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Abstract

Scapsipedus icipe Hugel and Tanga (Orthoptera: Gryllidae) is a newly described edible

cricket species. Although, there is substantial interest in mass production of S. icipe for

human food and animal feed, no information exists on the impact of temperature on their

bionomics. Temperature-dependent development, survival, reproductive and life table

parameters of S. icipe was generated and integrated into advanced Insect Life Cycle Model-

ing software to describe relative S. icipe population increase and spatial spread based on

nine constant temperature conditions. We examined model predictions and implications for

S. icipe potential distribution in Africa under current and future climate. These regions where

entomophagy is widely practiced have distinctly different climates. Our results showed that

S. icipe eggs were unable to hatch at 10 and 40˚C, while emerged nymphs failed to com-

plete development at 15˚C. The developmental time of S. icipe was observed to decrease

with increased in temperature. The lowest developmental threshold temperatures estimated

using linear regressions was 14.3, 12.67 and 19.12˚C and the thermal constants for devel-

opment were 185.2, 1111.1- and 40.7-degree days (DD) for egg, nymph and pre-adult

stages, respectively. The highest total fecundity (3416 individuals/female/generation), intrin-

sic rate of natural increase (0.075 days), net reproductive rate (1330.8 female/female/gener-

ation) and shortest doubling time (9.2 days) was recorded at 30˚C. The regions predicted to

be suitable by the model suggest that S. icipe is tolerant to a wider range of climatic condi-

tions. Our findings provide for the first-time important information on the impact of tempera-

ture on the biology, establishment and spread of S. icipe across the Africa continent. The

prospect of edible S. icipe production to become a new sector in food and feed industry is

discussed.
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Introduction

Insect consumption is a practice that has increased but is still restricted to a few countries.

Nearly 2000 species are reported edible and approximately 300 million people consume insects

[1]. In Africa, nearly 500 consumable insects are reported to be eaten by human beings [2].

Edible insects form part of the diet of many Africans particularly as a delicacy. However, edible

insect supply largely depends on wild harvesting. With the increasing advocacy of economi-

cally feasible and environmental sustainability, the blueprint of insect mass production has

become a salient target [3].

In Sub-Saharan Africa countries, many cricket species are considered for large-scale pro-

duction [4–6]. These include Acheta domesticus Linnaeus, Gryllus bimaculatus De Geer and

Gryllus texensis [3, 5–7]. Furthermore, a newly described indigenous cricket Scapsipedus icipe
Hugel and Tanga was recently reported as one of the most promising species for use as food

and feed in the continent [8–9]. In Kenya, S. icipe is the dominant and most wide-spread spe-

cies across the low, mid and highlands [8].

Commercial insect farming systems are emerging globally due the urgent need for both via-

ble and sustainable alternative protein sources for improving the productivity of livestock and

aquaculture sectors [10]. Recent scientific advances have demonstrated the potential of insects

as an alternative sustainable protein-rich ingredient to the expensive conventional protein

sources (i.e., soybeans, fish oil, fishmeal, seed cakes and several other grains), which accounts

for 60–70% of production costs [11]. The animal feed sector in East Africa is organized, regu-

lated and has broadly accepted insects as an alternative protein source [12]. Furthermore, the

production of insects for human consumption to address acute food shortages and malnutri-

tion is widely being promoted world [3, 10–11, 13].

Although S. icipe is consumed as food in Africa, information on their rate of development,

thermal thresholds, survival, fecundity, fertility and longevity are lacking. Temperature is regarded

as one of the most significant environmental conditions that impacts insect evolution, adult life-

span, survival, sex ratio, fertility and distribution [14–18]. Among the above listed performance

indicators, the rate of development is conventionally used to quantify the effect of temperature.

Preceding studies have shown that each insect population has an optimal temperature at which its

development is most favorable as well as lower and upper temperature limits beyond which they

cannot develop [18–23]. Several studies have demonstrated that stage-specific mortality carried

out within widely varying temperatures are valuable tools in the study of population dynamics of

insects as they help to measure the rate of mortality at different stages in the life cycle and deter-

mine optimal, lower and upper limits of developmental thresholds [15, 17–18].

Based on these abiotic factors, distinct models have been employed to estimate the correla-

tion between these variables especially temperature and development processes of insects.

Generally, the interrelations between temperature and process rates are more or less linear at

moderate temperatures and curvilineal at maximum points [24]. Linear models have many

times been applied to determine the lower development temperature limit and thermic con-

stant within a narrow temperature range, with an assumption that the upper development

temperature limit is beyond the linear part of the correlation [19, 25]. Nonlinear models have

been advanced to relate the whole relationship that exists between the development of an

insect species and its developmental temperature, which ranges from the lower developmental

temperature threshold to an upper temperature threshold [23, 25–28]. Therefore, details on

the thermic requirements of a newly described insect species’ development would have signifi-

cant implications for mass production programs, as temperature determines the increase of

the population growth and size of any insect species and their differences under varying condi-

tions [17–18, 29].
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Considering the prospects of S. icipe in addressing food security, nutrition and employment

in the region [9], it is crucial to carry out comprehensive studies to understand the influence of

different temperature regimes on the bionomics of S. icipe, which is a prerequisite for mass pro-

duction and quality control programs, if the optimal conditions are known. Based on these find-

ings, we also wanted to know the potential distributional range of this new edible insect species

in Africa using climate suitability map. The climate suitability map highlights areas with lower,

optimal and upper developmental temperature thresholds where the species can survive and

develop, thus providing enabling environment to inform policy decision making with regards

to conservation of this new species where ever they may occur. Thus, temperature-dependent

population growth life-cycle simulation models were used to assess their spread in various agro-

ecological zones in Africa. The findings would inform geographically-targeted policies in order

to guide biodiversity hotspots for the conservation of S. icipe, an important, abundant, and

often ignored component of biodiversity. The strong performance of the model for hotspot pre-

diction emphasizes the importance of including new species’ natural history information [9] for

conservation decision-making, which could be easily adaptable to other insect species [30]. The

climate change impacts on S. icipe potential distribution and conservation is also discussed.

