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Abstract
Biological evolution is reduced to three fundamental processes in the spirit of a minimal model: (i) Competition caused 
by differential fitness, (ii) cooperation of competitors in the sense of symbiosis, and (iii) variation introduced by mutation 
understood as error-prone reproduction. The three combinations of two fundamental processes each, (  ) competition and 
mutation, (  ) cooperation and competition, and (  ) cooperation and mutation, are analyzed. Changes in population dynam-
ics that are induced by bifurcations and threshold phenomena are discussed.

Keywords  Competition · Cooperation · Darwinian optimization · Error threshold · Mutation · Neutral evolution · Selection

Introduction

Biology is centered around evolutionary thinking or under-
standing biology implies understanding evolution as Theo-
dosius Dobzhansky pointed out clearly in his famous book 
on evolution: “Nothing in biology makes sense except in the 
light of evolution” (Dobzhansky et al. 1977). Pure Darwin-
ian evolution is a simple process but its embedding in nature 
renders it complex: Natural selection would follow uncom-
plicated laws in a simple environment. In the light of current 
molecular biology, there is need for a simple but comprehen-
sive mathematical model of evolution to be able to account 
for modern genetics. The various epigenetic mechanisms 
have to be part of any comprehensive model of evolution 
and to keep such a model amenable to analysis and handling, 
molecular details must be reduced to a coarse-grained level. 
This article deals with a flexible model of evolution under 
defined environmental conditions. We present a concise and 
comprehensive review of work that was published elsewhere 
(Schuster 2016a, d, 2017a) together with a few new results.

The model focusses on three basic processes: (i) fitness-
driven competition through differential reproductive success, 
(ii) reproduction-relevant cooperation between competitors, 
and (iii) reproduction-induced variation. The model is con-
ceived with a modular structure and allows for the imple-
mentation of different, more or less complicated mechanisms 
for the processes (i), (ii), and (iii). For example, variation 
may be implemented by mutation, by recombination or by 
both. Here, we shall apply the simplest conceivable mecha-
nisms: reproduction as single enzyme mediated replication 
(Biebricher 1983), cooperation of competitors as hypercy-
cle dynamics (Eigen and Schuster 1978a, b), and variation 
as single point mutations based on the uniform error rate 
assumption (Swetina 1982).

Usage of the notion evolution is often ambiguous and a 
precise definition is desirable. Here evolution is understood 
as a process based on reproduction of a genotype being a 
DNA or an RNA sequence that carries encoded information 
on the formation of a phenotype, which is evaluated with 
respect to success in reproduction. The evolutionary pro-
cess is built upon two foundations: (i) the dynamics at the 
population level and (ii) the environment dependent encod-
ing of phenotypes in genotype. At the molecular level, the 
latter boils down to sequence–structure–function relations 
(Schuster 2016). The simplest systems that are capable of 
evolution in the sense of the given definition are nothing 
but special autocatalytic reactions involving polynucleotides 
under suitable conditions.
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In the next "Preliminaries", some prerequisites are pre-
sented for the model, which is introduced in "A minimal 
mathematical model for the evolution of molecules". The 
model comes in a deterministic version based on kinetic dif-
ferential equations or it is formulated as a stochastic process 
modeled by means of chemical master equations (Schuster 
2016). Although almost no analytic solutions are available 
for master equations derived from nonlinear reaction kinet-
ics1 in two or more variables, the stochastic version of the 
model can be studied by efficient simulation methods for 
the calculations of trajectories (Gillespie 1977, 2007). In 
three sections, solution curves for the three two-dimensional 
subspaces, (  ) reproduction and mutation, (  ) reproduc-
tion & cooperation, and (  ) cooperation & mutation, are pre-
sented, analyzed and interpreted. Then follows a brief dis-
cussion of results obtained with the full three-dimensional 
model, reproduction & cooperation & mutation and in the 
final section we discuss the simple model in the context of 
the complex processes in nature.

Preliminaries

Darwinian evolution is often—and incorrectly—seen as a 
synonym for optimization mainly because Ronald Fisher’s 
fundamental theorem of natural selection (Fisher 1930, 
1958; Price 1972; Ewens and Lessard 2015) focusses on 
non-decreasing mean fitness �(t) in evolving populations. In 
the simplest form derived from idealized models, the time 
derivative of the mean fitness is the variance of the fitness 
values and therefore a non-negative quantity. In reality, mean 
fitness is the result of many factors and as Fisher was been 
certainly aware, only a few cases—like single locus genet-
ics—fulfil the theorem in pure form (for elaborate discus-
sions see the more recent literature Plutynski 2006; Okasha 
2008).

Evolution is intimately related to the environment in 
which it takes place and accordingly environment and envi-
ronmental changes are major factors shaping evolutionary 
processes. Here, we are primarily interested in the internal 
dynamics and hence a well-defined and controllable environ-
ment is required. For this goal, we introduce a flow reactor in 
"Idealized environments", which represents a simple device 
that is not only useful for performing evolution experi-
ments but also provides at the same time a suitable setup 
for theoretical modeling. More complex environments can 

be implemented as long as they can be cast in kinetic equa-
tions. In a separate "Basic processes", the processes that will 
be used to model evolution are introduced. The following 
section describes the deterministic and stochastic methods, 
which are applied to find solutions of the kinetic equations. 
Finally, we review some fundamental features of autocataly-
sis since this is the chemical counterpart of reproduction.

Idealized environments

Environments that allow for investigations of observa-
tions as functions of one or few parameters with everything 
else being constant require elaborate design in the form of 
sophisticated experiments since devices controlling envi-
ronmental conditions may be quite involved. In theoretical 
approaches, often the silent assumption is made that there 
exists a hypothetical machinery, which takes care of fixing 
parameter values as needed for the mathematical analysis.

Environmental influences on phenotypes are commonly 
large, manifold, and easy to observe. In this study, however, 
we are interested in the intrinsic driving forces of evolu-
tion, which result from reproduction, symbiotic cooperation 
and variation, and therefore impacts on evolution caused by 
changes in the environment are intended to be kept to a mini-
mum. To reduce the influence of the environment as much 
as possible we shall assume a control device in the form of 
a simple flow reactor (Fig. 1; see also Schmidt 2005). More 
elaborate reactors, which keep, for example, the numbers of 
bacterial cells constant have been designed and implemented 
(Novick and Szillard 1950a, b; Bryson 1952). The flow reac-
tors called chemostat, cellstat or turbidostat and other exper-
imental devices for monitoring and controlling evolution in 
the laboratory may serve as examples (Husimi et al. 1982; 
Dykhuizen and Hartl 1983; Husimi 1989; Koltermann and 
Kettling 1997; Strunk and Ederhof 1997).

Implementation of a physical device rather than appli-
cation of idealized assumptions like constant population 
size is required for the stochastic description of evolution. 
An illustrative example where the deterministic approach 
yields a stable solution whereas the corresponding stochastic 
system is unstable is provided by the linear birth-and-death 
process (Goel and Richter-Dyn 1974), which is described by 
the kinetic equations � + �

f
⟶ 2� and �

d
⟶∅ . For equal 

birth and death rate parameters, f = d , the population num-
ber of the deterministic system stays constant whereas in 
the stochastic model the fluctuations are unregulated. With 
increasing amplitude of fluctuations, the populations will 
hit the death state, which is an absorbing boundary and 
where the system therefore remains caught forever. In other 
words, the system is unstable despite a (marginally) stable 
deterministic solution. The direct incorporation of constant 
population size into Fisher’s selection (1930) or Eigen’s 
equation (1971) leads to an instability of the same kind since 

1  The term linear reaction kinetics is used in this contribution for 
reactions and flow terms of zero and first order, which give rise to 
constants or linear functions in the kinetic ODEs. First-order kinetics 
gives rise to exponential functions, which become linear in ln[�]∕t
-plots.
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fluctuations are not self-regulating (Jones and Leung 1981). 
Implementation of the system in the flow reactor provides 
stability due to balance control of inflow and outflow mod-
eled by the pseudoreactions ∗

a0⋅r

⟶� and �
r

⟶∅ as well as 
�i

r
⟶∅ (i = 1,… , n) (Fig. 1).

Basic processes

The minimal system for modeling evolution of molecules 
is based on the three classes of processes: (i) competitive 
reproduction, (ii) symbiotic cooperation, and (iii) repro-
duction based variation. For the minimal model we shall 
choose the simplest possible chemical reactions. Reproduc-
tion will be modeled by simple replication, � + �i

fi
⟶ 2�i 

with fi being the fitness of species �i and competition being 
introduced through living on the same resource A. Symbi-
ontic cooperation is introduced as catalyzed replication, 
� + �i + �j

hij
⟶ 2�i + �j (i, j = 1,… , n) , where �i repre-

sents the template and �j is the catalyst. In its most general 
form—every molecule �j has the potential to act as catalyst 

in the replication of every molecular species �i—the number 
of catalytic terms is n2 and unrealistically large since specific 
catalysis is a rare property. The simplest example of stable 
cooperative catalytic networks with fewer catalytic reactions 
known so far is the catalytic hypercycle (Eigen 1971; Eigen 
and Schuster 1977, 1978, 1978): The catalyzed reactions 
2�i + �i+1

hi
⟵� + �i + �i+1 ( i = 1,… , n; i mod n)

form a closed cycle with n members.
Genetic variation occurs at the level of a DNA or RNA 

genotype in forms of mutation and recombination. The sim-
plest form of variation is the point mutation that consists of the 
exchange of a single nucleotide in the sequence and caused by 
the incorporation of a wrong nucleotide during the replication 
process. Correct and error-prone replication are considered as 
parallel reaction channels within one and the same replication 
mechanism (Eigen 1971). In terms of a simple over-all replica-
tion kinetics of the multistep process,

with E being a replicase enzyme, the reaction rate is obtained 
as the product of two parameters: Qji ⋅ fi where fi = ki [�] is 
the fitness of the template that depends on the availability 
of resources here the concentration [ A]. The dimensionless 
factors Qji with i, j = 1,… , n are understood as the elements 
of a mutation matrix Q = {Qij} and provide the probability 
to obtain �j as a copy of the template �i that can be either 
correct ( �j ≡ �i ) or error-prone ( �j,  j ≠ i ). Conservation of 
probabilities requires: 

∑n

j=1
Qji = 1 since each copy has to be 

either correct, Qii , or incorrect, 
∑n

j=1,j≠i
Qji = 1 − Qii . For 

the sake of simplicity, binary sequences will be considered 
here and we distinguish only between correct and incorrect 
base pairs.

A useful simplifying approximation is made by the uniform 
error rate model (Swetina 1982): The error per nucleotide and 
replication event, p, is assumed to be independent of the posi-
tion of the nucleotide along the sequence and the nature of 
the nucleotide to be complemented. Then all elements of the 
mutation matrix can be expressed by a simple formula,

with only three parameters: (i) the sequence length of 
the RNA molecules l, (ii) the mutation rate p, and (iii) 
the Hamming distance (Hamming 1950, 1986) between 
the two sequences interrelated by the mutation process, 
dij = dH(Xi,Xj) . Without changing important results for the 
purposes pursued here, the analysis of the model is sub-
stantially simplified by the assumption of constant chain 
lengths l, which is also consistent with the restriction to 

⋯ ← �n ← �1 ← �2 ← ⋯ ← �n−1 ← �n ← …

(1)� + �i + �
Qji⋅ki[�]

→→→�j + �i + � ,

(2)Qji = pdij (1 − p)l−dij = pl�dij with � =
p

1 − p
,

Fig. 1   The continuous-flow stirred-tank reactor (CSTR). The fig-
ure sketches a device for controlling the environmental condition 
of evolution experiments. The material needed for reproduction is 
subsumed by A, it flows into the reactor with a (volumetric) flow 
rate r    [V  /  t]≡[volume /  time] in form of a solution with concentra-
tion [�] = a0 or number density [�] = A0 . In the reactor molecules 
�i (i = 1,… , n) are reproduced and A is consumed. The volume V 
of the reactor is constant and hence reaction mixture compensating 
the volume increase through influx of stock solution has to flow out 
of the reactor. The mean residence time of a volume element in the 
CSTR is �R = V∕r [t]. Inflow and outflow of materials are handled as 
virtual chemical reactions or pseudoreactions: ∗

a0⋅r

⟶� for inflow and, 
�

r
⟶∅ and �i

r
⟶∅ (i = 1,… , n) for outflow
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point mutations since point mutations do not change chain 
lengths by definition.

