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Abstract

Background: Actinobacillus pleuropneumoniae, the causative agent of porcine contagious pleuropneumonia, is an important
pathogen of swine throughout the world. It must rapidly overcome the innate pulmonary immune defenses of the pig to
cause disease. To better understand this process, the objective of this study was to identify genes that are differentially
expressed in a medium that mimics the lung environment early in the infection process.

Methods and Principal Findings: Since bronchoalveolar lavage fluid (BALF) contains innate immune and other components
found in the lungs, we examined gene expression of a virulent serovar 1 strain of A. pleuropneumoniae after a 30 min
exposure to BALF, using DNA microarrays and real-time PCR. The functional classes of genes found to be up-regulated most
often in BALF were those encoding proteins involved in energy metabolism, especially anaerobic metabolism, and in cell
envelope, DNA, and protein biosynthesis. Transcription of a number of known virulence genes including apxIVA and the
gene for SapF, a protein which is involved in resistance to antimicrobial peptides, was also up-regulated in BALF. Seventy-
nine percent of the genes that were up-regulated in BALF encoded a known protein product, and of these, 44% had been
reported to be either expressed in vivo and/or involved in virulence.

Conclusions: The results of this study suggest that in early stages of infection, A. pleuropneumoniae may modulate
expression of genes involved in anaerobic energy generation and in the synthesis of proteins involved in cell wall
biogenesis, as well as established virulence factors. Given that many of these genes are thought to be expressed in vivo or
involved in virulence, incubation in BALF appears, at least partially, to simulate in vivo conditions and may provide a useful
medium for the discovery of novel vaccine or therapeutic targets.
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Introduction

Actinobacillus pleuropneumoniae is a species-specific swine pathogen

that causes a necrotizing, fibrinohaemorrhagic pneumonia with

pleurisy [1]. Depending upon the immune status of the animal,

disease can range in severity from peracute to chronic [2,3].

Although a protective immune response is usually acquired

through the adaptive immune system following acute infection,

vaccines offer only partial protection against this organism.

The lungs, which are the primary site of infection by A.

pleuropneumoniae, have a large surface area that is directly in contact

with the external environment. There are no published data for

swine, but in the human lung, there is an average of 480 million

alveoli [4] with an area of 120 to 140 m2 [5]. The lungs are

protected by both innate and adaptive immune systems. Two

major components are involved in the innate immune system: a

cellular component comprised of leukocytes as well as airway and

alveolar epithelial cells, and a humoral component which includes

surfactant lipids and proteins, collectins, defensins, cathelicidins,

lysozyme, and lactoferrin [6]. Most of these innate immune

components reside in a thin layer of fluid lining the lung epithelial

cell layer and some have been shown to directly kill bacteria such

as Escherichia coli and Pseudomonas aeruginosa [7–9]. Inhaled particles,

including pathogens, first encounter the resident immune system

in this fluid layer, which forms the first line of defense [10,11].

Little work has been done to examine bacterial gene expression in

BALF, but in a recent study Schwab et al. [12] found that

Myobacterium tuberculosis genes encoding proteins which enabled the

organism to use surfactant lipids as a substrate and those for

synthesis of phthiolocerol dimycocerosate (PDIM), a protective cell

wall component, were up-regulated in the presence of a whole

lung surfactant preparation.

A. pleuropneumoniae is capable of overcoming innate pulmonary

immune mechanisms of the pig. It can rapidly multiply and spread

in naive herds, with some pigs dying within 24 h of infection

without showing any clinical signs. Several virulence factors have
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been described in A. pleuropneumoniae to explain its pathogenesis;

factors for colonization, nutrient acquisition, immune evasion and

tissue destruction have all been implicated in the disease process

[13,14]. Although some aspects of pathogenesis can be explained

by the production of tissue-damaging RTX toxins and the ability

of the pathogen to acquire nutrients such as iron in the host,

factors involved in bacterial survival and rapid multiplication in

the host are largely unknown.