Materials and methods

Insect colony

The colony of S. icipe was initiated from wild populations [425 nymphs and 366 adult insects (248

females and 118 males)] trapped from the grassland fields in Coast, Central and Western of

Kenya during a country-wide survey conducted in 2016. The wild field populations were reared

according to the methods described by Magara et al. [9]. Adult crickets and nymphs were fed on

formulated diets, which consisted of a mixture of different feedstocks (cornmeal, wheat bran,

pumpkin leaves meal, fish offal meal and soybean waste meal) and maintained at 30˚C; 80±5% rel-

ative humidity and photoperiod of L12:D12, following the protocol described by Melisa [31] with

slight modifications. The crickets were provided water regularly on soaked cotton balls (5 cm

diameter) [9]. The stock colony was refreshed twice each year by introducing the F1 generation of

newly harvested wild population of S. icipe to minimize inbreeding. The stock was raised for over

eight generations before the commencement of the experiments. The stock colony is maintained

at the International Centre of insect physiology and ecology (icipe), Duduville campus, Nairobi

(1.221S, 36.896E; 1616 m above sea level) in the Animal Rearing and Containment Unit (ARCU).

The cricket populations used in the present where obtained from the ARQU.

Development, survival, growth and reproduction monitoring experimental

set up

The thermal effect on the development, survivorship/mortality and reproduction was investi-

gated in a thermostatically controlled incubators (Sanyo, MIR- 554) at nine constant tempera-

ture regimes (10, 15, 20, 23, 25, 30, 35, 37 and 40˚C), 80 ± 5% r.h. and L12:D12. A portable

digital thermo-hygrometer was placed inside each incubator to record the temperature and

relative humidity.

Thermal effect on development time, adult longevity, lifespan and stage-

specific mortality of Scapsipedus icipe
To collect eggs of same age, 500 adult females and 500 adult males of S. icipe were placed in

transparent plastic rearing cages (60 x 50 x 60 cm) with an opening sealed with a nylon mesh

net to offer adequate ventilation [8–9, 32–33]. The crickets were fed on an artificial feed as
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described above [9, 31]. Moist cotton balls were provided in each cage to serve as oviposition

medium. Freshly laid eggs (2–3 hours old) were carefully detached from the cotton balls using a

fine camel hair brush. The eggs collected were incubated individually on thinly spread moist cot-

ton wool, which was placed in a well-ventilated plastic cage (16 × 7 × 9 cm). Each temperature

treatment had a total of 100 eggs, each serving as a replicate. For each temperature regime, each

egg was monitored thrice daily (every six hours) for hatchability and percent mortality. The

emerged nymphs were supplied with 1 mg of the artificial diet and water as described above. The

duration of each moult (developmental time) and survivorship was recorded daily until adult

emergence for each temperature treatment. The sex ratio of adults emerged from each tempera-

ture regime was also recorded. The survivorship data for each life stage was recorded and used to

calculate stage-specific survivorship and mortality for each nymphal developmental period.

Thermal effect on body length and body weight of adult Scapsipedus icipe
To evaluate the impact of temperature on the body weight and body length of adult male and

female S. icipe, 10 adult males and 10 adult females were randomly selected from those that

emerged as adult in the above experiment. The crickets were transferred individually into

transparent plastic cages (15 cm length x 10 cm wide 6cm depth) secured with a nylon screen.

Water was provided ad libitum in Petri dishes using soaked pumice granules. Crickets were

fed for 7 days until sexual maturity, when all the body colourations were attained. Thereafter,

the weight of each cricket was measured using a digital electronic weighing balance with a pre-

cision of 0.0001 g (Kern and Sohn, D-72336 Ballngen, Germany). The width of each cricket’s

body was cautiously measured using digitalized Vernier callipers [34]. For the length of ran-

domly selected individual crickets, each was placed in a thin transparent plastic container with

a diameter of 8 cm and height of 12 cm. The container was then gently placed on a well-cali-

brated ruler, essential for traceability and accuracy measurement of the length of the cricket.

Thereafter, a smaller transparent container with 4 cm diameter and 6 cm height was carefully

used to cover the cricket inside the bigger container to significantly reduce mobility. Once sta-

ble the measurement of the length of the cricket was recorded with precision.

Thermal effect on female fecundity

Adult crickets emerged (2–3 hours old) from the previous experiment were randomly selected,

paired and kept separately in aerated transparent cages (20 x 20 x 15 cm) subjected to the dif-

ferent temperature regimes. Each pair of crickets were provided water on pumice granules in a

Petri dish and fed similar diets as described above. An oviposition substrate that consisted of a

soaked cotton ball was placed inside sterile Petri dish (60 x 15 mm) in each cage for egg laying

and to maintain the relative humidity. The oviposition substrate was exposed for 24 hours in

each cage and thereafter eggs laid were counted daily using a moistened fine camel’s hair

brush. Total number of freshly laid eggs per day per female throughout the lifespan were col-

lected and recorded within a uniform time interval of 2–3 hrs. The rate of hatchability of eggs

produced at each temperature treatment was carefully established. Additional, parameters

measured included: adult pre oviposition period (APOP; the timeframe between the emerged

adult female and the beginning of egg laying), the total pre oviposition period (TPOP; the

duration from newly hatched pinhead crickets to the time of first egg laying), the oviposition

duration (refers to the entire egg laying period of the cricket), the day by day fecundity and

total fecundity (sum number of eggs laid by an individual during its reproductive period), Post

oviposition period (POP; Period between last egg laid and death of cricket), survival and lon-

gevity of each adult in each treatment temperature were recorded. A total of 20 pairs of adult

crickets were observed at each tested temperature regime.

Temperature-dependent modeling and spread of Scapsipedus icipe
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An additional cohort of emerged adult (50 female and 50 male) crickets (2–3 hours old)

from each temperature treatment was kept separately in groups in transparent Perspex cages

(45 x 45 x 50 cm). From each of the different temperature treatments, the longevity and sur-

vival rate of male and female crickets were recorded separately.

Statistical analyses and modelling

The data on the developmental time of the various life stages of S. icipe, adult longevity and

females’ fecundity were compared across temperatures using one-way analysis of variance

(ANOVA; P< 0.001) and the means were separated using Student-Newman-Keul’s test at a

significance of 0.05 (P< 0.05) in R Statistic (Version 3.3.3) [35]. Temperature-dependent

models or functions were used to model the demographic characteristics of S. icipe, by employ-

ing the Insect Life Cycle Modelling program (ILCYM, version 3.0) [36]. This program has a

function builder that fits non-linear models as descriptors of correlation between temperature

and insect development characteristics. The function builder then utilizes its inbuilt statistical

criteria, combined with the data on the biology of the insect species under investigation, selects

the best fitting functions to describe the intermediate temperature-driven processes. After

that, it amasses the processes into a phenological model for the population under assessment

[36]. Akaike’s Information Criterion (AIC), which defines the best fit of an estimated statistical

model and the coefficient of determination R2, which is the portion of variation explained by

the function, as statistics used for model selection. The lower the AIC, the better the model

while the higher the R2, the better the model. A female ratio of 0.5 was taken into account for

all the temperature treatments under study.