As an alternative to Eq. (1), mutation can be seen as 
a consequence of DNA change—damage and imperfect 
repair—during the whole life time of an organism, which 
is the idea in the Crow–Kimura mutation model (2009), 
pp 264–266]:

Interestingly, both models (1) and (3) although different with 
respect to the underlying physics give rise to identical math-
ematical problems (see e.g. Baake and Gabriel 1999 and 
Schuster 2016, pp 76–78).

Deterministic and stochastic approaches

Reaction mechanisms are commonly analyzed by determin-
istic and stochastic approaches. The former translate the 
chemical reaction equations into kinetic differential equa-
tions, which can be directly solved by mathematics, studied 
by means of qualitative analysis or investigated by numeri-
cal integration. The theorems of existence and uniqueness 
of solutions of differential equations are applicable and a 
single integration provides the complete information for a 
given input set. Competitive selection with nonzero mutation 
leads to one unique asymptotically stable stationary state 
(Thompson 1974; Jones et al. 1976), whereas the long-time 
dynamics of cooperative systems is much richer and multiple 
stationary states, oscillations or deterministic chaos may be 
observed (Schuster 1978; Schnabl et al. 1991).

Stochastic analysis in general in based on searching for a 
stochastic process that fits the model to be studied as closely 
as possible. Chemical reaction kinetics prefers master equa-
tions although the repertoire of analytical solutions is very 
limited. It is not difficult to write down a multivariate master 
equation but the derivation of analytical solutions is suc-
cessful only in exceptional cases, for example for networks 
of monomolecular reactions (Jahnke et al. 2007; Deuflhard 
et al. 2008. If no analytical solutions are available informa-
tion on the stochastic system can be obtained by trajectory 
sampling. The theoretical background for trajectory har-
vesting has been laid down by Andrey Kolmogorov (1931), 
Willy Feller (1940), and Joe Doob (1942, 1945). With elec-
tronic computers now being generally available elaborate 
simulations of stochastic processes became possible. The 
more recent conception, analysis, and implementation of a 
simple but highly efficient algorithm by Daniel Gillespie 
(1976, 1977, 2007) provides a very useful tool for investiga-
tions of stochastic effects in chemical kinetics. Distributions 
of trajectories are characterized by expectation values and 
higher moments, commonly only by variances or standard 
deviations.

(3)� + �i + �
ki[�]

→→→ 2�i + � and �i

�ji

→→→�j .

Equilibrium fluctuations in conventional chemical reac-
tion kinetics follow an approximate 

√
N-law and hence play 

almost no role in systems with particle numbers that are 
typical for chemical systems. In biology a different scenario 
is encountered. For example, every new variant originat-
ing from mutation has to start out from a single copy. The 
deterministic approach commonly uses continuous vari-
ables, which can only be an approximation to reality, since 
numbers of molecules or biological entities are integers by 
definition. Continuous concentrations can adopt arbitrarily 
small values whereas stochastic variables cannot pass low 
values beyond unity, because then molecular species go 
extinct, and deterministic solutions become unrealistic and 
differ strongly from the stochastic results. Large population 
size alone is not sufficient, each variable has to be suffi-
ciently large at every instant to guarantee similarity between 
stochastic and deterministic solutions. Two more phenom-
ena are relevant in the stochastic approach at low particle 
numbers and may lead to large standard deviations in the 
variables: (i) nucleation steps in reactions involving two or 
more molecules and (ii) multiple (quasi)stationary states2 of 
the stochastic system. The stochastic system may approach 
any stationary state and the distribution of the possible out-
comes is determined by probabilities. Then the calculations 
of expectation values and higher distribution moments build 
averages over different final states and may give rise to enor-
mous standard deviations.

For the purpose of illustration, we consider the equilibra-
tion of the flow reactor as an example of a stochastic system 
that can be fully analyzed by analytic calculations (Schuster 
2016, pp 436–441). The two pseudoreactions, 

are converted into the easy to solve kinetic differential 
equation

where n0 = a(0) . The master equation for the probability 
Pn(t) = P

(
A(t) = n

)
 with number density A(t) being the dis-

crete pendant of concentration a(t),

(4a)∗
a0 r

⟶ � and

(4b)�
r

⟶ ∅ ,

(4c)

da

dt
= a0 ⋅ r − a ⋅ r = (a0 − a) r with a(t) = n0 +

(
n0 − a0

)
e−r t

(4d)

�Pn

�t
= r

(
a0Pn−1 + (n + 1)Pn+1 − (a0 + n)Pn

)
, n ∈ ℕ ,

2  A stochastic quasistationary state is a state towards which the sys-
tem converges stochastically in the long-time limit and around which 
it fluctuates. It is not an absorbing boundary, and if true asymptoti-
cally stable stationary states exist the system converges to one of 
them in the limit t → ∞ although the mean time of convergence may 
be extremely long.
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has the analytical solution

with n, n0, a0 ∈ ℕ for the sharp initial condition Pn(0) = �n,n0 . 
In the limit t → ∞ the distribution (4e) converges to a Pois-
son distribution

First and second moment yield expectation values and stand-
ard deviations

The standard deviation starts out from �(t = 0) = 0 and 
approaches the equilibrium value � =

√
a0  either from 

below for a0 > n0 or from above for a0 < n0 after having 
passed a maximum at

In general the maximum if it exists is very flat (see Fig. 3) 
as can be easily checked from the analytical expressions 
through inspection:

 The flow reactor is one of the few rather exceptional cases 
where the stochastic approach can be done completely by 
mathematical analysis.

Autocatalysis in the batch reactor

A batch reactor is an elaborate device that allows for per-
forming chemical reactions under controlled conditions 
without inflow and outflow (Schmidt 2005). Here, the term 
batch reactor is used to indicate that reactions are carried out 
in a well-mixed closed system under constant temperature 
and pressure, and in the long run approach a thermodynamic 
equilibrium state.

In conventional chemistry autocatalysis is a rather rare 
phenomenon but in biology it represents the most impor-
tant process since multiplication is just a special form of 
autocatalysis that in simplest form can be expressed by the 
reversible reaction

(4e)

Pn(t) =

min{n0,n}∑

k=0

(
n0
k

)
an−k
0

e−krt(1 − e−rt)n0+n−2k

(n − k)!
ea0(1−e

−rt)

(4f)lim
t→∞

Pn(t) = Pn =
an
0

n!
exp(−a0) .

(4g)
E
�
A(t)

�
= a0 + (n0 − a0) e

−rt and

�
�
A(t)

�
=

√
(a0 + n0 e

−rt)(1 − e−rt) .

(4h)tmax =
1

r
ln

2n0

n0 − a0
.

E
�
A(tmax)

�
= a0 +

(n0 − a0)
2

2n0
and �

�
A(tmax)

�
=

n0 − a0

2
√
n0

.

(5)� + m�
g
←

−−→←−−
g
→

(m + 1)� .

The forward reaction of (5) leads to molecular self-enhance-
ment: The resource A is consumed in the synthesis of the 
replicator X and the process is catalyzed by the presence 
of further molecules X. Depending on the molecularity 
of the autocatalytic process as expressed by the value of 
m autocatalysis comes in different forms that, in essence, 
fall into two classes: (i) simple or first-order autocatalysis 
with m = 1 and (ii) second- and higher-order autocatalysis 
with m ≥ 2 [(Phillipson and Schuster 2009, pp 18–27)]. For 
consistency, we add here also the uncatalyzed reaction and 
call it zeroth order autocatalytic ( m = 0).3 All processes in 
closed systems converge to an equilibrium state and show 
mass conservation that implies a conservation relation 
A(0) + X(0) = A(t) + X(t) = N . The reversible autocatalytic 
reactions converge to the equilibrium state:

Although the expressions for the equilibria are the same 
for the all reactions independently of the stoichiomet-
ric coefficient m, K = g

→

∕g
←

 , there are subtle differ-
ences in the probability distributions, which become 
important at small concentrations: The particle numbers 
are discrete quantities, change by integers only, and the 
stoichiometric factors are X(t)

(
X(t) − 1

)
≡
(
X(t)

)
2
 or 

X(t)
(
X(t) − 1

)(
X(t) − 2

)
≡
(
X(t)

)
3
 rather than X(t)2 and 

X(t)3 , respectively.4 The states with X(t) = 1 for m = 1 , or the 
states X(t) = 1 and X(t) = 2 for m = 2 cannot react because 
two or three molecules X are needed for the conversion of X 
into A. The inaccessibility of the state with X(t) = 0 or the 
states with X(t) = 0 and X(t) = 1 in the first- or second-order 
autocatalytic reactions require different normalizations for 
the stationary probabilities of the three systems: 

 where as before the stochastic variable is n = A . Mass con-
servation provides X = N − n . As expected the truncation 
of P

(0)

n
 is important for small values of N only. For first-

order autocatalysis with N = 10 , k
→

= k
←

= 1.0 we obtain 

S1∶ a = N∕(1 + K), x = N ⋅ K∕(1 + K).

(6a)P
(0)

n
=

(
N

n

)
Kn

(1 + K)N
; n ∈ [0,N] ,

(6b)P
(1)

n
=

(
N

n

)
Kn

(1 + K)N − KN
; n ∈ [0,N − 1] ,

(6c)

P
(2)

n
=

(
N

n

)
Kn

(1 + K)N − KN − N KN−1 − 1
; n ∈ [1,N − 2] ,

3  We shall use different letters for the rate parameters: For m = 0 we 
use g ≡ h , for m = 1 g ≡ k , and for m = 2 g ≡ l . It is worth recalling 
the different dimensions: h [t−1 ], k [M−1t−1 ], and l [M−2t−1 ] that are the 
same in both directions.
4  Here the expression (x)n = x!∕(x − n)! denotes the falling Pochham-
mer symbol.
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E(A) = 4.9951 , for second-order autocatalysis E(A) = 4.9605 
compared to E(A) = 5 for the uncatalyzed process.

In principle, there are three major sources of random-
ness in autocatalytic reactions: (i) thermal fluctuations, (ii) 
delayed onset of autocatalytic reactions and (iii) multiple 
stationary states. (ad i) In the transients towards equilib-
rium the thermal fluctuation bands are essentially the same 
in autocatalytic and conventional reactions as can be seen 
best from the comparison of standard deviations at equi-
librium (Fig. 2). The differences between conventional 
and autocatalytic equilibrium densities can be recognized 
numerically for very small particle numbers only (). (ad 
ii) The reaction rate for an autocatalytic reaction of order 
m is v(0) = k A(0)

(
X(0)

)
m
− l

(
X(0)

)
m+1

 (with m ≥ 1 ). At 

small t the factor A(t) is large and the factor(s) contain-
ing X(t) are small and only the first term in v(t) matters 
in the early phase of the reaction. Thus X is produced 
and X(t) increases, which in turn leads to an increase v(t) 
yielding the typical scenario of self-enhancement. Self-
enhancement in chemical reactions is tantamount to an 
increase of the reaction rate with concentration in the early 
phase and together with the late saturation phase gives 
rise to “s”-shaped or sigmoid curves whereas the uncata-
lyzed reaction ( m = 0 ) follows a simple exponential decay 
(Fig. 2). Higher values of m lead to steeper curves, which 
approach a step function with increasing m. The maximum 
standard deviation in the approach towards equilibrium 
�max = max{�(t)} is a measure of the random scatter in the 
delay in the onset of the autocatalytic reaction (Table 1). 
(ad iii) Multiple final states give rise to an additional sto-
chastic component often called anomalous fluctuations 
(de Pasquale et al. 1980) since "Autocatalysis in theow 
reactor").