To identify genes that may be involved in survival and

pathogenesis of A. pleuropneumoniae in the host we used porcine

bronchoalveolar fluid as a medium to simulate, in part, the lung

environment. By analogy with other species, BALF collected from

swine likely contains plasma proteins and proteins with unknown

functions [15] as well as proteins with diverse functions including

anti-oxidation, lipid-metabolism, and tissue repair and prolifera-

tion in addition to innate immune components and dissolved

minerals. Because BALF contains components that perform

diverse functions in the lungs, A. pleuropneumoniae gene expression

in this fluid could mimic gene expression in the host. Therefore,

the objective of this study was to identify A. pleuropneumoniae genes

that are differentially expressed in BALF to better understand

survival and pathogenesis of this important swine pathogen early

in the disease process.

Results and Discussion

Differential gene expression in BALF
The survival of A. pleuropneumoniae CM5 was assessed in BALF

before carrying out experiments to identify differentially expressed

genes since this fluid contains many antibacterial substances

[6,16]. No significant decrease was observed in A. pleuropneumoniae

CM5 cell numbers following incubation for 30 min in BALF,

while 70% of the E. coli DH5a cells were killed at this time.

Genes that were differentially expressed by A. pleuropneumoniae

after 30 min of incubation in BALF were identified with DNA

microarrays by hybridization of Cy3-labeled cDNA from the

BALF-incubated bacteria (target sample) and Cy5-labelled cDNA

from the BHI-incubated bacteria (reference sample). One hundred

and fifty-six genes were differentially expressed in BALF at a false

discovery rate (FDR) of 1.07%; 52 genes were down-regulated

while 104 were up-regulated. Forty-one (26%) of these genes

encode hypothetical proteins (Table 1).

Differential expression of selected genes representing various

biological functional classes of interest was confirmed by real-time

PCR analysis. Although fold change in gene expression measured

by real-time PCR was generally higher, there was a good

correlation between the two data sets, and no genes that were

deemed up-regulated with the microarrays were demonstrated to

be down-regulated by qRT-PCR, and vice-versa (Table 2). The

reason why the three nqr genes tested appeared to be overesti-

mated in the microarray analysis is not clear, but these slightly

divergent results were not likely due to dynamic range or % G+C

considerations.

The genes found to be most frequently up-regulated in BALF

were those encoding proteins involved in energy metabolism and

in cell envelope, DNA, and protein biosynthesis (Table S1). Genes

encoding proteins for co-factor biosynthesis, toxin production and

secretion and trafficking of ions and biomolecules were also up-

regulated while genes encoding proteins involved in protein

folding and stabilization, nucleotide biosynthesis, and mobile

elements were down-regulated. Representative genes belonging to

these functional classes are described below.

Modulation of gene expression for enhanced protein
synthesis and energy generation in BALF

Incubation of A. pleuropneumoniae CM5 in BALF for 30 min

resulted in increased expression of genes encoding 30S and 50S

ribosomal subunit proteins and tRNA modification enzymes

(Table S1). Such up-regulation of ribosomal genes could play a

role in synthesis of the proteins described below.

Genes encoding proteins involved in energy metabolism were

also up-regulated in BALF, with some showing an increase of

more than 6-fold. Most of these genes encoded enzymes involved

in anaerobic respiration, including those that were part of the

dimethyl sulfoxide reductase (dms) operon), periplasmic nitrate

reductase (nap) operon, nitrite reductase (nrf) operon and a primary

dehydrogenase, hydrogenase 2 (hya) operon (Table S1). Dimethyl

Table 1. Functional classes of differentially expressed genes.