Thermal effect on the development rate of immature stages of Scapsipedus
icipe
The rate of development of juveniles of S. icipe was evaluated as an inverse of development

time (rate of development = 1/median of developmental time) [37], for each juvenile stage and

the total developmental duration from egg to adult stage, and then plotted versus temperature.

The linear part of the rate of the developmental curve was modelled employing linear regres-

sion analysis hence establishing the relationship between the rate of development and temper-

ature [36]. The following linear equation was adopted:

r ðTÞ ¼ aþ bT ð1Þ

whereby r(T) refers to the rate of development at temperature T, and constants a and b are esti-

mated values of the intercept and slope, accordingly. The lower limit temperature (Tmin) was

determined at the intersection of the regression line at r (T) = 0, Tmin ¼ �
a
b. Thermal constant,

K also referred to as degree-day (DD) requirements) were evaluated using the inverse of the

slope of the inserted linear regression line [38].

The linear model cannot correctly capture the rate of development at extreme temperatures.

Therefore, by using AIC selection criteria [39] and R2, a nonlinear Logan 1 model [26] and

Allahyari model [23] were fitted between the rate of development, r (T) and temperature, T to

determine the correlation between temperature and development by use of the Marquardt

algorithm equation [40]. The Logan 1 model was applied to the egg stage while Allahyari

model was applied to the young nymphal stages (i.e., nymph and pre-adult data generated).

The Logan 1 equation is provided as:

r Tð Þ ¼ Y exp ðp:TÞ � exp p:Tmax �
Tmax � T

v

� �� �

ð2Þ
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whereby r (T) refers to the development rate of the insect at temperature T; while Y, p and v

are constants values. This model estimated the upper lethal temperature where there is no

measurable development and lower temperature limit below which the linear regression esti-

mated no measurable development.

The Allahyari equation is given as:

r Tð Þ ¼ P:
T � Tmin

Tmax � Tmin

� �� �n

Þ: 1 �
T � Tmin

Tmax � Tmin

� �m

ð3Þ

�

whereby r (T) refers to the development rate at temperature T, P refers to the number of

model parameters while n and m are constants values, Tmax is the maximum lethal tempera-

ture and Tmin is the minimum lethal temperature [23]. The maximum lethal temperature

(Tmax) and the temperature for the shortest development time was estimated from the Logan

models for each immature stage and the total development from egg to adult. Optimum tem-

perature (Topt) for survival (= temperature for lowest mortality) was estimated from the mod-

els for each immature stage.

Thermal effect on the mortality rate of immature stages models

Mortality of eggs and nymphs at various constant temperatures were best determined by the

Wang 2 equation [41] whereas Wang 3 equation [41] provided the best curve for mortality of

the pre-adult, respectively. The Wang 2 and Wang 3 equations were given as:

m Tð Þ ¼ 1 �
1

eð 1þe �
T� Tl
B

� �� �
1þe �

Th� T
B

� �� �
x HÞ

ð4Þ

m Tð Þ ¼ 1 �
1

eð 1þe �
T� Topt

B

� �� �
1þe �

Topt� T
B

� �� �
x HÞ

ð5Þ

whereby m (T) is the mortality rate at temperature T (˚C), Tl is the minimum lethal tempera-

ture, Th is maximum lethal temperature, Topt is the optimal temperature for survival, while B

and H are constant values of model parameters. In both Wang 2 and Wang 3 models refers to

the natural exponential.

Temperature- dependent reproduction models

A Wang 7 function [41] was considered as a suitable model in assessing the impacts of temper-

ature on fecundity. At the same time, the relative oviposition frequency, which demonstrates

the portion of total lifespan reproductive capacity that passes in each time period, was assessed

in connection to the normalized age of adult female crickets at a particular temperature. The

cumulative oviposition rate was graphed against the normalized age indicated as a ratio of age

in days over the average survival time. The Gamma equation [42] was utilized to fit the experi-

mental datasets and further help to evaluate parameters, for example, H, B1 and Bh. The Wang

7 function was provided as:

f Tð Þ ¼
1� H

ðexp ð1þexp ð� ðT� ToptÞ

B1

:
ð1þ exp ð� ðTopt � TÞ

Bh
ð6Þ

whereby f (T) refers to the fecundity at temperature T (˚C), x is the maximum fecundity, Topt

is the temperature at which maximum fecundity occurs, and H, B1 and Bh are other model

parameters.
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An exponential function was applied to recount the age-specific fecundity rate per tempera-

ture. The cumulative rate of oviposition was then plotted against normalized females’ age pre-

sented as a ratio of the age of female crickets in days divided by average survival time. The

exponential equation function is given as:

OðEÞ ¼ 1 � e� ðaEþBE2þcE3Þ ð7Þ

whereby O(E) refers to the cumulative oviposition frequency female crickets, E is the normal-

ized age of female crickets indicated as a ratio of the age of female cricket in days and average

survival time while a, b and c are function parameters.

Thermal effect on adult lifespan and senescence models

The cumulative frequencies of the adult crickets’ life span and treatment temperatures were

plotted versus normalized developmental times by fitting in Hilbert and Logan 3 [43] function

for adult female crickets and Exponential simple function for adult male crickets.

Hilbert and Logan 3 function is given as:

s Tð Þ ¼ trid
ðT � TminÞ

2

ðT � TminÞ
2
þ D
� e

� ðT
max�

ðT� TminÞ
Dt

� �0

B
@

1

C
A ð8Þ

whereby T is temperature, Tmax is the thermal maximum, Tmin refers to the lowest thermal

limit below which development cannot take place (= temperature development threshold) and

Tmax, is the uppermost thermal limit beyond which development will not take place while Dt,

D, and trid are parameters to be estimated by least squares nonlinear analysis. The least

squares estimated value of Tmax was used as a limit mark for viable temperature conditions for

S. icipe.
Exponential Simple function was given as:

s ðTÞ ¼ b1 � eb2�T ð9Þ

whereby s (T) is the rate of adult senescence while b1 and b2 are function parameters.

