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  Vascular smooth muscle cells can obtain a proliferative function in environments such as athero-
sclerosis in vivo or primary culture in vitro. Proliferation of vascular smooth muscle cells is 
accompanied by changes in ryanodine receptors (RyRs). In several studies, the cytosolic Ca2＋ response 
to caffeine is decreased during smooth muscle cell culture. Although caffeine is commonly used to 
investigate RyR function because it is difficult to measure Ca2＋ release from the sarcoplasmic reticulum 
(SR) directly, caffeine has additional off-target effects, including blocking inositol trisphosphate 
receptors and store-operated Ca2＋ entry. Using freshly dissociated rat aortic smooth muscle cells 
(RASMCs) and cultured RASMCs, we sought to provide direct evidence for the operation of RyRs 
through the Ca2＋- induced Ca2＋-release pathway by directly measuring Ca2＋ release from SR in 
permeabilized cells. An additional goal was to elucidate alterations of RyRs that occurred during 
culture. Perfusion of permeabilized, freshly dissociated RASMCs with Ca2＋ stimulated Ca2＋ release 
from the SR. Caffeine and ryanodine also induced Ca2＋ release from the SR in dissociated RASMCs. 
In contrast, ryanodine, caffeine and Ca2＋ failed to trigger Ca2＋ release in cultured RASMCs. These 
results are consistent with results obtained by immunocytochemistry, which showed that RyRs were 
expressed in dissociated RASMCs, but not in cultured RASMCs. This study is the first to demonstrate 
Ca2＋ release from the SR by cytosolic Ca2＋ elevation in vascular smooth muscle cells, and also supports 
previous studies on the alterations of RyRs in vascular smooth muscle cells associated with culture. 
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INTRODUCTION

  In vivo, vascular smooth muscle cells (VSMCs) have a 
contractile function, but the cell division process is qui-
escent. However, cell proliferation is reinduced in environ-
ments such as vessel injury or high pressure [1,2]. Smooth 
muscle cells also obtain proliferative functions in response 
to various growth factors, and lose contractile function dur-
ing cell culture [1,3,4].
  VSMC proliferation is associated with changes in cyto-
solic Ca2＋ concentration ([Ca2＋]i) induced, for example, by 
growth factors, which increase [Ca2＋]i, leading to cell-cycle 
progression and proliferation [5]. Increases in [Ca2＋]i can 
be achieved by Ca2＋ release from the sarcoplasmic retic-

ulum (SR) [6-8], as has been shown for proliferation-induc-
ing agonists [5,9]. Conversely, application of thapsigargin 
or other sarco/endoplasmic reticulum Ca2＋-ATPase (SERCA) 
blockers depletes internal Ca2＋ stores and inhibits cell pro-
liferation [7]. These studies indicate that the SR may play 
an important role in cell proliferation. Ca2＋ release from 
the SR occurs through activation of Ca2＋ channels on the 
SR membrane, namely, ryanodine-receptors (RyRs) and in-
ositol 1,4,5-trisphosphate receptors (IP3Rs) [10,11].
  Some authors have reported that RyRs play a role in cell 
proliferation. These studies have generally used caffeine as 
an activator of RyRs [12,13]. However, caffeine is not an 
adequate tool for studying RyR function because it has oth-
er pharmacological effects, including blocking IP3Rs and 
store-operated Ca2＋ entry [14,15]. Moreover, RyRs are 
stimulated physiologically by cytosolic Ca2＋, a phenomenon 
referred to as Ca2＋-induced Ca2＋ release (CICR) [16-18]. 
A more appropriate method, namely, activation by cytosolic 
Ca2＋, is needed to clarify RyR function in vascular smooth 
muscle cells. Accordingly, the aim of the present study was 
to provide direct evidence of operational RyRs by observing 
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CICR. A second goal of the present study was to elucidate 
alterations of RyRs that occurred in rat aortic smooth mus-
cle cells (RASMCs) during culture. To accomplish these 
goals, we directly examined Ca2＋ release via activation of 
RyRs by measuring the Ca2＋ concentration of internal 
stores in permeabilized cells and comparing RyR expression 
levels in freshly dissociated and cultured RASMCs. In this 
study, we found that RyRs are present and mediate CICR 
in freshly dissociated RASMCs but disappear during cell 
culture.