Functional class No. up-regulated No. down-regulated Total differentially expressed genes

Protein biosynthesis 16 1 17

Amino acid biosynthesis 0 9 9

Cofactor biosynthesis (heme and vitamins) 6 0 6

Nucleotide biosynthesis 0 3 3

Lipid biosynthesis 1 0 1

Cell envelope biosynthesis 11 0 11

Detoxification and toxin production 5 1 6

DNA metabolism 8 0

Energy metabolism 22 4 26

Protein folding and stabilization 0 4 4

Transcriptional regulators 0 3 3

Secretion and trafficking 13 5 18

Transposon functions 0 3 3

Unclassified and unknowns 22 19 41

Total 104 52 157

doi:10.1371/journal.pone.0006139.t001

Gene Expression in BALF
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sulfoxide (DMSO) reductase catalyzes the transfer of electrons to

dimethyl sulfoxide and other substrates; the periplasmic-nitrate

and nitrite reductases are involved in transfer of electrons to

nitrate and nitrite respectively [17]. Hydrogenase 2, a primary

dehydrogenase, uses the hydrogen produced by formate hydrogen

lyase from formate as a substrate [18] for energy production

[19,20]. A putative formate transporter, focA, was also up-

regulated in BALF.

Previous studies have shown that A. pleuropneumoniae up-regulates

transcription of genes encoding enzymes involved in anaerobic

metabolism in porcine lungs and lung washings [21–23]. A.

pleuropneumoniae recovered from BALF following infection have

increased expression of hydrogenase 2 [21], aspartate ammonia

lyase (Asp) [24] and DMSO reductase [25], with DMSO reductase

levels being elevated in cells recovered from both acute and

chronic infections [22,23].

The components present in BALF that could lead to up-

regulation of anaerobic energy-metabolism genes in A. pleuropneu-

moniae are largely unknown; however, glutathione in the airway

epithelium might be an activator of HlyX, which is the A.

pleuropneumoniae equivalent of FNR in E. coli [26]. For example, it

has been reported HlyX up-regulates DMSO reductase (dms) and

aspartate ammonia lyase (asp), which breaks down aspartate to

fumarate and ammonia. Fumarate is used as an electron acceptor

under anaerobic conditions in A. pleuropneumoniae [27–30]. The fact

that a significant change of expression of hlyX was not observed

may be because differences in the level of expression of this gene

tend to be small. Moreover, like fnr, regulation of the hlyX gene

product is likely affected by a multitude of factors including protein

stability, growth phase and nutrient availability [31,32].

Up-regulation of the genes encoding the periplasmic nitrate

(Nap) reductase in BALF suggests a role for nitrate metabolism in

A. pleuropneumoniae energy production in the host. Nap uses nitrate

as an electron acceptor. As nitrate has a higher redox potential

than most other electron acceptors under anaerobic conditions

[17,33] it is a preferred electron acceptor. Nitrate is formed from

nitric oxide in the animal and is present in various body fluids [34–

37] where it can serve as a cue for the up-regulation of nitrate-

responsive genes in A. pleuropneumoniae. Nap has a higher affinity for

nitrate than membrane-bound nitrate reductase (Nar) [38], and it

can be used for nitrate utilization in body fluids with low nitrate

concentrations such as are found in the respiratory tract.

Nitrite reductase (Nrf) is another nitrate metabolism-related

enzyme whose genes were up-regulated in BALF. This enzyme

converts nitrite, a potential bacterial cell-damaging substance

produced by nitrate reductase, to ammonia. Nrf can also convert

nitric oxide to ammonium [39], thus inactivating a key defense

molecule of the host.

Given that A. pleuropneumoniae is a host-associated pathogen

which resides in oxygen-deprived environments in both the acute

and carrier states of the disease, the major production of energy is

likely through anaerobic metabolism. The absence of three main

TCA-cycle enzymes (citrate synthase, aconitase and isocitrate

dehydrogenase) in the genomes of serotype 3 and serotype 5 A.

pleuropneumoniae again points to the importance of anaerobic

metabolism in the survival of this organism [40]. In addition,

many upper respiratory tract pathogens including Haemophilus

influenzae, Pseudomonas aeruginosa, Pasteurella multocida, Neisseria

meningitidis, carry genes for anaerobic energy generation, consistent

with the notion that anaerobic metabolism might have an

important role in the survival and virulence of bacterial pathogens

in the respiratory tract.

