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Abstract

Background: Chronic kidney disease (CKD) is a well-established complication in people with diabetes mellitus.
Roughly one quarter of prevalent patients with diabetes exhibit a CKD stage of 3 or higher and the individual
course of progression is highly variable. Therefore, there is a clear need to identify patients at high risk for fast
progression and the implementation of preventative strategies. Existing prediction models of renal function decline,
however, aim to assess the risk by artificially grouped patients prior to model building into risk strata defined by the
categorization of the least-squares slope through the longitudinally fluctuating eGFR values, resulting in a loss of
predictive precision and accuracy.

Methods: This study protocol describes the development and validation of a prediction model for the longitudinal
progression of renal function decline in Caucasian patients with type 2 diabetes mellitus (DM?2). For development
and internal-external validation, two prospective multicenter observational studies will be used (PROVALID and
GCKD). The estimated glomerular filtration rate (eGFR) obtained at baseline and at all planned follow-up visits will
be the longitudinal outcome. Demographics, clinical information and laboratory measurements available at a
baseline visit will be used as predictors in addition to random country-specific intercepts to account for the
clustered data. A multivariable mixed-effects model including the main effects of the clinical variables and their
interactions with time will be fitted. In application, this model can be used to obtain personalized predictions of an
eGFR trajectory conditional on baseline eGFR values. The final model will then undergo external validation using a
third prospective cohort (DIACORE). The final prediction model will be made publicly available through the
implementation of an R shiny web application.

Discussion: Our proposed state-of-the-art methodology will be developed using multiple multicentre study cohorts of
people with DM2 in various CKD stages at baseline, who have received modern therapeutic treatment strategies of
diabetic kidney disease in contrast to previous models. Hence, we anticipate that the multivariable prediction model
will aid as an additional informative tool to determine the patient-specific progression of renal function and provide a
useful guide to early on identify individuals with DM2 at high risk for rapid progression.
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Introduction

Chronic kidney disease (CKD) has become an increasing
global health problem, partly due to the continuously
rising incidences of diabetes mellitus, obesity, and hyper-
tension [1]. It is estimated that 8 to 16% of the world’s
population suffer from CKD, and the rate is even higher
in people with DM2, where cross-sectional studies re-
port percentages of roughly 25% [2]. Ninety-five percent
of people with early CKD are unaware of their disease
[3]. However, early prediction of the continuous decline
in kidney function could provide an additional resource
for personalized preventative care [4]. Personalized risk
assessment based on large study cohorts could therefore
offer several potential benefits to the preventive care for
people with DM2 such as early detection followed by
monitoring to guide treatment and potentially slow the
progression of the decline of kidney function as
expressed by the estimated glomerular filtration rate
(eGFR) [4]. Despite the accumulated knowledge with re-
gard to CKD nowadays, identifying individuals at high
risk for fast disease progression has proven to be chal-
lenging because longitudinal eGFR slopes not only vary
between patients (inter-patient variability), but eGFR
measurements also fluctuate within each patient over
time (intra-patient variability) [5].