In Fig.   2 transients for the two processes 
� + m� ⇌ (m + 1)� with m = 0 and 1 are compared by 
means of expectation values and fluctuation bands. As ini-
tial conditions we apply an empty reactor, A(0) = 0 , and 
the smallest possible values for X: X(0) = 0 and X(0) = 1 
for the uncatalyzed and the autocatalytic reaction, respec-
tively. A total population size of N = 1000 was chosen so 
that the one-standard-deviation fluctuation band of order √
N appears small and the deterministic solutions coincide 

with the expectation values in the reference process A ⇌ X 
( m = 0 ). The transient of the autocatalytic process ( m = 1 ) 
is different: It shows substantial broadening of the fluctua-
tion band (Table 1) because of delayed onset of the reaction 
before it narrows down to the equilibrium value. In the inter-
mediate range the expectation values differ remarkably from 
the deterministic solution curves. As expected an increase 
in X0 leads to a decrease in the width of the fluctuation 
band. Second order autocatalysis ( m = 2 ) differs from first-
order autocatalysis mainly by the size of the characteristic 
effects: Both autocatalytic reactions show broadening of the 
fluctuation bands but the band width in the second-order 
case is about four times as wide. In particular, the scatter 
in the waiting times until the first reaction events occurs is 
much larger because we are dealing with two small factors, 
(X − 1) ⋅ (X − 2) , in the expression for v(0).

The standard deviation in the course of the reactions, �(t) , 
is shown in Fig. 3. Because of sharp initial conditions the 
fluctuation band starts out from zero—�(0) = 0 , increases, 
becomes broad in the intermediate range and settles down at 
the equilibrium value (6). Substantial deviations between the 
deterministic solution and the stochastic expectation value, 
a(t) and the E

(
A(t)

)
 or x(t) and E

(
X(t)

)
 , respectively, are 

observed in the intermediate range. Accordingly, the stand-
ard deviation goes through a pronounced maximum that is 

Fig. 2   Comparison of fluctuations in the reversible zero- and first-
order autocatalytic reaction � + m� ⇌ (m + 1)� with m = 0, 1 bf in 
the batch reactor. The two plots show the expectation values E

(
A(t)

)
 

(black) and E
(
X(t)

)
 (red) together with the one standard deviation 

band E(t) ± �(t) (gray and pink) obtained by sampling of 10,000 tra-
jectories that were calculated by Gillespie’s simulation method for the 
uncatalyzed ( m = 0 ; top plot) and the first-order autocatalytic reac-
tion ( m = 1 ; bottom plot). Both reactions approach almost identical 
thermodynamic equilibrium states. Choice of parameters and initial 
conditions: N = 1000 ; h

→

= h
←

= 1.5[t−1 ], A(0)=1000, X(0)=0 (top 
plot); k

→

= k
←

= 0.01[M−1  t−1 ], A(0)=999, X(0)=1 (bottom). Solu-
tions of the corresponding kinetic differential equations are shown as 
broken lines.



409European Biophysics Journal (2018) 47:403–425	

1 3

qualitatively different from the shallow maximum observed 
with the standard deviation of conventional chemical pro-
cesses 

(
see Eq. (4h)

)
.

The ir reversible processes, � + m� → (m + 1)� 
obtained from Eq. (5) by putting g

←

= 0 , are illustrative 
because they are closer to biology where replication or 
reproduction occur always under the conditions of irre-
versibility. The shape of the solution curves compared to 

those shown in Fig. 2 shows similarities except a twice 
as wide range for the values of the stochastic variables, 
A(0) + X(0) ≥ A(t) ≥ 0 and 1 ≤ X(t) ≤ A(0) + X(0) and 
expectation values and standard deviations approach 
zero at sufficiently long times. Again, we observe a sig-
moid shape of the solution curves, for small initial val-
ues ( X(0) < 5 ) the standard deviation �(t) becomes large 
in the intermediate range (Fig. 3), and the deterministic 
curve deviates substantially from the stochastic expecta-
tion values.

Autocatalysis in the flow reactor

Implementation of autocatalytic reactions in the flow reac-
tor provides additional insights into the different forms of 
randomness. In particular we are interested in multiple 
stationary states as a source of stochasticity (item iii). The 
reaction equations for first order autocatalysis are:

with the kinetic differential equations

 The simple first-order autocatalytic process in the flow reac-
tor sustains two long time states: (i) The state of extinction S0 
with limt→∞ a(t) = a = a0 and limt→∞ x(t) = x = 0 , and (ii) 
the quasistationary state S1 with limt→∞ a(t) = a = r∕k and 

(7a)∗
a0 r

⟶ �,

(7b)� + �
k

⟶ 2�,

(7c)�
r

⟶ ∅, and

(7d)�
r

⟶ ∅,

(7e)
da

dt
= − k a x + (a0 − a) r and

dx

dt
= x (k a − r).

Fig. 3   Comparison of the standard deviation in the revers-
ible first-order autocatalytic reaction � + � ⇌ 2� and the revers-
ible uncatalyzed reaction � ⇌ � . The reactions are recorded for the 
closed system fulfilling A(t) + X(t) = A0 + X0 = const = N where 
A(0) = A0 and X(0) = X0 for both reactions. The figure presents 
the results of statistical evaluation of 10  000 trajectories obtained 
by computer simulations with Gillespie’s method (Gillespie 2007) 
for the autocatalytic reaction �(1)

X
(t) = �(1)(t) (black) and for the 

uncatalyzed reaction �(0)

X
(t) = �(0)(t) (red). Choice of parameters: 

k
→

= k
←

= 0.01[M−1  t−1 ] and h
→

= h
←

= 1.5[t−1 ]; equilibrium 
parameters K = k

→

∕k
←

= h
→

∕h
←

= 1 ; initial conditions: N = 1000 , 
X0 = 1 , A0 = 999 and N = 1000 , X0 = 0 , A0 = 1000 yielding the 
numerical equilibrium values A = X = 500 . The equilibrium value 
of the standard deviation is practically the same for both reactions: 
limt→∞ �

(1)

X
(t) ≈ limt→∞ �

(0)

X
(t) ≈ 15.8114

Table 1   Fluctuations in the two 
autocatalytic reactions A+ X 
⇌ 2 X and  A+2 X ⇌ 3 X a

The table presents maximal standard deviations �max computed from 1 000 trajectories of the two autocata-
lytic reactions for different initial conditions X0 = X(0) . For the autocatalytic reactions the standard devia-
tion �(t) passes through the maximum �max listed here whereas for the uncatalyzed process it increases 
monotonously from �(0) = 0 to the equilibrium value (see Fig. 3)a

The equilibrium fluctuations calculated from equations  () are practically the same for all three reactions. 
Choice of parameters, N = 1000 , A ⇌ X: h

→

= h
←

= 1.5[t−1 ]; A+ X ⇌ 2 X: k
→

= k
←

= 0.01[M−1 t−1 ]; A+2 
X ⇌ 3 X: l

→

= l
←

= 0.00001[M−2 t−1]
a Depending on rate parameters and initial conditions the trajectories may pass a flat maximum before they 
decrease to the equilibrium value (see Eq. (4h) and Schuster 2016, pp. 445–449)
b  The accurate value obtained from the stationary master equation is � = 15.8114

Autocatalysis 
order

Reaction Initial conditions Limit

X0 = 1 X0 = 2 X0 = 5 X0 = 10 t → ∞

Zero A ⇌ X – – – – 15.8b

First A+ X ⇌ 2 X 123.2 89.8 59.6 44.4 15.8b

Second A+2 X ⇌ 3 X – 245.1 226.7 189.4 15.8b
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limt→∞ x(t) = x = a0 − r∕k . Stability of S1 requires that the 
condition r < a0 k is fulfilled.

Starting from an empty reactor containing no A and 
the autocatalyst only in seeding quantities, A(0) = 0 and 
X(0) = 1, 2, 3,… , the trajectory shown in the upper part of 
Fig. 4 allows for the distinction of several phases: (I) the 
flow reactor is filled with the resource A in phase I, (II) in 
the random phase II the decision is made to which state 
the trajectory will converge, (III) the trajectory approaches 
the long-time state, and (IV) the trajectory fluctuates 
around the state (see Figs. 4 and 7). First-order autoca-
talysis sustains the two long-time solutions S0 = (a

(0)
, 0) 

and S1 = (a
(1)
, x

(1)
) , stochastic trajectories approach either 

of the two states, and parameters and initial conditions 

determine the probabilities to end up here or there. For suf-
ficiently large population sizes, the long-time expectation 
values of the stochastic variables can be well approximated 
by linear combination of the deterministic values:

with �0 = N0∕(N0 + N1) and �1 = N1∕(N0 + N1) where N0 
and N1 are the counted numbers of trajectories ending up 
in S0 or S1 from a sufficiently large sample. Although only 
3/100 trajectories go to extinction in the example shown 
in the lower plot of Fig. 4 the influence on the expectation 
values E

(
A(t)

)
 and E

(
X(t)

)
 and the standard deviations 

�
(
A(t)

)
 and �

(
X(t)

)
 is remarkable. This random component 

of processes has been intensively studied in the nineteen 
eighties by Paolo Tombesi, Francesco de Pasquale, Piero 
Tartaglia and the notion anomalous fluctuation caused by a 
chemical instability was coined for this kind of stochasticity 
(de Pasquale et al. 1980, 1982, 1982). It is advantageous to 
collect trajectories separately for the different final states, 
because then the anomalous fluctuations disappear. For 
example, the standard deviation of A at t = 30 is reduced 
from �

(
A(30)

)
= 335.7 to �

(
A(30)

)
= 7.12 if one changes 

from a sample of hundred trajectories with three extinction 
events (Fig. 4, Pseudorandom number generator: Extend-
edCA, Mathematica, seeds s = 491 ) to one without extinc-
tion ( s = 919).

The major difference between the two classes of auto-
catalytic reactions lies in the repertoire of possible dynamic 
behaviors. First-order autocatalysis gives rise to exponen-
tial growth in unconstrained systems and to selection and 
optimization of mean fitness in multispecies cases with 
finite resources (see ’’Competition, mutation and qua-
sispecies"). Accordingly first-order autocatalysis leads to a 
Darwinian scenario of selection of the fittest. In contrast 
to first-order autocatalytic reaction networks, the dynamics 
in second-order systems is very rich and includes multiple 
stationary states, oscillations and deterministic chaos. The 
second-order autocatalytic elementary step, A+2 X ⇌ 3 X, 
represents a kind of generally used prototype for theoretical 
models, for example the Brusselator (Nicolis and Prigogine 
1977). It provides a simple enough reaction step for studies 
by means of rigorous mathematics. Qualitative analysis of 
Brusselator dynamics is straightforward and numerical inte-
gration causes no problem provided the integration software 
can handle stiff differential equations. In reality, however, 
single-step autocatalytic reactions are extremely rare, instead 
we are commonly dealing with multistep-reaction networks 
(Noyes et al. 1972) (see also the review by Francesc Sagués 
and Irving Epstein (2003).