Some of the genes encoding enzymes involved in anaerobic

energy production in A. pleuropneumoniae have been shown to be

essential for virulence. For example, knockout mutants of hlyX are

unable to survive in lung epithelium, sequestered lungs or tonsils

[29]; dmsA mutants are attenuated in acute disease [25]; and asp

mutants cause less severe lung lesions than the wild type organism

[24]. Similarly, in Bordetella pertussis, another respiratory tract

pathogen, the FNR homolog, Btr [41] is essential for survival of

this pathogen in mice [42].

The role of the nitrate-inducible energy metabolism genes, nap

and nrf, is unknown in A. pleuropneumoniae. Nitrate metabolism has,

however, been shown to be essential for the entry and replication

of Salmonella Typhi in epithelial cells [43] and for the survival and

virulence of Mycobacterium bovis in mice [44,45].

In addition to the genes encoding enzymes of energy

metabolism discussed above, the transcription of Na+ -translocat-

ing NADH-quinone reductase (NQR) was also enhanced in BALF

(Table 3 and S1). NQR is a primary Na+ pump that translocates

Na+ ions outside the cytoplasmic membrane to generate a sodium

motive force, instead of a proton motive force, for energy

production [46,47]. The NQR enzyme is a complex of six

subunits encoded by the nqrABCDEF operon [48,49]; all six genes

Table 2. Verification of microarray data by real-time PCR.

Gene Gene name Fold change by real-time PCR Fold change by microarray

dmsA Anaerobic dimethyl sulfoxide reductase chain A precursor 17.9066.52 5.74

dmsB Anaerobic dimethyl sulfoxide reductase chain B 10.1263.34 2.78

nqrB Na+-translocating NADH quinone reductase subunit B 4.6261.63 7.65

nqrC Na+-translocating NADH quinone reductase subunit C 4.5761.3 6.35

nqrE Na+-translocating NADH quinone reductase subunit E 4.8461.59 6.36

napB Nitrate reductase cytochrome ctype subunit 11.6163.94 4.69

napF Ferredoxin-type protein NapF 15.9465.35 6.42

napD Putative NapD protein 18.5967.25 3.93

apxIVA RTX toxin protein 4.0762.02 1.93

dapA Dihydrodipicolinate synthase 0.0960.02 0.20

leuC 3-isopropylmalate dehydratase large subunit 2 0.1560.14 0.28

ilvH Acetolactate synthase small subunit 0.1360.17 0.27

doi:10.1371/journal.pone.0006139.t002

Gene Expression in BALF
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are present in all of the genomes of A. pleuropneumoniae reported to

date. Another Na+-cycling gene, nhaB (an Na+/H+ antiporter),

which, like NQR, could be involved in energy generation or in

sodium homeostasis [46], was also up-regulated in BALF.

In previous studies, the nqrB [23] and nhaB [22] genes and the

NqrA (AopA) protein [50], which are all involved in Na+-cycling,

have been reported to be up-regulated in A. pleuropneumoniae when

it is grown in vivo. The importance of NQR, the major Na+-cycling

enzyme, in survival and pathogenesis of A. pleuropneumoniae is

unknown. However, BHI containing 2-n-nonyl-4-hydroxyquino-

line N-oxide (HQNO), an inhibitor of NQR, does not allow

growth of A. pleuropneumoniae CM5, while E. coli DH5a grows well

in media containing HQNO (unpublished data). Further, in

signature tagged mutagenesis studies, the nqrB gene was found to

be essential for persistence A. pleuropneumoniae in the host [51].