METHODS

Preparation of RASMCs

  RASMCs were dissociated from the thoracic aorta of 8- 
to 9-wk-old Sprague-Dawley rats. Dissected aortas were cut 
and cleaned of fat and connective tissue in ice-cold phos-
phate buffered saline (PBS) containing 1.06 mM KH2PO4, 
155.17 mM NaCl, and 2.97 mM Na2HPO4 (pH 7.4). The tis-
sues were first digested by incubating in PBS containing 
0.5% papain (Sigma, St Louis, Mo, USA), 0.37% DL-dithio-
threitol, and 0.44% bovine serum albumin (BSA, Sigma) for 
10 min with shaking at 37oC, and then digested by incubat-
ing in PBS containing 1% collagenase (Wako, Tokyo, Japan) 
for 15∼16 hours with shaking at 4oC. After digestion, the 
tissues were washed five times with PBS at 4oC and gently 
triturated with a fire-polished Pasteur pipette in PBS to 
obtain a single-cell suspension.

Cell culture

  Dissociated cells were resuspended and plated on culture 
dishes. RASMC cultures were maintained in Dulbecco’s 
Modified Eagle Medium (DMEM) supplemented with 10% 
fetal bovine serum (FBS) and 1% antibiotic-antimycotic un-
der a humidified atmosphere of 5% CO2-95% O2 at 37oC. 
Experiments on cultured RASMCs were performed on pas-
sage 11∼18 cells. The purity of RASMCs was verified by 
staining for smooth muscle-specific α-actin (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA). All cells were α-ac-
tin positive.

Cytosolic Ca2＋ measurement in RASMCs

  For measurement of [Ca2＋]i, RASMCs were loaded with 
2μM Fura-2/AM, 7.5% BSA, and 0.03% F127 for 20 min 
at 37oC. Fura-2/AM-loaded cells were transferred to a glass 
coverslip at the bottom of a perfusion chamber for mount-
ing. Cells were continuously perfused at room temperature 
with HEPES-buffered physiological saline solution (HEPES- 
PSS) containing 140 mM NaCl, 4 mM KCl, 5 mM HEPES, 
1.28 mM CaCl2, 1 mM MgCl2, and 11 mM glucose (pH 7.4) 
using an electronic-controlled perfusion system (Warner 
Instrument, Hamden, CT, USA). RyRs were stimulated by 
perfusing with 20 mM caffeine. Cytosolic Ca2＋ was meas-
ured in Ca2＋-free HEPES-PSS to eliminate any possibility 
of caffeine-induced Ca2＋ entry. Cytosolic Ca2＋ imaging was 
carried out using an inverted Olympus IX71 microscope 
equipped with a 40X fluorescence objective. [Ca2＋]i was de-
termined from the ratio of Fura-2/AM fluorescence at ex-
citation wavelengths of 380 nm and 340 nm using a poly-
chrome V monochromator (Til Photonics, Pleasanton, CA, 
USA). Images were obtained at an emission wavelength of 

510 nm using a SNAP HQ2 camera (Photometrics, Tuscon, 
AZ, USA).

Measurement of SR Ca2＋ release in permeabilized 
cells

  RASMCs, adhered to a poly-L-lysine-coated coverslip at 
the bottom of the perfusion chamber, were incubated with 
10μM mag-fura-2/AM, 7.5% BSA, and 0.03% F127 for 30 
min at 37oC, and then permeabilized for 80∼100 s with 
20μM β-escin in intracellular medium (ICM; 125 mM KCl, 
19 mM NaCl, 10 mM HEPES, and 1 mM EGTA, pH 7.3). 
Permeabilized RASMCs were washed with ICM for 5 min 
to remove cytosolic dye and then were superfused for 60∼
80 s with loading buffer (125 mM KCl, 19 mM NaCl, 10 
mM HEPES, 1 mM EGTA, 0.650 mM CaCl2 [free Ca2＋, 200 
nM], 1.4 mM MgCl2, and 3 mM Na2ATP, pH 7.3) to activate 
SERCA and load Ca2＋ stores. After Ca2＋ loading, RASMCs 
were superfused with release buffer (125 mM KCl, 19 mM 
NaCl, 10 mM HEPES, 1 mM EGTA, and 3 mM Na2ATP, 
pH 7.3) to inactivate SERCA. Ryanodine-sensitive Ca2＋ re-
lease channels were activated by adding 10 mM caffeine, 
10μM ryanodine, or 200 nM Ca2＋ to the release buffer. 
The emission of mag-fura-2/AM above 505 nm following ex-
citation at 340 nm and 380 nm was recorded using the TILL 
Photonics imaging system.