The oviposition was modelled by looking at the three temperature-dependent functions:

thus, temperature dependent total fecundity, age-related oviposition frequency and age-spe-

cific survival of adult crickets. Hilbert and Logan 3 formulae were applied to evaluate the

effects of various constant treatment temperatures on a total number of eggs oviposited by a

female cricket throughout her lifetime.

Life table parameters for Scapsipedus icipe simulation

The models developed for S. icipe demographic characteristics were compiled and utilized to

determine the life table parameters. Using stochastic simulation tool [44] in ILCYM, the life

table parameters such as the gross reproductive rate (GRR), which refers to the mean number

of nymph daughters bred by a living female during her reproductive period, the net reproduc-

tive rate (Ro), which also takes into account mother mortality, the intrinsic rate of increase

(rm), which is summarized from all the demographic variables indicating the ability of a popu-

lation to grow under particular environmental conditions, the mean generation time (T), and

doubling time (Dt) for the population were estimated. During simulations, 100 individuals at

the egg stage were involved and the simulation was conducted for six constant temperatures

from 20, 23, 25, 30, 35 and 37˚C. The simulation was replicated six times for each temperature.

This offered to signify how the change in temperature can influence S. icipe population growth

Temperature-dependent modeling and spread of Scapsipedus icipe
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and to estimate the temperature thresholds of S. icipe population growth. The simulated life

table parameters were analysed using ANOVA in R (Version 3.3.0) [35].

Current spatial simulations and mapping of Scapsipedus icipe in Africa

The temperature information used for spatial simulations in the current scenario was obtained

from WorldClim at http://www.worldclim.org. The information was a set of worldwide cli-

mate layers (grids) with completely different spatial resolutions that contain monthly average

minimum, maximum and mean temperatures that were interpolated from historical tempera-

ture records worldwide (NOAA data) between 1950 and 2000. The temperature data is well

recorded in Hijmans et al. [45]. For spatial population simulations and model output valida-

tions at totally different locations (point-by-point) temperature information directly obtained

from native weather stations were used.

Potential African wide establishment of Scapsipedus icipe
For simulating population parameters for S. icipe for the year 2050 (future scenario) we

employed downsized data of the SRES-A1B [46] to project temperature changes. The predic-

tions developed on the WorlClim data bank are reported by Govindasamy et al [47]. The

downsizing of data which was conducted by Ramirez and Jarvis [48] is freely available at

http://gisweb.ciat.cgiar.org/GCMPage. For point-by-point analysis, empirical data were cho-

sen as baseline data, and we assumed increases of 1, 1.6, 2.4 and 2.8˚C global temperature that

may be the average global temperature change according to the A1B model within the years

2030, 2050, 2080, and 2100, respectively.

Results

Effect of temperature on stage development, sex ratio, adult longevity and

lifespan of Scapsipedus icipe
The eggs of S. icipe were unable to hatch at 10 and 40˚C, while emerged nymphs failed to com-

plete development to adult at 15˚C. The nymphal stages of S. icipe were found to complete

development within the temperature range of 20–37˚C. The number of moults from 1st

nymphal instar to preadult stage was observed to decrease significantly with increasing tem-

perature. The highest number of moults were recorded at 20˚C (10 moults), followed by 23˚C

(9th moults) and 25–37˚C (8th moults) (Table 1).

Average developmental time of the immature life stages of S. icipe varied considerably

(eggs: F5, 5226 = 11371, P< 0.0001; nymphs: F5, 214 = 91.67, P< 0.0001; Pre-adult: F5, 408 =

2065, P< 0.0001) across the various temperature treatments (Table 1). The developmental

time from egg to adult varied significantly across the different temperatures (Female: F5, 208 =

2447, P< 0.001; Male: F5, 193 = 4533, P < 0.001). The average developmental time of the eggs

decreased from 76.2 days at 15˚C to 9.6 days at 35˚C. Similarly, the mean developmental time

of the nymphal stages was significantly (F29, 340 = 695.6, P < 0.001) shorter (3.9 times) at 37˚C

compared to that recorded at 20˚C (Table 1). The developmental rate of each immature life

stage of S. icipe was best described by the Logan 1 function and Allahyari function (Fig 1;

Table 2 and Table 3). Interestingly, the sex ratio of S. icipe was female-biased at 20, 23 and

30˚C, while that at 35 and 37˚C was male-biased (Fig 1). For adult longevity, male crickets

lived significantly longer than the females when subjected to various temperatures regimes

(F5, 401 = 7.60; P < 0.001). The same trend was observed for the total lifespan of the crickets

(F5, 401 = 9.65; P < 0.001) when exposed to the different temperature treatments.
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Developmental rate of Scapsipedus icipe
The lowest thermal limits for development was estimated from the linear regression were:

14.3˚C, 12.7˚C and 19.1˚C for eggs, nymphs and the pre-adult stage, respectively (Table 3).

The mean thermal constant required for each life stage to complete development was 185.2,

1111.1 and 40.7, Degree days (DD) for eggs, nymph and pre-adult, respectively. The optimum

temperature for development of the eggs, nymphs and pre-adult was recorded at 35˚C (Fig 2).

The upper-developmental threshold of S. icipe was estimated at 39.5˚C for egg, 43.5˚C for

nymphs and 39.2˚C for pre-adults (Table 3).

Thermal effect on mortality of immature stages of Scapsipedus icipe
The mortality of eggs and nymphal stages at various constant temperatures was best described

by the Wang 2 function (S1 Table) while that of the pre-adult stage was best fitted by Wang 3

function (S2 Table; Fig 3).

Thermal effect on adult body length and adult body weight

No significant interaction was observed between S. icipe’s body length, sex and temperature

(F5,108 = 0.39, P = 0.8500). However, there was a significant difference in male and female body

length when reared at different temperatures (F1, 108 = 68.69, P = 0.0001; Fig 4). The highest

body length of S. icipe was recorded at 30˚C for both females and males, followed by 25˚C and

35˚C. The lowest body length was recorded at 20˚C and 37˚C for both sexes (Fig 4). There was

a significant interaction between body weight, sex of S. icipe and temperatures (F5, 108 = 3.13,

P<0.0001). The body weight of S. icipe males and females was found to be significantly differ-

ence when compared at different temperatures (Female F5, 54 = 87.22, P<0.0001; Male F = F5,

54 = 111.30, P<0.0001). The heaviest females and males were recorded at 30˚C (Fig 4). The

body length and body weight of S. icipe was found to be strongly correlated (R = 0.88;

P< 0.0001).

Table 1. Mean (±SE) developmental time (days) of different life stages of Scapsipedus icipe at different constant temperatures.