Nevertheless, several prediction models for the pro-
gression of renal function decline have previously been
developed in various populations. It is of note that the
models which were developed in studies from the last
decade may no longer be applicable nowadays, because
the new treatment classes of SGLT2-blocker and min-
eralocorticoid receptor antagonists have dramatically
changed the course of CKD progression [6-8]. In
addition, existing predictive models have mainly consid-
ered hard renal endpoints such as incidence or end-
stage renal failure [9, 10]. Studies focused on renal func-
tion have mainly considered simplifications of the longi-
tudinal eGFR trajectory by dichotomization of the
expected eGFR slope. For instance, Subasi et al. [11]
conducted a pilot study based on a randomized double-
blinded treatment trial, the African American Study of
Kidney Disease and Hypertension (AASK), in order to
predict the rate of kidney function decline. The least-
squares slopes of GFR decline from the 6-month time
point until censoring were used to define rapid (i.e., an
absolute slope < 3mL/min/1.73m2/year) and slow (i.e,
absolute slope in between 1 and 3mL/min/1.73m?/year)
progressors for this study. Similarly, Vigil et al. [12]
aimed towards the identification of predictors of a rapid
decline of renal function defined as an annual eGFR loss
> 4 mL/min/1.73m? However, covariates considered for
selection in this analysis were chosen on the basis of
their significance in univariable analysis (or by their clin-
ical or biological relevance). Despite its popular use for
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data reduction, univariable prefiltering has been shown
to lead to suboptimal or biased selection results [13].
Pena et al. [14] showed that a panel of novel biomarkers
improves the prediction of renal function decline in
people with DM2. In contrast to the other mentioned
studies, renal function decline was not dichotomized.
The eGFR slope was estimated using linear regression
and then constituted the outcome of interest in its con-
tinuous form. People with an observed eGFR decline lar-
ger than —3mL/min/1.73m? were considered stable, all
others were considered to be rapid progressors in terms
of kidney function decline. Then, a person’s risk was
assessed by dichotomizing the observed decline in these
two groups and comparing it with the predicted prob-
abilities of eGFR decline. The threshold of —3mL/min/
1.73m? was selected based on literature, which however
included older studies without the current state-of-the-
art therapy of diabetic kidney disease, where a GFR loss
of only 1mL/min//1.73m?/year is standard [14—17]. Fur-
thermore, molecular data in regular clinical care is usu-
ally not easily available and no validated reference values
exist for these markers.

In this study, we will apply state-of-the-art methodology
to avoid deficiencies of previous attempts in prediction
models for renal function decline. We will directly incorp-
orate the repeated eGFR measurements per person as an
outcome vector into a multivariable mixed-effects model
accounting for the dependence of the repeated measure-
ments of eGFR and the clustered data structure due to the
use of two multicenter prospective study cohorts. We will
also provide the methodology to condition a prediction on
an available baseline value of eGEFR, facilitating predictions
regardless of whether a baseline eGFR is available or not.
In contrast to the commonly applied approaches, the re-
peated values of eGFR across follow-up visits will not be
used for slope estimation followed by categorization to
infer groups of the severity of loss in kidney function (e.g.,
stable, mild, and rapid progression) prior to model devel-
opment. The proposed approach will enable the identifica-
tion of groups of patients with a high risk of rapid renal
function decline by longitudinal prediction of subject-
specific eGFR trajectories, thereby providing the probabil-
ity of exceeding a prespecified cutpoint of eGFR decline
per year. After the planned external validation, our model
will be implemented as a web tool and can be clinically
applied to identify people with DM2 at increased risk of
rapid decline in kidney function, or as a supporting tool
for clinicians in medical decision-making so that patients
can be prompted to seek medical care before a significant
deterioration in kidney function occurs.

Objective
The main objective of the planned analysis is the devel-
opment, internal-external, and external validation of a
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personalized prediction model for eGER loss per year in
Caucasian people with DM2. It is based on clinical infor-
mation and laboratory measurements recorded at base-
line. A secondary aim is the implementation of the
externally validated prediction model as a publicly avail-
able web application to facilitate general applicability in
clinical care based on data from recent eras using mod-
ern therapy.

Research design and methods

Data source

The study cohort for a model building comprises individ-
uals from two distinct prospective observational studies
(PROVALID, GCKD) covering a wide range of CKD states
[18, 19]. For the purpose of external validation, a third
prospective cohort study (DIACORE) will be used [20].

PROVALID - PROspective cohort study in patients with type

2 diabetes mellitus for VALIDation of biomarkers

The PROVALID study cohort consists of around 4000
people with DM2 of whom information on medical his-
tory, physical status, laboratory measurements, and
medication have been prospectively collected. Patients
who are being taken care of at the primary healthcare
level in five European countries (Austria, Hungary,
Netherlands, Poland, and Scotland) were recruited be-
tween 2011 and 2015 and followed for at least 5 years.
Participants had to be aged 18-75 years and had an inci-
dent or prevalent DM2 defined as treatment with
hypoglycaemic drugs or according to ADA guidelines at
the time point of study entry. The presence of CKD at
study entry was not an exclusion or inclusion criterion.
For the full inclusion and exclusion criteria of pa-
tients, see Table 1. The aim of the study was to in-
vestigate regional differences in the course of diabetic
nephropathy to determine the 5-year cumulative inci-
dence of renal and cardiovascular outcomes and to
identify predictive biomarkers for the eGFR trajectory
in patients with DM2.
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GCKD—German chronic kidney disease