In biology, in particular in the theory of evolution, the 
process A+2 X → 3 X plays a special role since in the sim-
ple form of hypercycles it is the basis for suppression of 

E
(
A
)
= �0a

(0)
+ �1a

(1)
andE

(
X
)
= �0x

(0)
+ �1x

(1)

Fig. 4   The first-order autocatalytic reaction. � + � ⇌ 2� in the flow 
reactor. The two plots show a single trajectory (top plot) and statis-
tics consisting of expectation value within the one-standard deviation 
band, E

(
A(t)

)
± �

(
A(t)

)
 and E

(
X(t)

)
± �

(
X(t)

)
 taken form sample of 

100 trajectories (bottom plot). The four phases of the approach to the 
long-time solution are indicated (top plot; see text). Choice of param-
eters and initial conditions: N = 2000 ; k = 0.01[M−1  t−1 ], r = 0.5

[V  t−1 ], A(0) = 0 , X(0) = 1 (top) and X(0) = 3 (bottom). Pseudoran-
dom number generator: ExtendedCA, Mathematica, seeds s = 491 . 
The sample size of the bottom plot was 100 trajectories, 3 led to S0 
(extinction) and 97 reached the pseudo-stationary state S1 . Solu-
tions of the corresponding kinetic differential equations are shown as 
dashed lines
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competitive selection without destroying template-induced 
reproduction. It provides one fundamental mechanism for 
major transitions (Maynard Smith and Szathmáry 1995; 
Schuster 1996) and will be discussed extensively in "Compe-
tition and cooperation". The enormous flexibility of second-
order autocatalysis follows, for example, from Fisher’s selec-
tion equation and the proof for the optimization of mean 
fitness in sexual reproduction under idealized condition. In 
a caricature model we may explain how the above mentioned 
reaction step could be related to sexual reproduction: 2 X on 
the l.h.s. are (at least stoichiometrically) related to the par-
ents and 3 X on the r.h.s. model parents and one offspring. 
Apart from being illustrative toys autocatalytic processes 
set the stage for modeling evolution in the sense that we 
shall reencounter all special phenomena of autocatalysis in 
the more elaborate model for evolution to be presented and 
discussed in the next "A minimal mathematical model for 
the evolution of molecules".

A minimal mathematical model 
for the evolution of molecules

The minimal model is dealing with the time dependence 
of the distribution of genotypes in populations Π(t) and 
hence it is rooted in chemical kinetics of (i) competitive 
reproduction, (ii) symbiontic cooperation, and (iii) genetic 
variation. The quantification of these three properties yields 
three parameters or sets of parameters, which can be plot-
ted on the three axes of a Cartesian coordinate system (see 
Fig. 5 and the previous publications (Schuster 2016a, b, d, 
2017b). We consider the simplest case here, where the three 
quantities are a fitness parameter f, a cooperation parameter 
h, and an mutation rate parameter p. For an implementa-
tion of the model in the flow reactor we need two additional 
external parameters measuring the accessible resources 
expressed, for example, as number density or concentration 
of a (hypothetical) compound A, A0 or a0 , respectively, and 
the mean residence time �R = V∕r of the reaction mixture 
in the reactor where V is the volume of the reactor and r is 
the (volumetric) flow rate. The parameter �R defines the time 
resolution of the reactor since slow reactions, which do not 
progress appreciably during the time interval �R cannot be 
studied.

In the next step, the model is implemented by means of 
a suitable and simple reaction mechanism. Based on "Ideal-
ized environments" and "Basic processes" we consider the 
following set of 2n2 + n + 2 reactions in the flow reactor: 

(8a)∗
a0 r

⟶ � ;

(8b)� + �i

ki Qji

⟶ �i + �j , i, j = 1,… , n ;

 The process (8a) supplies the material required for repro-
duction. A solution with A at concentration a0 flows into a 
continuously stirred tank reactor (CSTR) with a flow rate 
parameter r (Schmidt 2005, p. 87ff). The reactor operates at 
constant volume and this implies that the volume of solu-
tion flowing into the reactor per time unit [t] is compensated 
exactly by an outflow, which is described by the Eqs. (8d) 
and (8e) and concerns all (n + 1) molecular species, A and 
�i , i = 1,… , n . Inflow and outflow are often characterized 

(8c)
� + �i + �i+1

li Qji

⟶ �i + �j + �i+1 , i, j = 1,… , n ; i mod n ;

(8d)�
r

⟶ ∅ ; and

(8e)�i

r
⟶ ∅ , i = 1,… , n.

Fig. 5   A minimal model for modeling evolution. Evolution is con-
sidered as an interplay of three processes: (i) competition through 
reproduction, (ii) cooperation through symbiosis, and (iii) mutation 
through error-prone replication. In parameter space, the intensity 
parameters of all three processes, (i) fitness parameters f correspond-
ing to reaction rates for competition, (ii) reaction rates h for catalyzed 
reproduction, and (iii) an error rate parameter p for mutation are plot-
ted on the axes of a Cartesian coordinate system. On the three two-
dimensional faces of the coordinate system we are dealing with the 
three fundamental evolutionary processes: (  ) competitive reproduc-
tion and mutation are the basis of Darwinian optimization through 
natural selection and give rise to the formation of quasispecies and 
eventually to the occurrence of error thresholds (Eigen 1971; Eigen 
and Schuster 1977;  ) the interplay of competition and cooperation 
allows for the description of major transitions, which are seen as the 
consequences of crossing resource thresholds (Maynard Smith and 
Szathmáry 1995; Szathmáry and Maynard Smith 1995; Schuster 
1996, 2016); (  ) the combination of cooperation and mutation ena-
bles reintroduction of extinguished species provided the error rate is 
sufficiently large such that a mutation threshold for stochastic survival 
can be recognized (Schuster 20160



412	 European Biophysics Journal (2018) 47:403–425

1 3

as pseudoreactions because they are no chemical reactions 
in the strict sense, which are converting reactants are into 
products. The two classes of reactions producing progeny, 
template induced replication (8b) and catalyzed template 
induced replication (8c), represent the core of the evolu-
tion model. In agreement with the conditions in biology, 
both reproduction steps are implemented irreversibly in the 
direction of polynucleotide synthesis. A basic assumption 
for both reproduction steps is that correct reproduction and 
mutation are parallel chemical reaction channels ("Basic 
processes"). In other words, there is no mutation under con-
ditions that do not sustain reproduction.

As an alternative to the Eigen model (1) mutation can 
be seen, for example, as the result of DNA damage and 
imperfect damage repair during the whole life span of an 
organism, which is the idea underlying the Crow–Kimura 
mutation model (Crow and Kimura 2009, pp 264–266). 
Then reproduction and mutation are completely independ-
ent processes,

and in the kinetic differential equations they appear as addi-
tive terms. Interestingly, the Eigen and the Crow–Kimura 
model although being fundamentally different with respect 
to the assumptions about the nature of the mutation pro-
cess give rise to the same mathematical problems [see, e.g., 
(Schuster 2016d, pp.76-78)]. The mutation matrix Q cor-
responds formally to the mutation matrix � but there are 
non-negligible differences Q covers correct and error-prone 
replication but the process �i → 2�i is handled separately 
in the Crow–Kimura model and hence all diagonal terms are 
zero μii = 0∀ i = 1,… , n.

The equations that will be applied in the analysis of the 
dynamics of the model (8) implement three processes along 
the coordinate axes: (i) Darwinian selection of the fittest 
on the competition axis, (ii) hypercycle dynamics on the 
cooperation axis, and (iii) neutral evolution on the mutation 
axis. The kinetic differential equations of the model mecha-
nism (8) are of the form: 

 In  (9a) we made use of the conservation relation ∑n

i=1
Qij = 1 . No analytical solutions are available for  (9) 

in general but numerical integration is straightforward as 

� + �i

ki
⟶ 2�i and �i

μji
⟶ �j , (8b’)

(9a)

da

dt
= −a

n∑

i=1

(
ki + lixi+1

)
xi + r (a0 − a) , i mod n and

(9b)
dxi

dt
= a

(
n∑

j=1

Qij

(
kj + ljxj+1

)
xj

)
− xi r ,

i = 1, 2,… , n; j mod n .

long as n is not too large. In absence of cooperation terms, 
li = 0∀ i = 1,… , n , Eq.  (9) can be transformed into an 
eigenvalue problem of a symmetric matrix, which is readily 
diagonalized provided n is not very large ( n < 106 ; "Com-
petition, mutation and quasispecies").5 In mutation-free 
systems, p = 0 ("Competition and cooperation"), qualitative 
analysis and determination of stationary states are straight-
forward, and the dynamics of the complete system can be 
derived by extrapolation from the error-free results to finite 
mutations rates. The cooperation system with mutation, (9) 
with ki = 0∀ i = 1,… , n is used here to study the relevance 
of mutation in symbiontic systems. It also serves as an exam-
ple for the study of unconventional consequences of repli-
cation with frequent errors in the strong mutation scenario 
("Cooperation and mutation").

Processes on individual coordinate axes

The processes along the individual coordinate axes are 
considered in order to verify the initial statement on 
the three basic processes. For this goal it is easiest to set 
certain parameters zero: (I) no natural selection implies 
k1 = k2 = … = kn = k (= 0) , (II) no cooperative coupling 
requires l1 = l2 = … = ln = l = 0 , and (III) no mutation 
leads to Q = � where � is the unit matrix.

A process taking place on the selection axis is given by 
(II) and (III) being true leads to the ODE 

 Competition between the reproducing elements �i 
leads to survival of the fittest subspecies �m , which is 
defined by km a = fm = max{fi;i = 1,… , n} . For constant 
[�] = a0 = const , the mean fitness of the population, 
�(t) =

∑n

i=1
fixi(t)

�
c(t) with c(t) =

∑n

i=1
xi(t) , is a non-

decreasing function of time: d�∕ dt = var{f } ≥ 0 . This result 
is the formal analogue of Fisher’s fundamental theorem for 
asexual reproduction.

(10a)
da

dt
= −a

n∑

i=1

ki xi + r (a0 − a) and

(10b)
dxi

dt
= (ki a − r) xi ; i = 1, 2,… , n .

5  We remark that the deterministic kinetic Eqs. for (8b) and (8c) 
were extensively studied under the simplifying assumption of 
constant population size 

∑n

i=1
xi(t) = c0 = const (Eigen 1971; 

Eigen and Schuster 1978; Eigen and McCaskill 1989). The deter-
ministic solution curves formulated in relative concentrations 
ξi(t) = xi(t)

�∑n

i=1
xi(t) are identical for the CSTR and for constant 

population size (Schuster and Sigmund 1985). As we mentioned 
already in "Idealized environments" the stochastic system is unstable 
for unregulated constant population size (Jones and Leung 1981) and 
a proper description has to account explicitly for the physical setup 
applied, here the flow reactor.
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assumption that chemical processes occur one at a time, all 
jumps involve single steps and the particle numbers change 
by ±1 unless the elementary steps involve more than a single 
molecule per class. The jumps S� ′ → S� or S� → S� ′ are 
denoted by the shorthand notation

Then the master equation of mechanism (8) takes on the 
form

Each reaction step involving S� changes the probability 
to be in state S� , P� , in two ways: It increases the prob-
ability through reactions or pseudoreactions S� ′ → S� 
and decreases the probability through the reaction steps 
S� → S� ′ where � ′ is summed over all states from which 
S� can be reached or vice versa. The two terms in the first 
line, for example, describe the two pseudoreactions mod-
eling inflow and outflow of the material A, and further each 
reaction is represented by two steps. It is also worth noticing 
that stoichiometry requires two slightly different replication 
terms depending on whether the copy is correct or incorrect.