Life stage Temperature (˚C)

10� 15 20 23 25 30 35 37 40�

Egg incubation period † 76.20±0.05 a 42.60±0.05 b 31.03±0.09 c 20.20±0.08d 10.40±0.05 e 9.61±0.05 e 9.80±0.08 e †

1st nymphal duration † 27.20±0.35a 14.72±0.19b 13.06±0.14b 9.35±0.06c 5.27±0.04d 5.46±0.05d 5.41±0.05d †

2nd nymphal duration † 29.86±0.21a 15.22±0.18b 14.04±0.14b 9.63±0.06c 5.65±0.06d 5.88±0.05d 5.84±0.07d †

3rd nymphal duration † 31.00±0.19a 18.09±0.21b 15.85±0.10b 9.68±0.05c 6.07±0.07d 6.04±0.04d 6.24±0.07d †

4th nymphal duration † † 20.44±0.17a 16.83±0.08b 9.59±0.07c 6.27±0.04d 6.08±0.04d 6.48±0.05d †

5th nymphal duration † † 20.78±0.22a 17.38±0.07b 9.86±0.07c 6.55±0.05d 5.94±0.06d 6.72±0.05d †

6th nymphal duration † † 20.72±0.24a 17.89±0.07b 10.17±0.08c 6.52±0.06d 6.08±0.08d 6.89±0.05d †

7th nymphal duration † † 21.04±0.18a 18.20±0.07d 10.84±0.08c 7.74±0.06d 7.43±0.08d 7.27±0.11d †

8th nymphal duration † † 20.63±0.28a 18.52±0.07b 12.93±0.09c 9.01±0.10d 9.49±0.08d 10.97±0.18d †

9th nymphal duration † † 21.00±0.21 18.82±0.10 ND ND ND ND †

10th nymphal duration † † 21.75±0.31 ND ND ND ND ND †

Pre-adult duration † † 20.36±0.03a 19.06±0.09a 14.12±0.09b 3.35±0.11c 2.82±0.11d 3.85±0.15d †

Egg-adult female † † 254.23±4.07a 196.16±0.60b 116.87±0.65c 66.80±0.29d 65.88±0.34d 68.50±1.54d †

Egg-adult male † † 256.46±4.62a 206.26±0.89b 115.85±0.77c 66.87±0.27d 63.75±0.58d 66.17±1.54d †

Means in the same row followed by the same letters are not significantly different (Student-Newman-Keul’s test: P<0.05).

ND–not detected (i.e. no further molting detected)
†- failure to develop to next instar.

https://doi.org/10.1371/journal.pone.0222941.t001
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Fig 1. Sex ratio of Scapsipedus icipe adults that emerged from the last instar nymph reared at different constant

temperature regimes.

https://doi.org/10.1371/journal.pone.0222941.g001

Table 2. Estimated parameters of linear and Logan model for effect of temperature on developmental rate (1/day)

for egg stage of Scapsipedus icipe.

Model Model parameters Egg

Linear

a -0.077±0.020

b 0.005±0.001

Tmin 14.33

k 185.19

R2 0.919

Logan 1

Y 0.002±0.001

Tmax 39.537±0.005

Topt 35.000

p 0.199±7.375

v 4.700±0.044

R2 0.988

R2 ("R squared")—Coefficient of determination; Tmin - Lower limit temperature; K—Degree-day (DD) requirements;

Y, p and v: Constants values; “P” refers to the number of model parameters while “n” and “m” are constants values;

Tmax - The maximum lethal temperature; Topt - Optimum temperature for survival; “a” and “b” are estimated values

of the intercept and slope.

https://doi.org/10.1371/journal.pone.0222941.t002
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Thermal effect on reproduction performance of Scapsipedus icipe
Scapsipedus icipe was observed to lay eggs at six constant temperatures ranging between 20–

37˚C (Table 4). However, the total number of eggs laid per female varied considerably across

the various temperature treatments (F5, 209 = 546.3; P < 0.0001). The effect of temperature on

the overall fecundity of S. icipe was best illustrated by the Wang 7 function, which successfully

predicted 30˚C as the optimum temperature with the highest fecundity (Fig 5A). Lifetime

fecundity of S. icipe reared at 30˚C was 15.4, 4.1, 2.9, 5.6 and 21.8 times higher compared to

that recorded at 20, 23, 25, 35 and 37˚C, respectively (Table 4). The correlation between the

cumulative portion of offspring produced per female and normalized female age was best fitted

by the Exponential function (Fig 5B). The model clearly illustrated that the 60% of eggs pro-

duced by S. icipe was achieved by the time adult females reached their lifetime midpoint at 25

and 30˚C. In general, 50% egg laying was completed by the time the female reached a normal-

ized age of 0.55.

The adult preoviposition period and the total preoviposition period were inversely corre-

lated to temperature (Table 4). Adult preoviposition (F5, 209 = 292.7; P < 0.001) and total

preoviposition period (F5, 209 = 1776; P < 0.001) were significantly higher at 20˚C compared

to the other temperature treatments. Generally, the oviposition period (F5, 209 = 136.9;

P < 0.001) was observed to increase drastically from 20˚C to 30˚C, before decreasing there-

after to reach the lowest value at 37˚C. The post-oviposition period was found to varied sig-

nificantly (F5, 209 = 41.74; P < 0.001) when compared across the different temperature

treatments. The post-oviposition duration of S. icipe was significantly shorter as females

died between 2–3 days, after the last egg production cycle at 30, 35 and 37˚C but lived

between 9–12 days at 20, 23 and 25˚C (Table 4).

Thermal effect on adult lifespan and senescence models

The longevity of adult females and male S. icipe were observed to decrease significantly with

increasing temperature (Table 5). The same trend was observed in the lifespan of both females

Table 3. Estimated parameters of linear and Allahyari model for the effect of temperature on developmental rate

(1/day) for Nymph and Pre-adult stages of Scapsipedus icipe.