The prospective cohort study GCKD consists of around
5000 people with CKD. Patients aged 18-74 years and
suffering from CKD were included in case of an eGFR
between 30 and 60 ml/min/1.73m? with or without urin-
ary albumin excretion (CKD KDIGO Stage 3) or a better
preserved eGFR in the presence of urinary albumin ex-
cretion >300 or protein excretion >500mg/day, and were
followed up to 10 years. For the full inclusion and exclu-
sion criteria of patients, see Table 1. Out of the 5000 re-
cruited individuals, 1800 had diabetes and therefore
represent the relevant patient subset for the prediction
model in this work. The follow-up visits were set up in
bi-yearly intervals. The main objective of the GCKD
study cohort was to identify and validate risk factors for
CKD, end-stage renal disease (ESRD), and cardiovascular
disease (CVD) events.

DIACORE—the DIAbetes COhoRtE study

DIACORE is a prospective observational cohort study
consisting of 6000 people with prevalent DM2 in
Germany with at least 10 years of follow-up. The main
objective of this study was the investigation of risk fac-
tors associated with the development and progression of
diabetic complications through biosampling using high-
throughput technologies for the collected biosamples
(ie., transcriptomics, proteomics, and metabolomics). To
this end, patient information and blood samples were
taken at baseline and at every bi-yearly follow-up visit
for at least 10 years after study initiation.

Target population

The following inclusion criteria will be applied to the in-
dividuals from the PROVALID, GCKD, and DIACORE
studies for the development and validation of the predic-
tion model in this work:

e Caucasian ethnicity
e Presence of DM2 at baseline

Table 1 Overview of the inclusion and exclusion criteria of PROVALID, GCKD, and DIACORE

Study Study setting

cohort Inclusion Exclusion

PROVALID = Aged 18-75 years - Active malignancy requiring chemotherapy
= Incident or prevalent DM2 with/without CKD

GCKD = Aged 18-74 years = Active malignancy in the 24 months prior to inclusion
= Caucasian ethnicity = Renal or other transplantations
= eGFR: 30-60 mL/min/1.73m?with or without urinary albumin excretion = NYHA IV heart failure
* eGFR > 60 mL/min/1.73m?
- Albumin excretion of > 300mg/g creatinine
- Proteinuria > 500mg/day

DIACORE = Aged 2 18 years = On chronic renal replacement therapy

= Caucasian ethnicity
= Prevalent DM2

= Active malignancy
= Pregnancy
= Further diseases and infections
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e eGFR > 30 mL/min/1.73m? at baseline

e Aged 18-75 years at baseline

e At least three visits with recorded serum creatinine
measurements (including baseline)

e At least 2 years of follow-up

Study outcome

The primary outcome of interest for the study is the an-
nual decline in renal function, derived through the use
of at least 3 follow-up measurements of eGFR. The
eGFR values will be calculated by the equation of the
Chronic Kidney Disease Epidemiology Collaboration
(CKD-EPI) using the patient’s race, sex, age, and serum
creatinine level [21].

Clinical predictor variables

The candidate variables for consideration in the predic-
tion model were selected by medical experts. Variables
of general clinical availability, ease in acquisition, and
with clinical acceptance for inclusion in the model will
be prioritized. Hence, the following variables will be in-
cluded in the multivariable outcome model for the de-
cline in renal function (see Table 2): age, sex, body mass
index (BMI), smoking status (ever/never smoked),
HbA ., urine albumin-to-creatinine ratio (UACR), pres-
ence of glucose-lowering medication, presence of lipid-
lowering medication, presence of blood pressure-
lowering medication, systolic and diastolic blood pres-
sure, hemoglobin, and serum cholesterol. All predictors
were measured at baseline, i.e., the first visit after the pa-
tient was included in either of the study cohorts. Due to
the varying depth of information regarding the medica-
tion of an individual in the three cohorts, only drug indi-
cation classes will be included as a binary entry (y/n).
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Sample size