Although genome sequencing has revealed that many bacterial

pathogens possess homologues of nqr and other primary and

secondary sodium pumps [46], the role of Na+ -cycling in

pathogenesis is largely unknown, except in Vibrio cholerae. In V.

cholerae, mutation of nqr results in increased expression of toxT, a

positive regulator of virulence factors including cholera toxin and

toxin co-regulated pilus [52,53]. NQR is best known for its

involvement in energy transduction, cytoplasmic pH regulation

and ion homeostasis in marine and halophilic bacteria [54,55].

Other BALF-up-regulated A. pleuropneumoniae genes encoding

enzymes of energy metabolism included the heme exporter gene

(ccmC), ATP synthase epsilon chain (atpC), deoxyribosephosphate

aldolase (deoC) and 1-phosphofructokinase (fruK). The ccmC gene is

a part of the ccmABCDEFGH operon which encodes proteins

required for maturation of cytochrome C [56], an essential

component of the electron-transfer chain [57]; whereas AtpC is a

part of the F1 complex of ATP synthase [58]; DeoC cleaves

deoxyribose 5-phosphate to acetaldehyde and glyceraldehyde 3-

phosphate for central carbon metabolism [59]; and FruK regulates

the flow of glucose through glycolysis [60]. Thus in BALF, A.

pleuropneumoniae enhances transcription of the genes encoding both

the central carbon metabolism and the energy transduction

proteins.

The down-regulation of genes encoding TCA cycle related

enzymes, phosphoenolpyruvate carboxylase (pepC and succinyl-

CoA ligase (ADP forming) subunit alpha (sucD) genes (Table S1)

again points to the importance of anaerobic metabolism in A.

pleuropneumoniae. Phophoenolpyruvate carboxylase catalyses car-

boxylation of pyruvate to oxaloacetate and succinyCOA ligase

catalyzes the nucleotide-dependent conversion of succinyl-CoA to

succinate [61,62]. The genes encoding putative haloacid dehalo-

genase like hydrolase (pfhB) and xylose isomerase (xylA) were also

down-regulated, which could be because of the absence of the

substrates for these enzymes in BALF or because alternate

pathways are preferable in that environment. Haloacid dehalo-

genase catalyzes dehalogenation of L-2-haloalkanoic acids to form

D-2-hydroxyalkanoic acids [63] and xylose isomerase converts

xylose to xylulose [64]. The xylose transport system permease gene

(xylH) was also down-regulated in BALF as were the mannitol

(PTS system mannitol-specific EIICBA component, mtlA) and

ribose (D-ribose binding periplasmic protein precursor, rbsB)

transport systems (Table S1) consistent with the absence of

manitol and ribose in BALF or the presence of a preferred

substrate. The ferritin-like protein 2 encoding-gene, ftnB, which is

involved in protection against oxidative damage to iron-sulfur-

containing enzymes such as the tricarboxylic acid (TCA) enzyme

aconitase [65] was also down-regulated in BALF. Since A.

pleuropneumoniae lacks aconitase, the target of FtnB is not obvious.

This result nevertheless suggests that A. pleuropneumoniae is not

under oxidative stress in BALF.

Modulation of gene expression for survival and virulence
in BALF

Following incubation in BALF, A. pleuropneumoniae CM5 up-

regulates genes required for cell wall synthesis, repair and

recombination of DNA, and secretion and trafficking of ions and

biomolecules (Table S1).

Several genes encoding cell wall biosynthesis proteins were up-

regulated in BALF, including those required for synthesis of

peptidoglycan, LPS and integral membrane proteins (Table S1).

Up-regulated genes for peptidoglycan biosynthesis enzymes

included phosphoglucosamine mutase (mrsA), alanine racemase

(alr), and D-alanyl D-alanine carboxypeptidase fraction A (dacA).

MrsA converts glucosamine-6-phosphate to glucosamine-1-pho-

phate which finally yields UDP-N-acetyl glucosamine for both

peptidoglycan and LPS biosynthesis [66–68] while Alr catalyses

the isomerization of L-alanine into D-alanine which is essential in

bacteria for peptidoglycan biosynthesis [66,69], and DacA

catalyzes transpeptidation between neighboring peptide chains of

N-acetylmuramyl-N-acetylglucosyl polysaccharides to produce

cross-links in the cell wall. DacA can also act as a carboxypeptidase

to control the amount of cross-linking in peptidoglycan [70,71].