Model Model parameters Nymph Pre-adult

Linear

a -0.011±0.005 -0.470±0.163

b 0.0009±0.0002 0.025±0.006

Tmin 12.67 19.12

k 1111.11 40.65

R2 0.860 0.826

Allahyari

p 1.846±0.005 12.804±0.041

Tmin 13.081±0.165 16.113±0.307

Tmax 43.468±2.077 39.168±2.365

Topt 35.000 35.000

n 2.593±4.000 3.793±7.996

m 0.073±0.698 0.408±76.333

R2 0.964 0.950

R2 ("R squared")—Coefficient of determination; Tmin - Lower limit temperature; K—Degree-day (DD) requirements;

Y, p and v: Constants values; “P” refers to the number of model parameters while “n” and “m” are constants values;

Tmax - The maximum lethal temperature; Topt - Optimum temperature for survival; “a” and “b” are estimated values

of the intercept and slope.
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and males S. icipe subjected to the same temperatures. Multiple comparisons revealed a signifi-

cant difference in the longevity between adult male and female S. icipe across the various tem-

perature regimes. The Hilbert and Logan 3 model offered a good fit to the observed mean

senescence rates for adult female (S3 Table; Fig 6A) while the Exponential simple function

Fig 2. Temperature-dependent developmental rate of Scapsipedus icipe. (A) Egg; (B) Nymphs; (C) Pre-adult. Observed values are the solid points, with bars

representing the standard deviation of the mean. Fitted models are the straight line for linear regression and a solid curved line for the Logan and Allahyari models.

Dashed lines above and below represent the upper and lower 95% confidence bands.

https://doi.org/10.1371/journal.pone.0222941.g002
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provided a good curve for adult male (S4 Table; Fig 6B). The lowest senescence rates were

observed within the temperature range of 20–25˚C.

Life table parameters

For S. icipe the highest intrinsic rate of increase (rm), net reproduction rate (Ro), Growth

reproductive rate (GRR), finite of increase (λ), and the shortest (Dt) was recorded at 30˚C

Fig 3. Temperature-dependent mortality rates of immature life stages of Scapsipedus icipe: egg (A), Nymph (B), and pre-adult (C). Fitted curves: Wang 2 model (A, B),

and Wang 3 (C). Dashed lines represent the upper and lower 95% confidence.

https://doi.org/10.1371/journal.pone.0222941.g003
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(Table 6 and Fig 7A, 7B, 7C, 7E and 7F). On the other hand, the lowest rm, Ro, GRR, λ, and the

longest Dt were documented at 20˚C (Table 6 and Fig 7A, 7B, 7C, 7E and 7F). The shortest

mean generation times (T) (75.21 days) was recorded at 35˚C (Table 6 and Fig 7D). Life table

parameters indicate that there was a very low population growth of S. icipe at 20˚C while at

30˚C the population growth was significantly higher (Table 6).)The GRR was higher at 30˚C

with 1616.65 daughters per female compared to 12.2, 335.2, 603.5, 311.6 and 39.1 daughters

per female at 20, 23, 25, 35 and 37˚C, respectively (Table 6 and Fig 7C). Thus, the gross repro-

ductive rate of S. icipe at 30˚C was 132 times more than at 20˚C.

Current and future climatic condition for African wide distribution of

Scapsipedus icipe
The prediction shows that under the current climate scenario, S. icipe can establish in the trop-

ics, especially in countries closer to the equator (Fig 8A). In Eastern Africa, the model showed

that S. icipe can establish in some parts of Kenya, most of Uganda, Tanzania, Rwanda, Burundi

and Southern Sudan. The potential distributional range of S. icipe also expanded to the horn of

Africa (Ethiopia, Somalia, Eritrea and Djibouti). In Central Africa, the model prediction

revealed that S. icipe can thrive in Cameroon, Angola, the Democratic Republic of the Congo,

Equatorial Guinea, Republic of Congo, São Tomé and Prı́ncipe. Climatic suitability of S. icipe
demonstrate that this species can perform better in most Western Africa countries such as

Benin, Burkina Faso, Gambia, Ghana, Guinea, Chad, Niger, Guinea-Bissau, Ivory Coast, Libe-

ria, Mali, Mauritania, Nigeria, Senegal, Sierra Leone and Togo. For Southern Africa countries,

S. icipe might be able to thrive in Mozambique and Malawi. Madagascar, which is an island in

the Indian Ocean, was partly predicted to be climatically suitable. This is a promising pointer

that S. icipe can be grown and utilized as food and feed in many parts of Africa because of cli-

matic suitability (Fig 8A).

Under future climate change scenario (2050), there was a clear indication that S. icipe can

expand its range to covered new elevations that were not optimal or highly suitable under the

current climate scenarios (Fig 8B). For instance, in East Africa, the model revealed that S. icipe
is able to establish comfortably in most of the altitudinal zones of Uganda and Kenya. In Tan-

zania it can establish in many areas apart from a few areas around the Central region of Tanza-

nia. Burundi is also earmarked to be a highly suitable area where black soldier fly can thrive

compared to the current climate scenarios. In Western Africa, the intensity of climate

Fig 4. Mean (±SE) body length (A) and wet weight of Scapsipedus icipe females and males at six constant

temperatures, respectively (B). Different letters indicate a significant difference while the same letters indicate no

significant difference using Student-Newman-Keul’s test (P< 0.05).

https://doi.org/10.1371/journal.pone.0222941.g004

Table 4. The mean (±SE) of the oviposition period (days) of Scapsipedus icipe reared at different temperatures under laboratory conditions.

Parameter 20˚C 23˚C 25˚C 30˚C 35˚C 37˚C

APOP 19.84±0.88a 12.66±0.13b 8.17±0.40c 2.00±0.19d 2.33±0.18d 2.25±0.19d

Oviposition period 44.97±1.15b 45.94±0.23b 47.66±2.75b 58.82±1.95a 49.09±1.98b 16.94±0.88c

POP 11.32±0.70a 10.24±0.21a 9.43±1.21a 1.98±0.07b 2.00±013b 1.81±0.26b

Total fecundity/female 221.87±21.90e 838.24±17.23c 1182.83±52.05b 3415.98±71.27a 615.67±64.43d 156.88±19.2e

Means in the same row followed by the same letters are not significantly different (Student-Newman-Keul’s test: P>0.05). Adult pre-ovipostion period (APOP) is the

period between the emergence of adult female and the onset of egg laying, Post oviposition period (POP) is the period of time from the last egg lay and when the adult

female dies)

https://doi.org/10.1371/journal.pone.0222941.t004
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suitability in all the countries predicted was shown to be more pronounced. In southern

Africa, Zambia, Zimbabwe, Botswana, Swaziland, Namibia and parts of South Africa and

neighboring Zimbabwe showed marginal suitability. Madagascar was shown to be more suit-

ability under future climate change scenario (i.e. by 2050).