Immunocytochemistry

  RASMCs were allowed to attach to coverslips for 3 h in 
PBS at room temperature, followed by fixation with 4% par-
aformaldehyde for 15 min. Fixed RASMCs were rinsed with 
PBS for 5 min, permeabilized with 0.2% Triton-X 100 
(Sigma) for 5 min, and blocked with 10% normal rabbit se-
rum (Jackson Immunoresearch Laboratories, PA, USA) for 
2 h. Immunocytochemistry was carried out using goat poly-
clonal anti-IP3R (Santa Cruz Biotechnology) and goat poly-
clonal anti-RyR (Santa Cruz Biotechnology) primary anti-
bodies, and a Cy3-conjugated rabbit anti-goat secondary an-
tibody (Jackson Immunoresearch Laboratories). RASMCs 
were incubated overnight at 4oC with freshly antibodies di-
luted 1：50 in a 10% normal rabbit serum solution. 
RASMCs were rinsed with PBS and then incubated with 
secondary antibody in a dark chamber. The coverslip was 
then mounted and dried for at least 2 h. RyR immuno-
fluorescence images were collected using a confocal micro-
scope (Carl Zeiss, Germany) and then processed using 
Photoshop 7.0 software (Adobe, Mountain View, CA, USA). 

Drugs

  Inositol 1,4,5-trisphosphate (IP3) was purchased from 
Biomol Research Laboratories (Plymouth, PA, USA), and 
ryanodine was purchased from Tocris Bioscience (Ballwin, 
MO, USA). Fura-2/AM and mag-fura-2/AM were purchased 
from Invitrogen (Carlsbad, CA, USA). PBS was purchased 
from GIBCO BRL (Grand Island, NY, USA). Caffeine, β- 
escin, and other chemicals used in the preparation of buf-
fers were purchased from Sigma Aldrich Chemical Co.
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Fig. 1. Effects of caffeine on RASMCs. Representative traces of 
caffeine-induced cytosolic Ca2＋ responses in freshly dissociated 
RASMCs (A) and cultured RASMCs (B). (C) The application of 20 
mM caffeine in Ca2＋-free HEPES-PSS buffer induced a rapid and 
large cytosolic Ca2＋ increase only in freshly dissociated RASMCs. 
Effects of caffeine on Ca2＋ release from intracellular Ca2＋ stores 
in permeabilized freshly dissociated and cultured RASMCs. The 
data were obtained from four experiments. The arrows indicate the 
starting points of drug perfusion. Caffeine (10 mM) induced Ca2＋

release from the SR in freshly dissociated RASMCs (■), but not 
in cultured RASMCs (□).

Fig. 2. CICR in permeabilized RASMCs. Representative traces of 
CICR in freshly dissociated RASMCs (A) and cultured RASMCs 
(B). The fine line indicates Ca2＋-free solution. Ca2＋ (200 nM) 
induced Ca2＋ release only in freshly dissociated RASMCs. (C) 
Effects of Ca2＋ on Ca2＋ release in permeabilized freshly dissociated 
and cultured RASMCs. The data, normalized to the initial 10s 
period prior to 200 nM Ca2＋ perfusion, were obtained from four 
experiments. The arrows indicate the starting points of 200 nM 
Ca2＋ perfusion. Ca2＋ (200 nM) triggered Ca2＋ release from the SR 
in freshly dissociated RASMCs (■), but had no effect in cultured 
RASMCs (□).

RESULTS

Effects of caffeine in RASMCs

  The effects of caffeine, a RyR activator [16,18], were in-
vestigated in freshly dissociated RASMCs and cultured 
RASMCs. The cytosolic Ca2＋ response to caffeine was meas-
ured in the absence of extracellular Ca2＋ to rule out the 
possibility of extracellular Ca2＋ influx. After the addition 
of 20 mM caffeine to dissociated RASMCs, [Ca2＋]i abruptly 
increased and slowly declined to basal levels (Fig. 1A). This 
result means that caffeine mobilized Ca2＋ from intra-
cellular Ca2＋ stores in freshly dissociated RASMCs. In con-
trast, no cytosolic Ca2＋ response to caffeine was observed 
in cultured RASMCs (Fig. 1B).
  To confirm that caffeine directly induced Ca2＋ release 
from the SR, we permeabilized cells using 20μM β-escin 
and loaded the SR with Ca2＋ by activating SERCA. 
Addition of 10 mM caffeine reduced the concentration of 
Ca2＋ in SR in permeabilized, dissociated RASMCs. Howev-
er, little or no change was observed after perfusion of caf-

feine in cultured RASMCs (Fig. 1C). Taken together, these 
results suggest that caffeine directly releases Ca2＋ from the 
SR via a caffeine-sensitive Ca2＋ channel.