Overall, 13 predictors will be included in the prediction
model. Guidelines regarding the minimum required
sample size for the development of a new multivariable
prediction model have been recently proposed by Riley
et al. [22]. Using the accompanying R package “pmsamp-
size” with an assumed average value for eGFR of
78.4mL/min/1.73m”> and a standard deviation of 21.4
mL/min/1.73m? [23] in the population, an anticipated R
of the model of 0.3 [24] and a shrinkage factor of 0.9,
the minimum sample size aimed at minimization of
overfit and the precise estimation of the parameters of a
prediction model with 13 predictors is 271. Further,
since regularization is not taken into consideration in
model development due to the abundance of data rela-
tive to the number of predictors, the computation with a
shrinkage parameter of 0.99 results in a sample size of
3048 required subjects. However, a much larger R* is ex-
pected, which is why a minimum sample size of 1569 is
required for a R? of 0.5 and 903 participants for 0.7, re-
spectively. Nevertheless, the development cohort will
comprise around 5800 subjects and thus will exceed the
minimum required sample size by far.

Statistical analysis

Patient’s baseline characteristics will be described for the
study cohorts separately, using mean and standard devi-
ation for continuous variables, or median and interquar-
tile range in case of non-normality, and absolute and
relative frequencies for categorical variables. Skewed var-
iables will be transformed by the logarithm before the
analysis. Data availability and the fraction of missingness
will be assessed and reported for each variable. As the
fraction of missing data is expected to be low, a

Table 2 Clinical baseline information of study participants within PROVALID, GCKD, and DIACORE

Variable type Variable Level of measurement Unit
Demographics Age Continuous Years
Sex Binary Female-male
Physical status Smoking Binary Never-ever
BMI Continuous kg/m?
Laboratory measurements eGFR Continuous mL/min/1.73m?
Systolic blood pressure Continuous mmHg
Diastolic blood pressure Continuous mmHg
HbA; . Continuous mmol/mol
Serum cholesterol Continuous mg/dl
Hemoglobin Continuous umol/L
UACR Continuous mg/g
Intake of medication Blood pressure-lowering Binary Yes-no
Glucose-lowering Binary Yes-no
Lipid-lowering Binary Yes-no
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complete case analysis will be carried out. Data screen-
ing through the computation of sample characteristics
and visual inspections to identify the presence of missing
values, skewed variable distributions, and outliers, as
well as reporting of conducted screening activities will
adhere to the conceptual framework for initial data ana-
lysis by Huebner et al. [25]. All analysis will be per-
formed with the software R version 4.0.2.

Prediction model development

People adhering to the inclusion and exclusion criteria
from either the PROVALID or GCKD study will be con-
sidered for model building. Mixed-effects modeling ac-
counts for the dependencies between repeated
measurements per person over time and the similarity
among people belonging to the same study cohort,
hence they are commonly employed to analyze longitu-
dinal and clustered data. Here, we will consider hier-
archically nested random effects for the country and
people within a country, such that the heterogeneity of
eGFR trajectories between the five countries within the
development cohort can be modeled appropriately [26].
More specifically, we will use random effects for the
intercept and the slope of the repeated eGFR measure-
ments over time and an additional random intercept for
the country. We will include the baseline eGFR value in
the outcome vector to provide more stable estimates of
variability. When applying the model, any available eGFR
measurements of an individual for whom eGFR trajec-
tory predictions should be obtained can be used to im-
prove predictions. A similar approach has been
conducted by Selles et al. [27] to develop a prediction
model not only able to deal with multiple measurements
per subject but also able to allow these repeated clinical
measurements to contribute to the prediction of an un-
seen individual. The set of clinical variables outlined in
Table 2 will constitute the fixed effects. Automated vari-
able selection will not be conducted as the set of predic-
tors was chosen by background knowledge.
Furthermore, due to the large sample size available for
estimation overfitting is expected to be minimal, such
that further regularization of the predictor effects will be
omitted. Clinically relevant pairwise interactions of the
independent variables with time will be investigated and
added if their inclusion improves the prediction accuracy
of the model as determined by the Akaike information
criterion (AIC). Any model misspecification, e.g., regard-
ing functional forms of the variables in the model, will
be assessed using a plot of the marginal residuals versus
the individual variables. Variables with non-linear rela-
tionships with the outcome as exhibited by these re-
sidual plots will then be modeled using restricted cubic
splines to improve the model fit [28]. In addition, the
relevance of the inclusion of such non-linear terms for
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improving the model fit will be evaluated in terms of the
AIC.