Discussion

Effect of temperature on stage development, sex ratio, adult longevity and

lifespan of Scapsipedus icipe
This study was aimed at providing information on S. icipe development, growth, reproduction

and survival at different constant temperatures. Temperature is a known climatic factor that

impacts the population growth and geographical distribution of insects [17, 49–50]. Being a

new species, this is the first assessment of the effect of temperature on the life table parameters

as well as its potential African-wide distribution based on temperture-dependent phenology

model. The findings from our study show that temperature significantly impacts the bionom-

ics of S. icipe. Our results concur with that of previous studies with other cricket species [51–

54]. Scapsipedus icipe developed, survived and reproduced successfully across the various

Fig 5. Temperature-dependent total egg production (A) and age-related cumulative proportion of egg production (B). Age of the females at 50% oviposition is

indicated. Dots represent data points. The upper and lower 95% confidence intervals of the model are indicated.

https://doi.org/10.1371/journal.pone.0222941.g005

Table 5. The mean (±SE) of adult longevity and lifespan (days) of Scapsipedus icipe reared under different temperatures conditions.

Parameters 20˚C 23˚C 25˚C 30˚C 35˚C 37˚C

Male adult longevity 94.00±4.58a 91.06±0.25a 89.49±2.49a 72.28±1.11b 58.23±0.60c 28.44±1.67d

Female adult longevity 76.13±1.02a 68.84±0.46b 65.26±3.64b 62.80±1.97b 53.42±1.97c 21.00±0.92d

Male entire lifespan 346.00±7.66a 297.52±0.98b 204.46±2.43c 138.87±1.05d 122.65±0.76e 94.11±1.74f

Female entire lifespan 327.23±4.01a 265.08±0.77b 180.32±3.97c 129.84±2.02d 119.18±2.15e 87.44±2.29f

Data in the table are marked as mean ± SE. Means in the same row followed by the same letters are not significantly different (Student-Newman-Keul’s test: P<0.05)

https://doi.org/10.1371/journal.pone.0222941.t005
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temperature regimes except at 10 and 40˚C. The eggs failed to hatch 10˚C, which was probably

due to freezing injuries or desiccated at 40˚C. At 15˚C, hatched nymphs were unable to

develop beyond the third nymphal stage. The number of moults to adult stage varied signifi-

cantly between eight (8) and ten (10). Contrarily, other crickets such as Gryllus bimaculatus De

Geer has 9–11 nymphal stages [55–56], Acheta domesticus Linnaeus has 8–15 nymphal stages

[56–58] and Acheta configuratus (Walker) has 11 nymphal stages [56, 58]. The difference in

the number of moults translates to an overall developmental time ranging between 2 and 8.5

months for S. icipe at 37˚C and 20˚C, respectively. Similar trend of developmental pattern has

been reported for A. domesticus, which varied between 1.63 and 3.83 months when subjected

at 28˚C and 25˚C, respectively [52]. The sex ratio was male-biased at higher temperatures (35

Fig 6. Temperature-dependent senescence rates (day 1) for Scapsipedus icipe adult females (A) and males (B). Fitted curves of senescence rates: Hilbert and logan 3

model (A) and Exponential simple Model (red solid line) (B). Bars represent the standard deviation of the median senescence rate.

https://doi.org/10.1371/journal.pone.0222941.g006

Table 6. Simulated life table parameters of Scapsipedus icipe at different constant temperatures (initial egg number (n) = 100).

Temperature (˚C) Life table parameters

rm GRR Ro T (days) λ Dt (days)

20 0.004±0.001c 12.16±1.47b 4.39±0.70b 355.47±0.68a 1.00±0.001c 187.12±27.04a

23 0.027±0.001bc 335.70±6.02b 237.65±6.24b 199.420.96b 1.03±0.001bc 25.28±0.14b

25 0.040±0.001b 603.52±23.46b 466.48±18.39b 154.55±0.31b 1.04±0.001b 17.45±0.11b

30 0.075±0.002a 1616.65±57.79a 1330.76±58.37a 96.07±0.25c 1.08±0.001a 9.26±0.06b

35 0.071±0.001a 311.60±20.01b 206.16±12.34b 75.21±0.25c 1.07±0.001a 9.81±0.14b

37 0.030±0.001bc 39.12±2.29b 10.69±1.00b 79.11±0.39c 1.03±0.001bc 23.51±0.90b

rm: intrinsic rate of increase; GRR: gross reproduction rate; Ro: net reproduction rate; T: mean generation time; Lambda (λ): Finite rate of increase; Dt: doubling time.

https://doi.org/10.1371/journal.pone.0222941.t006
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Fig 7. Life table parameters of Scapsipedus icipe estimated through model prediction over a range of six constant temperatures: [A] Intrinsic rate increase, rm; [B] net

reproduction rate, Ro; [C] gross reproductive rate, GRR; [D] mean generation time, T; [E] Finite rate of increase, λ and [F] doubling time, Dt.

https://doi.org/10.1371/journal.pone.0222941.g007

Fig 8. Current [A] and future [B] spatial mapping of Scapsipedus icipe establishment according to ILCYM model prediction in Africa.

https://doi.org/10.1371/journal.pone.0222941.g008
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and 37˚C) and strongly female-biased at lower temperature thresholds (20 and 23˚C). How-

ever, at 25˚C the sex ratio was unbiased. While a similar impact of temperature on the sex ratio

has been shown earlier in the giant water bugs, Abedus indentatus [59] and Belosloma flumi-
neum [60], our results provide the first experimental demonstration of temperature effects on

the sex ratio of crickets.

Effect of temperature on developmental rate of Scapsipedus icipe
Models that best describe the relationship between developmental time and change in temper-

ature must be unimodal and estimates the lower, optimum and upper thermal requirements of

the insect under study [61]. The Logan 1 and Allahyari models were the best fits properly

describing the relationship between temperature and developmental rate of S. icipe. These

findings are in agreement with that of previous studies by Bowling [62], who worked with

Acheta domesticus and proof that a shift from 29.4˚C to 35˚C had a huge impact on the

nymphal developmental duration, which decreased by 28 days. The lower development thresh-

olds described by the linear model is in line with that for other insect species [17–18, 36, 63–

65]. At the optimal temperature threshold, S. icipe had the highest survival rate accompanied

by short generation time, which are considered as important criteria for mass production [65–

66]. According to Patton [67], life table studies obtained under constant temperatures provide

useful information on the biology and ecology of insects, which explain the dynamics that

might occur within and between S. icipe populations subjected at various temperature regimes.