Master equations are easily written down and station-
ary solutions can be derived by generally applicable 
techniques as it was shown for the flow equilibrium in 
"Deterministic and stochastic approaches" but explicit 
time-dependent solutions are very hard to obtain and 
known only in exceptionally simple cases [Schuster 2016e, 
pp 347–568]. Here, we shall use the simulation technique 
of sampling trajectories introduced already in "Autocataly-
sis in the batch reactor". Expectation values and second 
moments of variables can be computed through sampling 
of trajectories—an example is shown in Fig. 6—but often 
this approach exceeds the available computational facili-
ties and it is necessary to interpret single trajectories. As 
examples we consider single trajectories in Fig. 4 and 
in Fig. 7. The process for convenience starting from an 
empty flow reactor is split into four phases: (i) establish-
ment of the flow equilibrium of A, (ii) random decision 
on the (quasi)stationary state towards which the trajectory 

� � = (m ± 1, s1,… , sn) ≡ (�;m ± 1) or

� � = (m, s1,… , sk ± 1,… , sn) ≡ (�; sk ± 1).

(14)

dP�

dt
= a0r

(
P(�;m−1) − P�

)
+ r

(
(m + 1)P(�;m+1) − mP�

)

+ r

n∑

i=1

(
(si + 1)P(�;si+1)

− siP�

)

+

n∑

i=1

Qii(ki + li si+1)
(
(m + 1)(si − 1)P(�;m+1,si−1)

− msiP�

)

+

n∑

i=1

n∑

j=1,j≠i

Qij(kj + lj sj+1)sj

(
(m + 1)P(�;m+1,si−1)

− mP�

)
.

On the cooperation axis, the conditions (I) and (III) are 
fulfilled and we obtain the equations of hypercycle dynamics 

 which were studied in great detail in a number of previous 
papers (Eigen and Schuster 1978; Schuster 1978; Schuster 
et al. 1979, 1980; Hofbauer et al. 1991).

The third case—with (I) and (II) being true—yields a 
degenerate deterministic solution: All distributions of sub-
species with fixed population size 

∑n

i=1
xi = c yield the same 

solutions and therefore constitute an (n − 1)-dimensional 
invariant manifold fulfilling 

 In the absence of selection and cooperation neutral evolu-
tion in the sense of Motoo Kimura (1955, 1983) is observed 
on the mutation axis. For an adequate description of the 
process a stochastic treatment is required. Random selection 
of a single arbitrarily chosen subspecies is observed in the 
no-mutation limit, lim p → 0 . For non-vanishing mutation 
rates once selected subspecies may be replaced by other sub-
species and the mean time of replacement of one randomly 
selected subspecies is T rep = �−1 where � is the mutation 
rate per generation (Kimura 1955, 1983). Translated into our 
model, we find for single point mutations � ≈ p.

Master equation and simulation

Reaction  (8) can be cast into chemical master equations.
The particle numbers of the molecular species, [�] = A(t) 
and [�i] = Xi(t) with i = 1,… , n , are integers and in the 
absence of flows they fulfil the conservation relations, 
A(t) +

∑n

i=1
Xi(t) = C . The variables of the master equation 

are the probabilities

and the indices are subsumed in an index vector, 
� = (m, s1,… , sn) , which characterizes the state S� of 
the system. The chemical master equation is based on the 

(11a)
da

dt
= −a

n∑

i=1

li xi xi+1 + r (a0 − a) and

(11b)
dxi

dt
= (li xi+1 a − r) xi , i = 1, 2,… , n, i mod n ,

(12a)
da

dt
= −a k c + r (a0 − a) and

(12b)

dc

dt
= a k c − c r = (a k − r) c and

d�

dt
= (a0 − �) r with � = a + c

(13)

P
m
(t) = Prob

(
A(t) = m

)
and

P
si
(t) = Prob

(
X
i
(t) = s

i

)
; i = 1,… , n ,
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converges, (iii) the approach towards this (quasi)station-
ary state and (iv) fluctuations around the (quasi)stationary 
state. The separation into phases is made possible by the 
choice of suitable initial conditions.

Competition, mutation and quasispecies

The bottom face of the three-dimensional parameter space— 
 in Fig. 5—is dealing with selection provided by the com-
bination of competition and mutation. Natural selection at 
zero mutation rate leads to a homogeneous population of the 

fittest subspecies and at non-zero mutation rates this sce-
nario yields selection of a fittest ensemble of subspecies, 
which has been characterized as quasispecies (Eigen and 
Schuster 1977; Domingo and Schuster 2016). Precisely, the 
quasispecies is the stable stationary long-time distribution 
of a population of subspecies undergoing replication and 
mutation: A population that consists of several genotypes 
present in time-dependent concentrations,

h a s  t h e  s t a t i o n a r y  s o l u t i o n , 
limt→∞ Π(t) = � = x1�1 ⊕ x2�2 ⊕…⊕ xn�n , which is 
called the quasispecies �.

Deterministic quasispecies The deterministic or continu-
ous quasispecies represents the unique deterministic long-
time solution of the replication mutation problem, which 
is described in the flow reactor by the ODE (Schuster and 
Sigmund 1985): 

(15)Π(t) = x1(t)�1 ⊕ x2(t)�2 ⊕…⊕ xn(t)�n

(16a)
da

dt
= −a

n∑

i=1

kixi + r(a0 − a)

Fig. 6   Quasispecies formation. The two plots show the forma-
tion of quasispecies from an initially empty reactor, A(0) = 0 , with 
replicators in seeding amounts. The system in the upper plot was 
initiated to be a single copy of the master sequence, X1(0) = 1 and 
X2(0) = X3(0) = X4(0) = 0 . At the beginning the system might be 
extinguished by a single dilution event X1 → ∅ and the high prob-
ability of extinction gives rise to enormously broad and overlapping 
one-standard-deviation bands. The initial values in the lower plot 
were chosen such that the probability of extinction is zero for all prac-
tical purposes: X1(0) = 10 and X2(0) = X3(0) = X4(0) = 0 . Choice 
of parameters: N = 2000 ; k1 = 0.011[M−1  t−1 ], k2 = k3 = 0.010

[M−1  t−1 ], k4 = 0.009[M−1  t−1 ], r = 0.5[V  t−1 ], Color code: A black, 
�1 red, �2 yellow, �3 green, and �4 blue. Expectation values are 
shown as full lines, deterministic solutions as broken lines. Since 
x2(t) = x3(t) is fulfilled for the parameter values used here the curve is 
shown as a yellow–green broken line

Fig. 7   Sequence of phases in the approach towards a quasistationary 
state for n = 2 . A stochastic trajectory simulating competition and 
cooperation ("Competition and cooperation") of two species in the 
flow reactor is shown in the plot above. The corresponding master 
equation is derived from (14) by putting Q = � . The stochastic pro-
cess is assumed to start with an empty reactor except seeds for the 
two autocatalysts �1 and �2 . It can be partitioned into four phases: 
(I) fast raise in the concentration of A, (II) a random phase where 
the decision is made into which final state—S0 , S

(1)

1
 , S(2)

1
 or S2—the 

trajectory progresses, (III) the approach towards the final state—
here S2—and (IV) fluctuations around the values of the (quasi)
stationary state. Comparison with the simple autocatalytic pro-
cess in Fig.  4 reveals great similarity. Choice of parameter values: 
k1 = 0.099 , k2 = 0.101  [M−1t−1 ], l1 = 0.0050 , l2 = 0.0045  [M−2t−1 ], 
a0 = 200 , r = 4.0  [V  t−1 ], pseudorandom number generator: Extend-
edCA, Mathematica, seeds s = 631 . Initial conditions: A(0) = 0 , 
X1(0) = X2(0) = 1 . Color code: A(t) black, X1(t) red, and X2(t) yellow. 
The figure is adapted from Schuster (2017a)
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 All early works on quasispecies dynamics were per-
formed with the constraint of constant population size: ∑n

i=1
xi(t) = c = const with a(t) = a0 and fi = kia0 that gives 

rise to the differential equation

which fulfils dc∕ dt =
∑n

i=1
dxi∕ dt = 0 .   Equations (16) 

and (16’) have identical solutions in normalized variables 
�i(t) = xi∕

∑n

i=1
xi(t) but the stability properties of the corre-

sponding stochastic systems are different. [For more details 
see (Thompson 1974; Jones et al. 1976; Ebeling and Mahnke 
1979; Jones and Leung 1981; Schuster and Sigmund 1985)].

The quasispecies as a function of the mutation rate param-
eter �(p) begins at p = 0 as a homogeneous population con-
taining exclusively the fittest subspecies �m and becomes a 
distribution of subspecies at nonzero p. This distribution 
consists of a most frequent sequence called master sequence, 
which is surrounded by a mutant cloud. Commonly, the most 
frequent or master sequence is also the fittest one, but this 
is not necessarily so: In case of strong stationary mutation 
flow from the mutant cloud to the master sequence, a less 
fit master may outgrow a fitter sequence with less efficient 
mutational backflow. At further increase in p the distribution 
broadens, and eventually ends up as the uniform distribu-
tion  ∶ {x̂1 = x̂2 = ⋯ = x̂n} at p̂ = 1 − (� − 1)p̂∕� = 1∕� 
where n = � l and x̂i = 1∕� l (i = 1,… � l) for sequences of 
chain length l over an alphabet with � letters.6 At the muta-
tion rate p = p̂ , correct and wrong digits are incorporated 
with the same frequency. The uniform distribution is the 
dynamical answer to the absence of any preference for nucle-
otide assignment: All subspecies in the stationary distribu-
tion occur with the same frequency. The quasispecies in the 
intermediate range is determined by the fitness landscape—
the distribution of fitness values fi in sequence space, by 
the move set of allowed mutations as well as the mutation 
rate p. Typically, sharp transitions occur at some critical 
mutation rates p = ptr : The distribution changes smoothly 
from p = 0 to p = ptr , where the distribution turns abruptly 
into another distribution. At the transition with the larg-
est p-value p = 1∕𝜅 > pcr > ptr , the quasispecies becomes 

(16b)
dxi

dt
= a

n∑

j=1

Qijkj xj − r xi , i = 1,… , n .

dxi

dt
=

n�

j=1

Qijfj xj − �(t) xi ,

with � =

∑n

j=1
fjxj

∑n

j=1
xj

; i = 1,… , n , (16’)

an approximate uniform distribution. An explanation is 
straightforward: Above this critical transition, mutations 
occur too often to sustain sufficiently accurate reproduction 
of the template sequence and the result is random replica-
tion: In the long run, every sequence is obtained with the 
same probability. The transition has been characterized as 
error threshold (Eigen 1971; Eigen and Schuster 1977) since 
evolutionary dynamics does not sustain a structured long-
time population at higher error rates, p > pcr . On typical 
fitness landscapes, the error threshold sharpens with increas-
ing chain length l and becomes a first-order phase transition 
in the limit l → ∞ (Tarazona 1992; Park et al. 2010; Huang 
et al. 2017).7 

Discrete quasispecies In the continuous description, the 
quasispecies contains all species at finite positive concentra-
tions no matter how small the concentrations might be. Deal-
ing with less than one molecule per reactor volume, how-
ever, is unrealistic. Numbers of molecules are non-negative 
integers, Xi ∈ ℕ , subspecies distributions are truncated in 
reality and we call them stochastic or discrete quasispecies:

The discreteness of the stochastic variables leads to a 
modification of the scenario for the mutation dependence 
of quasispecies �(p) . In the mutation-free system, p = 0 , 
survival of the fittest is observed and the quasispecies con-
sists of a single sequence: �̃ = Xm�m = N�m with m indi-
cating maximal fitness, fm = max{fi;i = 1,… , n} , and N 
being the population size. At sufficiently small values of the 
mutation rate parameter p, no subspecies except the master 
exceeds the threshold xi ≥ 1 and the discrete quasispecies �̃ 
still consists of a single fittest genotype �m . The scenario 
in the small mutation rate regime—populations are almost 
always homogeneous except short non-stationary periods 
during which advantageous mutations take over the popula-
tion—is tantamount to the strong selection–weak mutation 
scenario discussed in evolutionary biology (Gillespie 1983; 
Joyce et al. 2008).8 If the p-value is so large that for one or 

(17)

�� = X1�1 ⊕ X2�2 ⊕…⊕ Xn�n with Xi =

�
⌊xi⌋ if xi ≥ 1

0 if xi < 1
.