More formally, the model for the continuous eGFR
values Yj; at time point ¢ (¢=0, ..., T) for subject i (i=1,
..., n) is defined by

Yie = By + ai + B, X + Byt + B5tX + bg; + byjt
+ €it, (1)

with normally distributed residuals €; ~ N(0,0?) with
mean 0 and variance o2, random country-specific inter-
cepts assumed to be a;,~N(0, 7°), the random coefficients
(boi b1;)~MN(0, G) (where MN denotes the bivariate
normal distribution with an unspecified covariance
matrix G, defined by the diagonal elements o2 and o}
and the off-diagonal 0¢;) and the vector of regression co-
efficients for the clinical independent variables S = (f5,
B1, B2, P3). It should be noted that for simplicity of de-
scription, we here consider a single clinical predictor
variable X, where 5; and f3; represent the regression co-
efficients corresponding to the clinical predictor variable
and its interaction with time. Without loss of generality,
more clinical predictors can be added, each with two re-
gression coefficients for the baseline effects of the pre-
dictor and the corresponding interaction with time.
When considering restricted cubic splines for a variable,
this variable will be represented by several correspond-
ing basis functions in (1).

Model (1) allows to prognosticate baseline and follow-
up values of eGER for a new person j given the value of
the clinical predictor X, assuming that for that new per-
son the random intercept and slope are equal to their
expected values of 0. Further, we will assume the ex-
pected random country effect of ;=0 for the prediction
of eGFR in a new individual. In order to incorporate a
baseline eGFR measurement y;, into the prediction, a
best linear unbiased predictor (BLUP) of the individual’s
random effects can be obtained through the posterior
distribution of the random effects. The random intercept
for that new subject j is then estimated by

. i (on_?jo)
bOj =

; (2)

2 2
oy + 0%

where ¥, denotes the estimated baseline value from the
fixed effects, 03 denotes the variance of the random
error and o} the variance of the random intercept in the
covariance matrix of the random coefficients G. The es-
timated random slope by ; for the new individual can be
obtained by
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byj = o2 (3)

0

In actual predictions, estimates are plugged in for o2,
001, and o?. The preliminary prediction Y, for the new
subject j at time ¢ can then be updated by

Yie = Vje + boj + tby; (4)

The predicted eGER slope for a new individual, com-
bining fixed and random effects, is finally given by dy ;=
day;/dt = ﬁz + [§3Xj + Blj with V; expressing the vari-
ance of the predicted eGFR slope of individual ;.

Given a correct model specification, the probability of
progression can then be obtained by a normal
approximation:

Cp-dy;
V7
where z;, j € {1,2} denotes the membership of belonging
to one of the two progression groups: rapid and stable
progression, and ®(x) the standard normal distribution
function at x. C, is the corresponding subject-specific
cutpoint for defining progression of kidney decline,
which will be set to —3mL/min/1.73m?/year at default or
can be specified by the intended user in the web applica-
tion (see Section "Web implementation") [14—16]. Now,
one can compute the expected probability of belonging
to either of the eGFR progression groups given a pa-
tient’s baseline characteristics and the baseline eGFR.
For all statistical analyses, the freely available software
R will be used. Mainly, the packages nlme and JMbayes
will be considered for the implementation of the linear
mixed model and the subject-specific prediction in-
formed by the baseline eGFR measurement. The func-
tion lme() from the package nlme will be used to fit the
linear mixed model and the function IndvPred_lme()
from the package /Mbayes to obtain the updated predic-
tions and 95% prediction intervals for a new subject.

Pr(Z =z;) =1-@ (5)

Model evaluation, performance, and external validation
An analysis of the conditional residuals will be con-
ducted to check correct model specification, e.g., nor-
mality, linearity, and homoscedasticity of the error
terms. Next, the importance of each independent vari-
able will also be evaluated by the drop in the adjusted
R? ie., the loss in estimated explained variation when
the respective predictor is removed from the model.