The oviposition duration decreased with increased and lasted for 22 days at 30˚C for S.

icipe, which is contrary to 9 days at 30˚C for A. domesticus [67–68]. The highest number of

eggs of S. icipe were laid at 30˚C, while that of A. domesticus is known to occur between 27–

32˚C [69]. According to Adamo and Lovett [53], egg laying by Gryllus texensis followed that

same pattern as that of S. icipe. Our results revealed that the fecundity of S. icipe increases with

body size, which is in accordance to that reported for other insect species [70]. These are con-

sistent with that of both Forrest [71] and Honěk [72], who in reference to insects, affirmed that

female body size was generally a good predictor of fecundity. A positive linear or log-linear

relationship between body size and fecundity (number of eggs laid over a lifespan) has been

demonstrated in representatives of several insect orders [73–76]. Our results also demon-

strated that S. icipe female lifespan was significantly shorter than that of the male counterparts

at all temperature treatments, which agrees with that of previous studies [77–80].

Adult body length and adult body weight of Scapsipedus icipe
Temperature is a crucial factor that influences the body length and body weight of crickets

[52–53, 81]. Identification of the optimal developmental temperature threshold that provides

bigger body size and heavy weight S. icipe in this study is a prerequisite for higher productivity,

profitability and sustainable farming of the insect. Our findings revealed that the body length

and body weight of female S. icipe was significantly higher compared to the males across all

temperatures but both sexes experienced drastic decline of these parameters at 35 and 37˚C,

while optimum values were recorded at 30˚C. The increase body weight and size observed at

30˚C can be partially attributed to increase feed intake [53]. At each nymphal molt, body size

increases by about the same factor, which leads to an exponential size increase from instar to

instar, and this means that most of the body mass accumulates during the last larval instar

[82]. Whether molting is gated in S. icipe by some specific factors is largely unclear, therefore

more investigation is needed in this direction. However, Nijhout et al. [82] successfully dem-

onstrated that there are developmental mechanisms that control body size and control timing

events in tobacco hornworm Manduca sexta (L.) and the fruit fly Drosophila melanogaster
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Meigen. For examples, Manduca sp., has been reported to grows from about 1.2 grams to

about 12 grams during its last larval instar, so growth during this instar accounts for about

90% of final body mass [82–83]. In Drosophila, the last instar larva grows from 0.5 mg to

about 1.8 mg, gaining about 70% of its final mass during that stage.

Mortality

The current study concurred with the hypotheses stated by Stevens [84], which shows that the

temperature an insect can tolerate is directly proportionate to the subjected temperature

change of the insect. The 100% mortality recorded at lower temperatures can be attributed to

enzymatic reactions being inactivated while at higher temperatures these enzymes that play a

vital role in the survival of S. icipe cricket are denatured leading to cessation life [53, 85]. The

Wang 2 function [41] illustrated well the mortality of the eggs and nymphal stages of S. icipe
while Wang 3 function [41] fitted best for the mortality of pre-adult stage of S. icipe. These

models predicted the temperatures for optimum survival of S. icipe at 30˚C, which is different

from that reported by Bowling [62] for Acheta domesticus with optimal survival temperature at

35˚C beyond which development was observed to decline.

Life table parameters of Scapsipedus icipe
The life table parameters of S. icipe across the different temperature treatments varied consid-

erably. The highest total fecundity, highest intrinsic rate of natural increase, highest net repro-

ductive rate and shortest doubling time were recorded at 30˚C. The time required for the

population of S. icipe to double at temperatures ranging from 25 to 30˚C varied from 17.5 days

to approximately 9.3 days. Below 25˚C, this time significantly increased. The regions predicted

to be suitable by the model suggest that S. icipe is tolerant to a wider range of climatic condi-

tions. This may explain to some extent the higher survival rate at the nymphal stages of S. icipe
as a result of the strong endurance to each temperature conditions in our study. Reproduction

remains one of the most important determinants of population fitness, especially in S. icipe
that typically produce most offspring at an early age and have no parental care. Understanding

the demographic parameters of S. icipe is essential to develop a profitable and sustainable mass

production, given that these parameters provide the population growth rate of a species in the

current and next generations [8, 86]. The present study provides novel information about life

table parameters and biotic potential of S. icipe.

Prediction of Scapsipedus icipe potential distribution in Africa

This marks the first attempt at modelling the distributional range of the newly described edible

cricket S. icipe using temperature-dependent phenology data. The models demonstrate that S.

icipe is more tolerant to a wider range of environmental conditions. The current and future

scenarios remarkably align with almost all the African countries where entomophagy is widely

practiced by the various communities as a traditional heritage [2]. Zooming to specific regions

of the continent, our models reaffirm that Central Africa regions remains the most important

biodiversity hotspot for edible insects, followed by Southern Africa, Eastern Africa and West

Africa. All the areas predicted by the model have been earlier assessment by van Huis [87] and

Ramos-Elorduy [88] who reported 246 species of edible insects from 27 countries and 524 spe-

cies from 34 African countries, respectively. Several authors have reported that in the commu-

nities of predicted countries, it is common to find several species of insects being consume [2,

89–93]. Other countries practicing entomophagy and earmarked by the model as climatically

suitable for the establishment of S. icipe included: Madagascar and Mozambique. Although the

distributional range of S. icipe has not been fully documented after having been proposed as a
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new species, we speculate that this might not be too different from those reported by Kelemu

et al. [2]. Thus, this offers plausible justification to continue to assess the occurrence of S. icipe
in the African continent, to have a snap-shot of their spread to new locations. The ecological

shift observed in the future scenario of the model showed that S. icipe has the potential to grad-

ually expand its distributional range to the warmer regions of the tropics and subtropics that

would favour population growth of subsequent generations of S. icipe [8, 46, 94–96].

Conclusion

We believe that the model described here is useful for optimizing mass rearing technologies

for S. icipe (Fig 9) and provides addition information that may aid in decision-making. We

Fig 9. Mass production of Scapsipedus icipe under optimum rearing condition of 30˚C (i.e. highest total fecundity

(3416 individuals/female/generation), highest intrinsic rate of natural increase (0.075 days), highest net

reproductive rate (1330.8 female/female/generation) and shortest doubling time (9.2 days).

https://doi.org/10.1371/journal.pone.0222941.g009
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recognize the limitations of our projected model but believe that it represents a novel tech-

nique and a potentially powerful tool for biodiversity conservation and further research on S.

icipe and other edible insects as food and feed in Africa and beyond.
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