Induction of Ca2＋ release from intracellular Ca2＋ 
stores by altering [Ca2＋]i concentration

  It is well known that increased [Ca2＋]i activates RyR to 
release Ca2＋ from SR via a CICR mechanism [16-18]. To 
demonstrate CICR, we measured the Ca2＋ concentration of 
intracellular Ca2＋ stores in permeabilized RASMCs after 
altering [Ca2＋]i. Ca2＋-free release buffer did not induce a 
change in intracellular Ca2＋ stores in permeabilized, dis-
sociated RASMCs (Fig. 2A, bright line), indicating that Ca2＋ 
is not released from the SR via a Ca2＋ leak channel. 
Perfusing permeabilized, dissociated RASMCs with release 
buffer containing 200 nM Ca2＋ decreased the concentration 
of Ca2＋ in intracellular stores (Fig. 2A, C). In contrast, cul-
tured RASMCs treated in the same manner did not respond 
to 200 nM Ca2＋ (Fig. 2B, C). These results indicate that 
cytosolic Ca2＋ induces Ca2＋ release from intracellular Ca2＋ 
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Fig. 3. Ryanodine-induced Ca2＋ release in permeabilized RASMCs. 
Representative traces of ryanodine-induced Ca2＋ release in freshly 
dissociated RASMCs (A) and cultured RASMCs (B). (C) Effects of 
ryanodine on Ca2＋ release in permeabilized freshly dissociated 
RASMCs and cultured RASMCs. The data, normalized to the initial 
10s period prior to ryanodine application, were obtained from four 
experiments. The arrow indicates the starting points of ryanodine 
perfusion. Ryanodine (10μM) induced Ca2＋ release from the SR 
in freshly dissociated RASMCs (■), but not in cultured RASMCs 
(□). 

Fig. 4. Expression of RyRs and IP3Rs 
in RASMCs. Expression of RyRs in 
freshly dissociated RASMCs (A) and 
cultured RASMCs (B). Expression of 
IP3Rs in freshly dissociated RASMCs
(C) and cultured RASMCs (D). (a) 
Immunocytochemistry; (b) interfere-
nce contrast micrographs; (c) merged 
images. Immunocytochemistry was 
performed using primary anti-RyRs 
and anti-IP3Rs antibodies, as des-
cribed in Methods. The data show 
that RyRs are only present in freshly 
dissociated RASMCs (n=5), whereas 
IP3Rs are present in both freshly 
dissociated RASMCs and cultured 
RASMCs (n=5). Scale bars, 5μm (A, 
C) and 10μm (B, D).

stores via RyRs in dissociated RASMCs but not in cultured 
RASMCs.

Induction of Ca2＋ release from intracellular Ca2＋ 
stores by ryanodine

  The plant alkaloid ryanodine has dual effects on RyR 
activity. At low concentrations, ryanodine activates RyRs 
and induces Ca2＋ release from the SR [19]. However, at 
high concentrations, ryanodine inhibits RyRs. To determine 
if Ca2＋ release channel in intracellular Ca2＋ stores was ac-
tivated by ryanodine, we treated cells with 10μM ryano-
dine, a concentration that activates RyRs. Application of 
10μM ryanodine to permeabilized dissociated RASMCs de-
creased the concentration of Ca2＋ in intracellular stores 
(Fig. 3A, 3C), whereas ryanodine failed to induce SR Ca2＋ 
release in cultured RASMCs (Fig. 3B, 3C).

Expression of RyRs and IP3Rs in RASMCs

  Finally, we examined the expression of RyRs to deter-
mine if the loss in sensitivity to the SR Ca2＋-mobilizing 
agents, caffeine, Ca2＋ and ryanodine, was associated with 
an alteration in the expression of RyRs during cell culture. 
In freshly dissociated RASMCs, RyR immunofluorescence 
was clearly detected, exhibiting a primarily cytoplasmic 
distribution with nuclear exclusion (Fig. 4A). However 
RyRs were not expressed in cultured RASMCs (Fig. 4B). 
The disappearance of RyR expression in cultured RASMCs 
is consistent with the Ca2＋ imaging results (see Figs. 1∼3).
  The expression of IP3Rs, the other major type of SR Ca2＋- 
release channel, was also investigated by immunofluore-
scence in dissociated RASMCs and cultured RASMCs. 
IP3Rs were expressed in both freshly dissociated and cul-
tured RASMCs, exhibiting a primarily cytoplasmic pattern 
in both types of RASMCs (Fig. 4C, D). Although these re-
sults do not exclude the possibility that IP3R subtypes are 
altered during culture, they indicate that IP3R expression 
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is retained.