The performance of the prediction model will be eval-
uated by an internal-external validation procedure to ob-
tain a reliable assessment of its generalizability of
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prediction to unseen data [29]. The unit for the non-
random data splitting will be the six countries within the
PROVALID and GCKD studies (GCKD: Germany; PRO-
VALID: Austria, Hungary, Netherlands, Poland, and
Scotland) such that for each iteration, one regional
group with its study participants are withheld from
model training and then used for testing.

The prediction performance will further be assessed
through:

e Discrimination in terms of Kendall-tau-b concord-
ance correlation coefficients at each time point, i.e.,
the concordance of the predicted eGER values at
time ¢ obtained by Eq. (4) and the actual observed
eGFR in each pair of patients
e Calibration in terms of the slope of the calibration
curve by
I Regressing the predicted eGFR on the actual
eGER values at each time point

II. Plotting the estimated mean risk for fast
progression per decile against the observed ratio
of fast progression within each risk decile

e Explained variation in terms of adjusted R? i.e., the
proportion of explained variability in the outcome
by the independent variables

The external validity of the model will be examined by
applying the final prediction model to the DIACORE
study cohort and evaluating the three performance mea-
sures outlined above.

Model presentation

Reporting of the model development and the final pre-
diction model will adhere to the Transparent Reporting
of a Multivariable Prediction Model for Individual Prog-
nosis or Diagnosis (TRIPOD) statement, a checklist of
items that ought to be reported when publishing a statis-
tical prediction model [30]. The results of this analysis
will be published in a peer-review journal. In particular,
the final regression model will be presented using re-
gression coefficients and 95% confidence intervals. Fur-
ther, model reporting will include the covariance matrix
of the random effects, the error variance, and the regres-
sion formula to allow independent application and valid-
ation of the model. Visualizations of results will be
generated to improve model literacy for non-statistical
readers and users of the web-based calculator.

Web implementation

The externally validated model will be implemented as
an interactive prediction calculator, made available on-
line as a web application to support clinical care and
medical decision-making with regard to prevention and
treatment of chronic kidney function decline in people
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with DM2. The interactive web application will be cre-
ated with the help of the R development framework
shiny to allow for individual input and the computation
of patient-specific predictions given their baseline char-
acteristics. The web application will offer two user inter-
faces to choose from:

(1) A patient interface with a web layout consisting of
limited input controls (i.e., text fields or checkboxes
to enter age, sex, eGFR, and UACR)

(2) A clinician interface with a layout featuring input
controls for all predictors (i.e., includes laboratory
measurements, medication) within the validated
prediction model

Both interfaces will be based on the same prediction
model formula, with predictors that are excluded from
the web layout in the patient interface being fixed as the
average value for the continuous variables and the value
with the highest relative frequency for the categorical
variables. As a result, the use of the model should not
only be made available to clinical staff but also to pa-
tients themselves.

The output of the web application will contain the fol-
lowing components:

e The eGFR value estimated by the model in 1-5
years with 95% model-based prediction intervals

e The predicted eGFR decline per year with 95%
model-based prediction interval

e The proportion of people with higher predicted
eGER loss

e The relative risk, i.e., the probability for a rapid
eGFR decline for the predicted interval divided by
the probability of a rapid eGFR decline for a person
with equal age, sex, and baseline eGFR, but most
favorable values of all other clinical baseline
variables (with rapid decline specified by the
intended user)

e A visual representation of the results:

e The visual communication of the results to the user
will illustrate the estimated eGFR decline in the
context of the distribution of predicted eGFR
declines in the development cohort. In addition, a
figure will be generated that shows the predicted
trajectory of eGFR over the next 5 years with a 95%
prediction interval.

A further option will be the possibility of risk assess-
ment of rapid and stable eGFR decline. However, the
choice of cutpoint selection for the categorization will be
left to the user of the web-based implementation, in that
the user can freely enter a suitable cutpoint for the eGFR
classification into rapid and stable progression, whereby
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the risk of the new individual is estimated. By default,
the eGFR cutpoint will be set to —3ml/min/1.73m?.

