no mole-

cular method available to detect it.

Treatment
At the moment, there is no antibiotic scheme regarded as

the “gold standard” for KPC-Kp infections. The choice of

treatment depends upon the site of serious infection, type

of carbapenemase, and the susceptibility profile of the

isolate. In critically-ill patients, there is evidence to sug-

gest that combined therapy is preferable to monotherapy.

Many reports, including large retrospective cohort studies,

have demonstrated that more treatment failures and higher

mortality rates are associated with monotherapy antibiotic

schemes consisting of polymyxin (colistin), carbapenems,

tigecycline and gentamicin. Receiving combinatory thera-

pies with at least two drugs with tested CML activity has

shown greater effectiveness in critically-ill patients. The

association of meropenem with other antibiotics is impor-

tant and beneficial when the KPC-Kp isolate has a MIC of

meropenem ≤ 8mg/L;62 however, in β-lactam antibiotics,

is important to maintain antibiotic exposure. Enhancement

of fT>MIC could be achieved using either continuous,

total daily dose infused over a 24 hr period or prolonged

infusions.20

Ceftazidime is a third generation cephalosporin that

can be used in combination with avibactam (β-lactamase

inhibitor) if the organism is a KPC or OXA-48 producer.

A second antibiotic, such as carbapenem, can be added if

both isolates have MICs near the susceptibility breakpoint.

Using this antibiotic combination could yield positive

results and should be considered when treating serious

infections due to these pathogens;63–65 however, resistance

has emerged in KPC-3-producing K. pneumoniae, pointing

to a failure in combinatory treatment. In this case, a more

exhaustive analysis should have been performed during

the course of treatment in order to rapidly respond and

change the antibiotic combination.66,67 Recently, the com-

bination of meropenem with vaborbactam (formerly

RPX7009), a novel cyclic boronic acid-based beta-

lactamase inhibitor, was found to potentiat the activity of

meropenem. This combination may be more suitable for

treating severe drug resistant gram-negative infections as it

shows higher rates of clinical effectiveness. The body of

evidence surrounding the combination of meropenem and

vaborbactam is still limited compared to ceftazidime-

avibactam. Recently, other agents (imipenem-relebactam,

plazomicin, and cefiderocol) have begun to be evaluated in

clinical trials, and the results from these studies are

expected to improve clinical response and its application

in ASP.68 Other potential active drugs for treating KPC-Kp

include classic and new combinations of aminoglycosides,

tigecycline, fosfomycin, and the Eravacycline, a fully-

synthetic fluorocycline antibiotic, which is used in com-

plicated intra-abdominal infections.69,70 Uncomplicated

and complicated urinary tract infections caused by

KPC-Kp are frequently reported in hospital settings; how-

ever, there is no evidence about the best antibiotic regimen

for its treatment. It may be possible to include aminogly-

coside alone or to use on combination with fosfomycin or

doxycycline, as it has shown promising results for treating

this type of infection.70
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Conclusion
This review provides relevant information for clinical

practitioners about the state of the literature on KPC-Kp

and current diagnostic tests for its detection. We suggest

that healthcare professionals use the key points presented

in this review in order to precisely identify and treat

KPC-Kp infections. Understanding the genetic underpin-

nings of antibiotic resistance, its clinical manifestations,

and standard diagnostic procedures in CMLs will prevent

outbreaks and provide healthcare practitioners and scien-

tists with evidence for understanding KPC-Kp dynamics

and epidemiology.
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