6  The value � = 2 is used here and applies for binary sequences. For 
the natural AUGC​-nucleotide alphabet we have � = 4.

7  We mention that some model landscapes like the additive land-
scape or the multiplicative landscape sustain smooth rather than sharp 
transitions (Wiehe 1997). For a recent update and a review of the 
state of the art in the relation between fitness landscape and selection 
dynamics see (Schuster 2016d).
8  Biologists (Dean and Thronton 2007; Sniegowski and Gerrish 
2010) and computer scientists commonly distinguish strong and weak 
mutation. The weak mutation scenario assumes that adaptive muta-
tions are sufficiently rare and do not interfere with the selection pro-
cess but initiate replacements of currently fittest genotypes by still 
fitter variants. The strong mutation scenario is characterized by suf-
ficiently large values of p that give rise to the quasispecies dynam-
ics described here [for details see (Domingo and Schuster 2016)] and 
to mutation induced cooperative dynamics ("Cooperation and muta-
tion").
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more subspecies xi ≥ 1 is fulfilled, selection of a family of 
genotypes is observed: �̃ consist of a master genotype �m , 
together with a stationary distribution of sufficiently frequent 
mutants �i ( i ≠ m ). The quasispecies becomes broader with 
increasing mutation parameter p until a threshold value pcr 
is reached above which error propagation does not sustain 
a stationary state and the population Π drifts randomly 
through sequence space (Huynen et al. 1996; Higgs and Der-
rida 1991). Interestingly, the critical mutation rate pcr can be 
derived from the continuous quasispecies theory.

As calculations of the time dependencies of the first two 
moments of the probability distribution of subspecies in the 
population, P(Π)(t) , reveal (Jones and Leung 1981)  (16’) is 
only marginally stable: 

 The time derivative of the first moment vanishes as expected 
since the condition of a constant population size is fulfilled 
by the differential equation (16’). The variance, however, 
increases with time since the integrand in (18b) is always 
positive. After sufficiently long time, the fluctuation band 
becomes so large that the expectation value is irrelevant for 
the description of the system. The instability in Eigen’s qua-
sispecies equation (Eigen 1971) is well known from similar 
problems: (i) the neutral birth-and-death process with equal 
birth and death parameters, � = � , and (ii) the Wiener pro-
cess. In both cases a constant expectation value is jeopard-
ized by a variance that grows linearly with time. Stability 
against fluctuation is easily introduced into (16’): one needs 
only to give up the condition of strictly constant population 
size and to replace the denominator in �(t) by a constant Θ,

where Θ is the population size towards which the population 
converges after sufficiently long time. The approach cho-
sen here, the implementation of a flow reactor as a physical 
device, yields a stable system as well.

(18a)
d⟨N⟩
dt

=

n�

i=1

fi ⟨Xi⟩ − ⟨�
�
�(t)

�
N⟩ = 0 ,

(18b)

d⟨N2⟩
dt

= 2

n�

i=1

fi⟨XiN⟩ − 2⟨�
�
�(t)

�
N2⟩+

+ 2

n�

i=1

fi⟨Xi⟩ −
d⟨N⟩
dt

= 2

n�

i=1

fi⟨Xi⟩ , and

(18c)var(N) = ⟨N2⟩ − ⟨N⟩2 = 2
∫

t

0

n�

i=1

fi⟨Xi(�)⟩ d�

�(t) =

n∑

j=1

fjxj
/
Θ ,

Fluctuations at small particle numbers have different ori-
gins ("Autocatalysis in the batch reactor"): (i) conventional 
thermal fluctuations, (ii) enhanced fluctuations related to 
autocatalytic self-enhancement, and (iii) anomalous fluctua-
tions in the stochastic variables arising from two or more 
quasistationary states. The standard deviations �(t) fulfil the √
N-law for the resource A but are larger for the autocata-

lysts �1 , �2 , �3 , and �4 . The stationary states of the stochas-
tic system are extinction S0 and quasispecies S1 . Fig. 6 shows 
a typical example: The anomalous fluctuations in the upper 
plot are in full analogy to first-order autocatalysis (Fig. 4). 
Since the initial condition X1(0) = 1 was chosen, one out-
flow step may extinguish the population and the probabil-
ity of dying out is indeed as large as 20%. The fluctuations 
bands are extremely broad, and large differences between 
the deterministic solution and the corresponding expecta-
tion values are observed. In the lower plot initial conditions 
X1(0) = 10 were chosen, which are sufficient to reduce the 
contributions of anomalous fluctuations practically to zero. 
Then, for a population size of N = 2000 the concentration 
a(t) coincides with the expectation value E

(
A(t)

)
 for all prac-

tical purposes and the fluctuations fall into a typical ±
√
N

-band. The autocatalysts, X1,… ,X4 , show broader than 
usual fluctuation bands because of self-enhancement as we 
saw in the intermediate range of the first-order autocatalytic 
reaction (Fig. 2). For long-times the standard deviation �(t) 
stays large in the quasispecies because the flow reactor is 
an open system and does not approach an equilibrium state 
(see also Fig. 4).

It is worth recalling what means stochasticity for qua-
sispecies: (i) continuous concentrations are replaced by 
discrete particle numbers, (ii) fluctuations replace single 
line trajectories by bands within which trajectories follow a 
probability distribution, (iii) subspecies can be diluted out 
of the flow reactor and if this happens for all subspecies the 
population goes extinct giving rise to anomalous fluctua-
tions, and (iv) error thresholds introduce random reproduc-
tion that is closely related to Motoo Kimura’s random drift. 
An increase in the error rate up to the error threshold leads to 
broadening of the mutant spectrum surrounding the master 
sequence. Above the thresholds, the populations migrate by 
random drift through sequence space.

Competition and cooperation

The kinetic equations for replication describing the template 
induced, uncatalyzed and catalyzed processes are obtained 
from Eq. () by neglect of mutation. Then the kinetic differ-
ential equations for competition and cooperation of competi-
tors result from (9) by setting Q = � : 

(19a)
da

dt
= −a

n∑

i=1

(
ki + lixi+1

)
xi + r (a0 − a) and
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 Both equations contain terms of different molecularity in 
� and this has the consequence that the dynamic behav-
ior depends strongly on the total concentration c =

∑n

i=1
xi , 

which in turn is determined by the amount of available 
resources, a0 : At sufficiently low concentration, the first-
order terms, ki xi , dominate whereas the second-order terms, 
li xi+1xi become important at high concentrations. No direct 
analytical solutions are available but exhaustive qualitative 
analysis is possible and the concentrations of the stationary 
solutions, a, xi (i = 1,… , n) , can be computed analytically 
Schuster (2016a, d) (Table 2).

The basis of the calculations of stationary states 
is the factorability of the r.h.s. of (19b). The relation 
xi ⋅

(
(ki + lixi+1)a − r

)
= 0 with i mod n is compatible with 

stationary states that fulfil either

and the conservation condition a +
∑n

i=1
xi = a0 . In total 

there are 2n possible states out of which a single one is 
asymptotically stable for a given set of parameters. In 
Table 2 the results for n = 3 are shown. The number of sub-
species present at the stationary state, nS , is suitable for char-
acterizing the state: nS = 0 is the state of extinction, nS = 1 
is the state of selection, nS = 2 is the state of exclusion, 
etc., and finally nS = 3 = n occurs at the state of coopera-
tion where all three subspecies are present. The numbers of 
long-time subspecies nS depend on the resource input a0 . 
The relative size ordering of the parameters determines the 
identity of the selected, excluded, etc., subspecies. For the 
calculations shown in Table 2 the orderings k1 < k2 < k3 and 
l1 > l2 > l3 were applied and hence �3 is selected and �1 is 
excluded. Considering steady states as functions of the avail-
able resources, the state of extinction S0 comes first at small 

(19b)

dxi

dt
=
(
a
(
ki + lixi+1

)
− r

)
xi ; i = 1… , n; i mod n .

x
(i)

i
= 0 or x

(ii)

i
=

1

li−1

(
r

a
− ki−1

)
, ∀ i = 1,… , n ,

a0 and is stable for a0 < r∕k3 , the state of selection of �3 , 
S
(3)

1
 , is stable in the range r∕k3 < a0 < r∕k3 + (k3 − k2)∕l2 , 

followed by exclusion of �1 , S
(1)

2
 , in the range 

k3 + (k3 − k2)∕l2 < a0 < k3 + (k3 − k2)∕l2 + (k3 − k1)∕l1   . 
Above this value for a0 cooperation of all three sub-
species is observed provided the flow rate is not too 
large: r < rcr = (a0 + 𝜓)2∕4𝜙 with � =

∑3

i=1
ki∕li and 

� =
∑3

i=1
1∕li . The free concentration of A is obtained as 

solution of a quadratic equation9 

where the minus sign corresponds to the cooperative state S3 . 
The second solution belongs to an unstable state S′

3
 , which 

separates the basins of attraction of the states of coopera-
tion and extinction. Above the critical flow rate, r > rcr the 
states S3 and S′

3
 do not exist. For n > 3 , the situation becomes 

more complex since solutions may oscillate. Many systems 
with n = 4 have oscillations with very weak damping fac-
tors, n ≥ 5 commonly leads to undamped oscillations. The 
properties of these systems have been discussed extensively 
in previous publications to which we refer here (Schuster 
2016e; Schuster and Sigmund 1985; Schuster 1978).

Stochasticity has common effects on competition–coop-
eration systems like thermal fluctuations and fluctuation 
through autocatalytic enhancement. In addition, there are 
many more quasistationary states than the asymptotically 
stable states of the deterministic system. For example, states 
in which less efficient subspecies are selected show up as 
quasistationary states as well. In case of the smallest pos-
sible system with n = 2 and k2 > k1 , we have four states: 
(i) the absorbing boundary as state of extinction S0 , (ii) the 
state of natural selection S(2)

1
 where the fittest variant �2 is 

(20)a1,2 =
1

2

(
a0 + � ∓

√
(a0 + �)2 − 4r�

)
,

Table 2   Asymptotically stable 
stationary states of Eq. (19) 
with n = 3Schuster (2016)

The four stationary states are ordered with respect to increasing a0-values of their asymptotically stable 
regime. The relations k1 < k2 < k3 and l1 > l2 > l3 between the rate parameters were assumed. The abbre-
viations �3 = r∕k3 , �31 = (k3 − k1)∕l1) , and �32 = (k3 − k2)∕l2) are used for the combination of param-
eters. For the cooperative state S3 the stationary concentration of A is obtained as one root of a quad-
ratic equation (20) with two combinations of the rate parameters, � =

∑3

i=1
k
i
∕l

i
 and � =

∑3

i=1
1∕l

i
 , and 

�
i
= (r − k

i
�)∕(l

i
�) for i = 1, 2, 3 and � = a1 from   (20). The existence of the non-trivial stationary state 

requires a sufficiently small flow rate: r ≤ (a0 + �)2∕4�

Symbol Stationary values Stability range

a x1 x2 x3

S0 a0 0 0 0 0 ≤ a0 ≤ �3

S
(3)

1
�3 0 0 a0 − �3 �3 ≤ a0 ≤ �3 + �32

S
(1)

2
�3 0 a0 − �3 − �32 �32 �3 + �32 ≤ a0 ≤ �3 + �32 + �31

S3 � �3 �1 �2 �3 + �32 + �31 ≤ a0

9  It is worth mentioning that Eq.  (20) and the solutions for a1,2 are 
valid for arbitrary n provided the summations in � and � are adjusted 
accordingly.
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selected, (iii) the state of selection of the less fit subspecies 
�1 , and eventually (iv) the state of cooperation S2 . The rela-
tive stabilities of the individual states are reflected by the 
probabilities to reach these states by randomly chosen trajec-
tories (Table 3). Parameters for the calculations shown in the 
table were chosen such that the corresponding deterministic 
system is situated in the cooperative domain in parameter 
space, and indeed the approach towards the cooperative state 
S2 has always the largest probability. Again, initial particle 
numbers around X1(0) + X2(0) = 4 are sufficient for strong 
dominance of the state corresponding to the deterministic 

solution. In case of n = 3 we present expectation values of 
the four stochastic variables, A(t) and Xi(t) ( i = 1, 2, 3 ) at 
some predefined time of the simulation end, tend for differ-
ent initial conditions and mutation rate parameters p. The 
values for p = 0.0 refer to the pure competition–coopera-
tion case discussed here (Table 4). As expected extinction 
plays a major role at small initial values, Xi(0) = 1, 2, 3 
( i = 1, 2, 3 ), but Xi(0) = 4 is already sufficient for coming 
close to the expectation values obtained for large initial 
values, Xi(0) = 10 is enough for reaching the deterministic 
values for practical purposes.