Discussion
In this study, we have described the protocol for the
planned development and validation of a new clinical
prediction model for the decline of renal function in
Caucasian people with DM2 to aid decision-making in
clinical care. Our methodological approach will be based
on a multivariable linear mixed model able to account
for the dependence of clinical parameters per subject
over time and for the similarity of individuals within the
same country. Previous studies have employed risk pre-
diction based on (multinomial) logistic regression
models for which as a dependent variable the dichoto-
mized eGFR slope was used, after estimation by least
squares using the repeated measurements and then par-
titioning at arbitrary cutpoints. Each eGFR strata then
covers different intervals on the eGFR slope spectrum
and is supposedly indicative of varying severity of the
progression of renal function loss. However, this ap-
proach suffers from several shortcomings. First, individ-
ual eGER slopes can only be estimated very inaccurately,
as only very few data points at non-equidistant time
points are available for each patient [5]. Moreover, the
categorization of the resulting eGER slopes adds another
layer of possible bias as it leads to subjects close on the
continuous spectrum but on the opposite sides of the
cutpoint being characterized as different [31]. By con-
trast, our approach avoids the issues associated with the
imprecise estimation of slopes and inappropriate dichot-
omization prior to model development and takes the ob-
served data fully into consideration when estimating the
parameters of the model. In addition, we include the
baseline measurements of eGFR into the outcome vector
of an individual, as it is subject to the same measure-
ment error as later eGFR measurements. In this way,
these baseline measurements contribute to a more pre-
cise estimation of the error variance. Nevertheless, avail-
able eGFR measurements at the time of prediction
(application of the model) can still be incorporated in
our approach to optimize the predicted eGFR trajectory.
In addition, the clustered data structure due to the two
multicentre cohorts (GCKD and PROVALID) for model
training will be taken into account by including an add-
itional random intercept for the country in contrast to
existing models. Therefore, the potential heterogeneity
of model performance across the countries, which are
distinct between GCKD and PROVALID, is prevented
and hence, the generalizability to unseen individuals is
improved.

However, this study will have a few limitations. First, it
is to be expected that for some individuals not all cre-
atinine measurements will be available, in particular, at
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later time points. Such random missingness is common
in prospective longitudinal studies. Even in the case of
informative missingness, by capturing much information
about the patients by means of domain-expertise-
selected clinical baseline variables, which are included in
multivariable modeling, the mixed model is still able to
provide unbiased predictions. Second, we will not in-
clude extensive biosampling data (e.g., metabolomics,
proteomics, lipidomics) in the model. The inclusion of
these biomarkers may improve the predictive accuracy
of the model, but the scientific evidence for an added
value in prediction is still scarce and the biomarkers
have no validated test characteristics. We will rather
prioritize clinical variables that are regularly collected
and which are widely available to ensure the broad
applicability of our model. Lastly, the lack of
standardization of creatinine assays across cohorts in-
flicts variability of the clinical laboratory serum creatin-
ine measurements and hence can induce potential bias
in calculating eGFR.

The key strength of this study includes not only the
refined methodology in the development of the predic-
tion model, but also its large sample size due to the
usage of two prospective observational cohort studies
PROVALID and GCKD for model development. This
ensures stable parameter estimation of the model. An-
other strength is the availability of an additional, inde-
pendent prospective cohort study, DIACORE, for
external validation after model development. To our
knowledge, this is the first prediction model specifically
developed for a central European population suffering
from DM2 and covering a wide range of CKD stages.

Overall, we have outlined a robustly developed and
validated clinical prediction model which will generalise
to a wide range of patients with regard to initial CKD
progression suffering from DM2. It will also be derived
from a diverse and multinational population using two
large studies and will be used to predict deterioration in
renal function in DM2 patients to improve further eGFR
development through early intervention in patients at
high risk for the rapid progression of renal decline.

Conclusion

This will be a prediction model for eGER loss in Cauca-
sian subjects with DM2 that will use data from recent
observational multinational studies. By adhering to
transparent reporting procedures and current best prac-
tice for model development and validation, we will
minimize the risk of bias when our prediction model is
applied in the context of primary prevention of progres-
sion of CKD in people with DM2.
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