A semi-rough LPS is present in A. pleuropneumoniae serotype 1

[72], and the BALF-up-regulated genes encoding LPS biosynthesis

proteins included the tetraacyldisaccharide 49kinase (LpxK)

required for lipid-A biosynthesis, and a bifunctional protein

(HldE) and UTPglucose-1-phosphate uridylyltransferase (GalU),

required for LPS core biosynthesis. Genes encoding capsular

Table 3. BALF up-regulated virulence-associated genes reported in other studies.

Genes Type of study Reference no.

bioD1, nhaB, apxIVA, rps, dmsA, hya SCOTS (acute infection; 7 days PI)) [22]

nqrB, dnaG, rpsT, rplL, rho, secA, truD, nusA, atpD, sap, rps, rpl SCOTS (chronic infection; 21 days PI) [23]

dmsA Knockout mutation [25]

nqr, hemA, napB, atp, ccm, recR, tonB, galU, cpxC, gloB Signature tagged mutagenesis (24 h PI) [51]

sec, nusG In vivo expression technology (12 and 16 h PI) [84]

exbB2, atp, dnaK Signature tagged mutagenesis (20 h PI) [85]

apxIVA, malF, malG, APL_0668 (predicted periplasmic lipoprotein
involved in iron transport)

In vivo transcript profiling of A. pleuropneumoniae by
microarray

Deslandes (personal communication)

Complete gene names are given in Table S1.
doi:10.1371/journal.pone.0006139.t003

Gene Expression in BALF
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export proteins, CpxA (ATP binding protein) and CpxC (capsule

polysaccharide export inner membrane protein) were also up-

regulated in BALF. While the genes encoding peptidoglycan and

LPS biosynthesis proteins described above are assumed to be

essential for the survival of A. pleuropneumoniae, a clear role for

capsular polysaccharides in the virulence of the bacterium has

been demonstrated [73,74]. In addition to cell surface polysac-

charides synthesis genes, the genes encoding the outer membrane

protein OmpW (outer membrane protein W precursor) and a

lipoprotein (outer membrane antigenic lipoprotein B precursor)

were also up-regulated in BALF. The up-regulation of genes

encoding proteins of cell wall biosynthesis may help the organism

to overcome cell surface-damaging components present in BALF.

Transcription of genes encoding proteins involved in replica-

tion, and recombination and repair was enhanced in BALF. Genes

encoding subunits of DNA polymerase III, various recombination

proteins of the RecF machine, and an exonuclease (uvrA of uvrABC)

were all up-regulated in BALF. Replication and recombination are

two intertwined processes [75]; enhancement of transcription of

genes involved in these two processes is consistent with active

replication of A. pleuropneumoniae in BALF. On the other hand, rec2,

encoding recombination protein2 and involved in transport of

DNA across the cell envelope in competent bacteria [76], was

down-regulated in BALF as were 3 genes predicted to have

transposon functions. The fact that the expression of transposases

is reported to be associated with starvation and other stressful

conditions is again consistent with BALF being a favorable

environment for A. pleuropneumoniae [77].

For survival in the host, bacteria require nutrients for

biosynthesis of various biomolecules. In BALF, A. pleuropneumoniae

increased transcription of genes encoding proteins required for

transport of various nutrients. For example, complex-carbohydrate

transport genes malF and malG, involved in maltose and

maltodextrin transport, were up-regulated in BALF. Similarly,

Group A Streptococcus enhances transcription of genes encoding

proteins required for maltodextrin uptake in saliva and DmalE:-

malT strains are attenuated in their growth and in their ability to

catabolize a-glucans [78]. Genes for amino acid (9) and nucleotide

(3) biosynthesis were down-regulated suggesting that some or all

amino acids and nucleotides were either directly or indirectly,

available in BALF. Consistent with this finding, amino acid

transporters such as BrnQ (for branched chain amino acid) and

SdaC (for serine transport) were up-regulated. In contrast, the

product of the glycerol uptake facilitator gene, glpF, which allows

transport of glycerol, erythritol, pentitols, and hexitol,was down-

regulated, however, this gene is known to be down-regulated

presence of glucose [79].