Table 3   Probabilities to reach 
quasistationary states in the 
cooperative regime with n = 2 
and different initial conditions

The table provides probabilities of occurrence for all four possible long-term states: extinction S0 , selec-
tion of �1 in S(1)

1
 , selection of �2 in S(2)

1
 , or cooperation S2 . The counted numbers of events are sample 

means and unbiased standard deviations calculated from ten packages, each of them containing 10 000 tra-
jectories computed with identical parameters and initial conditions, and differing only in the sequence of 
random events determined by the seeds of the pseudorandom number generator (Extended CA, Mathemat-
ica). Choice of parameters: k1 = 0.09[M−1t−1 ], k2 = 0.11[M−1t−1 ], l1 = 0.0011[M−2t−1 ], l2 = 0.0009[M−2t−1 ], 
a0 = 200 , r = 0.5[V t−1 ]. Initial value A(0) = 0 . Probabilities are obtained by multiplication by 10−4

Initial values Counted numbers of states in final outcomes

X1(0) X2(0) N
S0

N
S
(1)

1

N
S
(2)

1

N
S2

1 1 385.1 ± 23.6 1481.0 ± 36.8 1719.6 ± 37.8 6414.3 ± 53.8

2 1 77.4 ± 9.1 1822.6 ± 41.6 367.6 ± 17.0 7733.3 ± 38.3

1 2 71.6 ± 8.5 280.6 ± 20.0 2075.8 ± 28.9 7572.0 ± 39.2

3 1 15.0 ± 2.9 1900.4 ± 30.9 74.69 ± 10.0 8009.0 ± 35.3

1 3 14.0 ± 3.7 53.1 ± 4.8 2180.5 ± 48.4 7752.3 ± 53.8

2 2 14.9 ± 2.6 303.7 ± 16.0 354.5 ± 23.8 9326.8 ± 44.9

3 3 0 70.2 ± 10.0 106.2 ± 10.9 9823.4 ± 15.7

4 4 0 12.1 ± 2.6 28.0 ± 5.0 9959.9 ± 6.4

5 5 0 2.5 ± 1.1 6.3 ± 2.6 9991.2 ± 3.0

Table 4   Long-time behavior 
in the cooperation-mutation 
system with n = 3 and different 
initial conditions

The table provides expectation values at the time of the end of the simulation ( tend = 30 ) for different 
mutation rate parameters p and different initial conditions. Choice of parameters: l1 = 0.011 , l2 = 0.010 , 
l3 = 0.009[M−2t−1 ], a0 = 400 , r = 0.5[V t−1 ]. Initial value A(0) = 0

Mutation Initial values Expectation values at t = 30 Counts

p X1(0) X2(0) X3(0) E(A) E(X1) E(X2) E(X3) P(S3)

0 1 1 1 279.3 44.56 36.06 39.58 0.301
0 2 2 2 81.53 117.7 94.9 105.4 0.814
0 4 4 4 2.023 146.1 119.6 132.2 0.996
0 10 10 10 0.376 147.0 120.0 132.6 1.0
0 Deterministic 0.377 147.0 120.3 132.3 1
0.05 1 1 1 177.2 81.66 68.16 72.64 0.432
0.05 2 2 2 28.57 136.1 113.8 121.5 0.937
0.05 4 4 4 0.383 147.0 122.2 130.4 1.0
0.05 Deterministic 0.377 146.7 122.3 130.5 1
0.1 1 1 1 161.6 86.95 74.39 76.96 0.599
0.1 2 2 2 28.57 136.1 113.8 121.5 0.957
0.1 4 4 4 0.383 147.0 122.2 130.4 1.0
0.1 Deterministic 0.377 146.7 122.3 130.5 1
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In systems with n ≥ 4 deterministic and stochastic solu-
tion curves oscillate. The solutions of the ODE’s are differ-
ent for n = 4 where weakly damped oscillations occur and 
for n ≥ 5 showing undamped relaxation oscillations (Phil-
lipson et al. 1984). In the stochastic approach, the systems 
die out after population numbers of individual subspecies 
went beyond X(t) = 1 , and for sufficiently large population 
sizes, four-membered systems may survive for very long 
time whereas systems with five or more members go extinct. 
Cases with n = 5 are well suited for studying the transition 
from selection to cooperative dynamics through increase 
of the parameter ration ratio h∕f = l∕k (Fig. 9). At domi-
nant competition or small h-values the system approaches 
selection of the fittest as long-time solution. The upcoming 
role of cooperation in a series of systems with increasing 
parameters l can be nicely illustrated by a series of plots 
of trajectories from selection to somewhat chaotic looking 
intermediate scenarios and further to oscillatory hypercycle 
dynamics (see Fig. 9 where a nonzero mutation rate param-
eter p was chosen and where accordingly quasispecies for-
mation instead of selection is observed).

Cooperation and mutation

The combination of cooperation and mutation reveals a less 
common role of mutation in addition to the creation of diver-
sity through variation. In principle, mutation can reintroduce 
extinguished subspecies into the population. Here, we shall 
focus on this aspect and, in particular, study the influence of 
the mutation rate parameter p on extinction times. To study 
the role of mutation in low-dimensional cooperative systems 
( n = 2, 3 ) expectation values of the stochastic variables A(t), 
X1(t) and X2(t) , or X2(t) and X3(t) were calculated at prede-
fined times ( tend ) and compared with the probabilities of tra-
jectories to end up in the cooperative state, S2 or S3 , respec-
tively. For the initial conditions X1(0) = X2(0)

(
= X3(0)

)
> 4 

the results are practically indistinguishable from the deter-
ministic values. An increase in the mutation rate parameter 
p shows the expected influence: Extinguished subspecies can 
be reintroduced and this increases the probability of reaching 
the cooperative state, S2 or S3 . The case n = 3 is shown as an 
example in Table 4.

The oscillating systems are more difficult to investigate. 
Here, we consider the time of extinction of the entire popu-
lation as a function of the mutation rate and the available 
resources, T0(p,A0) . The results are shown in Fig 8: The 
extinction times T0 show very strong scatter and their appear-
ance is dependent on the resolution of the calculations. By 
resolution, we mean here the number of molecules A in A0 
between two neighboring points. The highest resolution is 
achieved when the calculations are performed with every 
(integer) number of A0 molecules, e.g., ΔA0 = 1 yields 100, 
101, 102, … . Computations at somewhat lower resolutions 

are less time consuming and provide in essence the same 
results. The plots shown in Fig. 8 show enormous scatter but, 
nevertheless, allow for drawing two conclusions: (i) In the 
mutation-free case the extinction time T0 is independent of 
the amount of available resources up to a value A0 ≈ 1300 , 
and (ii) for non-zero mutation rates a kind of noisy or sto-
chastic threshold phenomenon is observed. Considering the 
noisy function T0(p,A0) and taking A0 at the first value of 
T0(p,A0) ≥ 1000 we find for the parameter values applied in 
Fig. 8: A(T0≥1000)

0
= A

(cr)

0
= 1130, 690, 360 for the mutation 

rates p = 0.0005, 0.0010, 0.0020 , respectively. As expected 
the threshold moves to lower A(cr)

0
-values with increasing 

mutation rate. The behavior of the extinction times T0(A0) is 

Fig. 8   Times to extinction as a function of available resources in the 
five membered cooperative system ( n = 5 ). Extinction times T0 of the 
populations Π are shown for different amounts of available resources 
measured as inflow concentrations a0 or A0 when expressed in num-
bers of molecules per unit volume. The upper diagram presents the 
data at a resolution of ten molecules ( ΔA0 = 10 ; 100, 110, 120,… ) for 
four different values of the mutation rate parameter: p = 0.0000 (red), 
p = 0.0005 (yellow), p = 0.0010 (green), and p = 0.0020 (blue). T0
-values above 1000 are truncated at this value. The lower diagram 
shows the two plots 

(
p = 0.0000 (red) and p = 0.0020 (blue)

)
 at the 

highest possible resolution ( ΔA0 = 1 ). Choice of other parameters: 
r = 0.5[V−1t−1 ], l1 = l2 = l3 = l4 = l5 = 0.01[M−2t−1 ]. Pseudorandom 
number generator: Extended CA, Mathematica, seed: s = 491 . Initial 
conditions: A(0) = 0 , X1(0) = X2(0) = X3(0) = X4(0) = X5(0) = 5
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similar for n = 4 but the critical concentrations A(cr)

0
 for the 

different p-values lie much closer together and the analysis 
is more difficult. Considering survival at constant resources 
A0 reveals a mutation threshold above which the population 
survives to long times.

Hypercycle extinction is an example that reflects well 
the expected increase in lifetime with increasing mutation 
rate. One general remark nevertheless is important: This 
mechanism of reintroduction of extinguished subspecies 
requires that template and mutant are close relatives and 
that the Hamming distance between them is not too large. 
What we need in reality, however, is not a perfect rever-
tant being genetically identical to the lost original, we need 
only a subspecies that can replace the original with respect 
to its phenotypic function. Suppression of deleterious 
mutations (Gorini and Beckwith 1966; Hartman and Roth 
1973; Prelich 1999) as well as the relation between protein 
sequence, structure and functional efficiency (Albery and 
Knowles 1976, 1977) have been extensively studied in the 
last decades of the twentieth century.

The complete model

Completion of the model brings together the three faces of 
the coordinate system in Fig. 5 and is concerned with an 
analysis of the dynamics in the interior. An appropriate strat-
egy for analyzing the interior consists in choosing certain 
type of behavior on one of the three faces and increasing the 
third parameter from zero to the value of interest. Raising 
the third parameter will change the dynamic behavior either 
gradually or in threshold-like manner or stepwise through a 
cascade of bifurcations. Illustrative prototype examples are 
seen through rising the mutation rate in competitive or coop-
erative reproduction, or with the introduction of cooperation 
into Darwinian systems.