DISCUSSION

  RyRs are Ca2＋ channels that are located in the SR mem-
brane [10,11]. RyRs are physiologically activated by in-
creased levels of cytosolic Ca2＋ resulting from extracellular 
Ca2＋ entry or Ca2＋ release from intracellular stores [16-18]. 
Because it is experimentally difficult to measure Ca2＋ re-
lease from the SR, many researchers have used caffeine as 
a RyR activator, and measured [Ca2＋]i as an index of RyR 
function [12,13]. Caffeine is known to have off-target ef-
fects, including blocking IP3Rs and store-operated Ca2＋ en-
try [14,15]. Thus, results obtained using caffeine are an im-
precise indicator of RyR function. In the present study, we 
permeabilized the plasma membrane of RASMCs and then 
directly monitored the Ca2＋ concentration of internal Ca2＋ 
stores to provide direct evidence of operational RyRs. We 
observed that perfusion of permeabilized dissociated 
RASMCs with a high concentration of cytosolic Ca2＋ re-
sulted in Ca2＋ release from internal Ca2＋ stores. We also 
showed that caffeine or ryanodine stimulated Ca2＋ release 
from internal Ca2＋ stores in permeabilized dissociated 
RASMCs, and confirmed expression of RyRs in these cells 
by immunocytochemistry. Collectively, these results pro-
vide direct evidence that RyRs are expressed and opera-
tional in freshly dissociated RASMCs.
  Several studies have reported that the caffeine-sensitive 
VSMC population is gradually decreased or abolished as 
a function of days in culture [20,21]. These studies have 
suggested that a decline in caffeine sensitivity may reflect 
a reduction in RyR expression [20] or alteration of RyR sub-
type [21]. Although each RyR subtype has a different sensi-
tivity to caffeine [22-24], all three types of RyR are acti-
vated by 10 mM caffeine [22,25]. Thus, if the RyR subtype 
is switched in cultured RASMCs, these cells should still re-
tain the ability to respond to caffeine at concentrations ≥10 
mM . However, in the current study, we found that intact 
(unpermeabilized) cultured RASMCs showed no response 
to 20 mM caffeine. Moreover, ryanodine and Ca2＋ failed 
to trigger Ca2＋ release in permeabilized cultured RASMCs. 
Using a polyclonal anti-RyR antibody, we also confirmed 
that RyRs are not expressed in cultured RASMCs. These 
data argue against a switch in RyR subtype during cell cul-
ture and instead suggest that RyRs disappear.
  The Ca2＋ spike characteristic of the transient increase 
in [Ca2＋]i is known to be related to the function of RyRs 
[26,27]. For example, this Ca2＋ spike contributes to the reg-
ulation of tone in vasoconstrictor-contracted smooth muscle 
[26], and promotes activation of the cAMP response ele-
ment-binding protein, which leads to cell-cycle arrest in G1 
phase [28,29]. Consistent with this latter observation, it has 
been reported that blocking RyRs with high concentrations 
of ryanodine enhances cell proliferation of VSMCs during 
culture [30]. A study showed that RyR1 is decreased at the 
mRNA level in thymomas [31], suggesting an association 
between disruption of the Ca2＋ spike and enhanced cell pro-
liferation in cancer, implying that RyR expression and func-
tion may inhibit cell proliferation. In contrast to the poten-
tial inhibitory role of RyRs in cell proliferation, IP3Rs, the 
other major type of SR Ca2＋-release channel, are known 
to regulate [Ca2＋]i, which promotes cell proliferation 
[32,33]. In the current study, we confirmed that IP3Rs were 
expressed in cultured RASMCs; we also observed Ca2＋ re-

lease following activation of IP3Rs (data not shown), in-
dicating that these channels are functional. The above re-
sults are consistent with the idea that cell proliferation is 
enhanced by activation of IP3Rs in the absence of RyRs. 
  In vivo, VSMCs generally exhibit a contractile phenotype 
and do not proliferate. However, VSMCs recover their pro-
liferative function in certain contexts, such as vessel-injury 
repair and vascular pathologies, including atherosclerosis, 
hypertension, and vein-graft failure [1,3,4]. Because studies 
on RyRs under conditions of vascular injury and athero-
sclerosis are lacking, the role of RyRs in the development 
of vascular disease remains unclear. Thus, further inves-
tigation of RyR expression levels in vivo in relevant patho-
logical settings is needed.
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