The characteristic dependence of the population dynam-
ics on n, the number of subspecies, prevails also in the full 
model. For small numbers ( n = 2, 3 ) and p = 0 the transition 
from the competitive to the cooperative system has been dis-
cussed in "Competition and cooperation". An increase of the 
cooperation parameter h = l A(t) leads in steps from selec-
tion of the fittest to a cooperative state with all subspecies 
present. Oscillating systems ( n ≥ 4 ) are more spectacular 
since the hypercycles are unstable at p = 0 in the stochas-
tic approach and raising the cooperation parameter h leads 
from selection to extinction. In the intermediate param-
eter range where the deterministic system shows stepwise 
increase in the number of coexisting subspecies ( 1, 2,… , n 
or, expressed phenomenologically, selection, exclusion, … , 
cooperation) the stochastic approach yields highly irregular 
dynamics with different numbers of non-extinguished sub-
species whereby the number of species present increases 

Fig. 9   The transitions from competition to cooperation in the sys-
tem with n = 5 The transitions from competition to cooperation in 
the system with n = 5 . The three plots show single trajectories for 
three different scenarios in the flow reactor: (i, topmost plot) the qua-
sispecies scenario with a dominant master sequence ( �1 ), (ii, mid-
dle plot) an intermediate scenario with irregular dynamics and two 
dominating species ( �1 and �5 ), and (iii, bottom plot) the stochastic 
hypercycle scenario with irregular, undamped oscillations. Choice 
of parameter: k1 = 0.150 , k2 = k5 = 0.125 , k3 = k4 = 0.100  [M−1

t−1 ], l1 = l2 = l3 = l4 = l5 = l , l = 0.0 (topmost plot), l = 0.002 
(middle plot), l = 0.01  [M−2t−1 ] (bottom plot), a0 = 800 , 
r = 0.5 [V t−1 ], p = 0.075 , pseudorandom number generator: Extend-
edCA, Mathematica, seeds s = 491 . Initial conditions: A(0) = 0 , 
X1(0) = X2(0) = X3(0) = X4(0) = X5(0) = 5 . Color code: �(t) black, 
�1(t) red, �2(t) yellow, �2(t) green, �2(t) blue, and �5(t) cyan
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with increasing values of the cooperation parameter h. The 
scenario in parameter space is completed by considering 
the series of states at different mutation rate parameters p. 
The case n = 5 , which for large h-values leads to undamped 
oscillations with a stochastic contribution to the amplitude, 
was chosen to facilitate the illustration (Fig. 9): At zero 
mutation rate p = 0 the series with increasing h is selection 
→ irregular dynamics with two species → irregular dynam-
ics with three species → … → extinction. At intermediate 
p-values, we find quasispecies → irregular dynamics → 
oscillations with highly irregular spacings. At high mutation 
rates, we are dealing with quasispecies → irregular dynamics 
with increasing numbers of dominant subspecies → stochas-
tic hypercycle dynamics (Fig. 9).

Concluding remarks

The model presented here has been conceived with modu-
lar structure in the sense that different mechanisms can be 
applied for each of the three basic components. Here, it has 
been presented in its simplest form. Each of the three mod-
ules, competition, cooperation and variation, can be made 
arbitrarily complex. Variation, for example, can be extended 
to include more elaborate mutation mechanisms and recom-
bination as well as environmental influences. Even in case 
of viruses the reproduction mechanism is commonly much 
more elaborate and comprises a whole molecular machinery 
instead of a single enzyme. Virus reproduction may include 
also the defense system of the host, epigenetic phenomena 
could be taken into account through simultaneous consid-
eration of several generations, and for higher organisms the 
real challenge in reproduction is to deal with the enormous 
complexity of development in a form that is simple enough 
for modeling. Cooperation at the molecular level could also 
involve reproductive autocatalytic networks whereas social 
phenomena in reproductive groups or societies represent the 
currently highest step in the open ended complexity increase 
of biological evolution. Cooperation has been frequently 
modeled by game theory Maynard Smith (1982); Hofbauer 
and Sigmund (1998). There is no limitation to make the 
model more complex, the problem evidently is to include 
the desired phenomena but to keep the model sufficiently 
simple for mathematical analysis or simulation.

In the simple form in which the model was introduced 
here, it has been tested experimentally by in vitro evolution 
experiments [For an overview of early works on this subject 
see (Spiegelman 1971; Biebricher 1983); as a recent review 
we mention (Joyce 2007)]. The kinetic equations describing 
replication and mutation were introduced 1971 by Manfred 
Eigen in his scholarly written paper on self-organization of 
biological macromolecules (Eigen 1971). Eigen’s mutation-
selection equation describes the evolution of the distribution 

of asexually reproducing genotypes in a population of con-
stant size N. Correct replication and mutation are seen as 
parallel chemical reactions leading to a uniquely defined sta-
tionary population called quasispecies (Eigen and Schuster 
1977). RNA replication catalyzed by single virus specific 
enzymes from RNA bacteriophages provides a bridge from 
chemistry to biology: The mechanism of the replication pro-
cess is well understood in all molecular details (Biebricher 
1983; Biebricher et al. 1984, 1985) and an appropriate rep-
lication assay serves for in vitro evolution studies (Mills 
et al. 1967; Biebricher 1983). The mutation-selection sce-
nario was found to provide an appropriate molecular basis 
for understanding also virus evolution [For a recent survey 
see the contributed volume (Domingo and Schuster 2016)]. 
More complex systems, for example, bacteria and popula-
tions of cancer cells, were found to be describable by qua-
sispecies theory as well (Bertels et al. 2017; Covacci and 
Rappuoli 1998; Napoletani et al. 2013; Brumer et al. 2006).

In the strong mutation scenario8 Darwin’s view of evo-
lution has to be modified. Not a single fittest genotype is 
selected but a uniquely defined distribution of genotypes, 
which is represented by the largest eigenvector of a value 
matrix that represents the long time or stationary solution 
of Eigen’s mutation-selection equation. The mean fitness of 
populations is not always optimized since situations can be 
constructed in which the fitness is decreasing in the approach 
towards the stationary state. A trivial but illustrative example 
of decreasing fitness during evolution considers a homoge-
neous population consisting exclusively of fittest genotypes 
as initial condition: Mutations introduce mutants into the 
population and since they have lower fitness by definition the 
mean fitness is doomed to decrease. Such situations, how-
ever, are rather rare and Darwinian optimization still remains 
a very powerful heuristic that applies to almost all scenarios. 
For error rate parameters exceeding a critical value pcr , the 
largest eigenvector approaches the uniform distribution over 
the entire sequence space, which is the exact solution for 
the value p = p̂ leading to incorporations of correct and 
incorrect nucleotides with equal probabilities—for binary 
sequences this happens at p̂ = 1 − p̂ =

1

2
 . In realistic popu-

lations, the uniform distribution is incompatible with a dis-
crete quasispecies (17). Instead populations are observed 
that migrate randomly through sequence space Higgs and 
Derrida (1991); Huynen et al. (1996).

In the second half of the twentieth century, most of the 
molecular insights into reproduction and inheritance came 
from viruses and bacteria and a high percentage of molecu-
lar biologists thought that the basic regulation mechanisms 
of gene activities are understood. Eukaryotic cells, however, 
are not “giant bacteria”. Although the genetic code is the 
same, the gene expression and inheritance system of higher 
organisms are different from the prokaryotic one and much 
more complex. A true wealth of information on eukaryotic 
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cells has been discovered in the past fifty years, but gene 
expression in animals, plants, and fungi is still a subject of 
current cutting-edge research. Most of the recently revealed 
gene expression regulation mechanisms are subsumed under 
the notion of epigenetics for which an operational definition 
has been proposed at the Cold Spring Harbor Meeting in the 
year 2008 (Berger et al. 2009):

An epigenetic trait is a stably heritable phenotype result-
ing from changes in a chromosome without alterations in 
the DNA sequence.

The diversity of epigenetic effects on gene regulation is 
enormous. It ranges from specific methylation of DNA, in 
particular cytosine methylation in position 5 of CpG ele-
ments (Zemach et al. 2010), histone methylation and acety-
lation (Lawrence et al. 2016) to post-transcriptional RNA-
methylation of adenine in position 6 (Barbosa Dogini et al. 
2014; Yue et al. 2015) and small interfering RNAs (He and 
Hanon 2004). Epigenetics provides an extremely diverse, 
complex and flexible richness of regulatory actions on genes, 
which so far was not yet cast into a comprehensive theory 
and precisely this is one of the greatest challenges for the 
future of evolutionary biology.

There is neither a convincing theoretical model nor 
experimental evidence that Darwinian evolution leads to 
an obligatory increase in complexity. The combination 
of competitive selection and cooperation, however, may 
lead from one level of complexity to the next higher one 
by integration of competitors through cooperation (Sza-
thmáry and Maynard Smith 1995; Schuster 1996). The 
evolution model presented here proposes a mechanism 
for this integration of competitors and identifies the abun-
dance of resources as one driving force towards higher 
complexity. This simple model distinguishes four steps 
(Schuster 1996): (i) Initially the systems consists of inde-
pendent replicators competing for a single resource, (ii) 
the capability of cooperative interaction allows to form 
an autocatalytic network, which couples the replicators 
and suppresses competition but makes the network vulner-
able to exploitation by parasites, which consume resources 
without contributing a share to the common properties, 
(iii) the members of the autocatalytic network are sepa-
rated from the environment by means if a suitable bound-
ary that prevents the system from exploitation and allows 
for the formation of a new unit at a hierarchically higher 
level, and (iv) the individual units at the higher level diver-
sify by variation, compete for common resources, Darwin-
ian selection sets in and takes place now a the higher level. 
The previously autonomous units at the lower level lost 
their autonomy at least in part when they were integrated 
into the higher unit of selection. Although modeling major 
transitions as shown in "Competition and cooperation" is 
not difficult, suitable experimental molecular models are 
very hard to conceive, because second- and higher-order 

autocatalytic systems consist almost always of complex 
reaction networks rather than single-step reactions [as 
examples for attempts to construct simple systems of this 
kind see (McCaskill 1997; Wlotzka and McCaskill 1997)]. 
John Maynard Smith and Eörs Szathmáry collected a true 
wealth of evidence for the historic occurrence of such 
major evolutionary transitions (Maynard Smith and Sza-
thmáry 1995) in the evolution of life.

It is illustrative to think about transitions in terms of 
thresholds: Up to a certain value of the transition determin-
ing parameter the typical feature is hardly detectable and 
does not become evident before the parameter exceeds the 
transitions value. Accordingly, such thresholds correspond 
to sharp transitions. Nevertheless, it appears useful to be less 
fussy and to accept the notion of threshold also for smooth 
transitions. On the three faces of the coordinate system 
(Fig. 5) we observe an error threshold between selection and 
random replication, a cooperation threshold between selec-
tion and symbiosis, and a mutation threshold that separates 
the regime of independent replication of all subspecies from 
mutual support through frequent mutation.

Understanding evolution implies knowledge on the rela-
tion between genotypes being DNA or RNA sequences and 
phenotypes giving rise to all fitness relevant parameters. The 
metaphor of an abstract fitness landscape has been originally 
introduced by Sewall Wright for the purpose of illustration 
(Wright 1922). In formal mathematical terms such a relation 
can be modeled as a mapping from a genotype or sequence 
space into fitness values. In molecular structural biology 
such a mapping is split into two parts: (i) a mapping from 
sequences into structures or genotypes into phenotypes, and 
(ii) a second mapping assigning fitness values to structures 
or phenotypes (Schuster 2016). Computer models of RNA 
evolution with sequence–secondary structure–fitness map-
pings have been studied in the past (Fontana and Schuster 
1987; Fontana et al. 1989; Fontana and Schuster 1998a, b 
and these studies provided the basis for a definition of evo-
lutionary nearness of phenotypes in the presence of neu-
trality (Stadler et al. 2001). With more and more data on 
sequences and fitness values of mutants becoming currently 
available fitness landscapes may also be determined directly 
by experiment (Kouyos et al. 2012) and it is not risky to 
predict that genotype–phenotype relations will become an 
integral part of evolution models in the near future. Then 
evolution can be described in a self-contained manner where 
the genotype–phenotype mapping is a genuine part of the 
evolving system.
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