In BALF, A. pleuropneumoniae also increased transcription of

genes encoding proteins required for transport of iron and

potassium. Genes encoding the cell membrane transport proteins,

ExbD and ExbD2, and FbpB (iron (III) ABC transporter, ATP-

binding protein), which are involved in energy-coupled transport

of the iron-containing compound, transferrin were up-regulated in

BALF, as was fieF. The cation efflux pump, FieF, probably protects

the bacterium from ferrous iron toxicity [80]. The gene encoding

PtsN (PTS system, nitrogen regulatory IIA like protein) was also

up-regulated in BALF. PtsN has recently been shown to regulate

transport of K+ through its interaction with a K+ transporter in E.

coli and could be involved in ion homeostasis needed for optimal

survival of A. pleuropneumoniae in BALF [81].

Incubation in BALF also led to increased expression of A.

pleuropneumoniae CM5 genes encoding toxin synthesis and antimi-

crobial-resistance compounds. The ApxIV RTX toxin is reported

to be expressed only in vivo [82,83]. Following exposure to BALF

we have shown in vitro expression of apxIVA for the first time.

ApxIVA is a homolog of FrpC in Neisseria meningitidis. FrpC is

involved in tissue invasion of N. meningitidis [84]. The role, if any, of

ApxIV in the pathogenesis of A. pleuropneumoniae, however, remains

to be demonstrated.

The sapF gene is a part of the sapABCDF operon was up-

regulated in BALF. It is involved in resistance to antimicrobial

peptides in Vibrio fischeri [85], and in non-typable Haemophilus

influenzae [86]. Also, sapD mutants of non-typable H. influenzae have

been shown to be attenuated in a chinchilla model of otitis media

[87]. A. pleuropneumoniae possesses a complete sap operon, which

could have significant role in the survival of the pathogen in the

host. Another detoxification molecule, glyoxylase II (gloB) is an

enzyme involved in conversion of dicarbonyl compounds to less

reactive hydroxy acids [88] was also up-regulated. It has been

shown to be essential for survival of A. pleuropneumoniae in vivo [51]

likely by protecting the organism against harmful dicarbonyl

compounds present in the host. Expression of the ostA gene was

also enhanced in A. pleuropneumoniae CM5 after incubation in

BALF. The role for OstA in A. pleuropneumoniae is not known at this

time, but in Helicobacter pylori, OstA confers protection against

organic solvents and antibiotics [89], and in E. coli, it is essential for

survival and has a direct role in membrane biogenesis and effects

the lipid:protein ratio of the cell membrane [90]. In N. meningitidis,

OstA is required for LPS biosynthesis [90].

Transcription of secB, which is a part of the Sec machinery, was

also enhanced in BALF. The Sec machinery plays a key role in the

translocation of proteins across, and integration of some proteins

into, the cytoplasmic membrane of bacteria [91]. In A.

pleuropneumoniae, secA and secB, another protein of the Sec

machinery, have been shown to be expressed in vivo during both

acute and chronic infection [23, 92, and 93].

Several genes encoding transcriptional regulators, protein

stabilization and folding and transposon functions were down-

regulated in BALF. The precise role of these down-regulated

transcriptional regulators is unknown in A. pleuropneumoniae, but

FadR (a member of the GntR family of regulators) is an activator

of unsaturated fatty acid acid synthesis in E. coli, although the

authors do note that the FadR regulon in other gammaproto-

bacteria such as Haemophilus influenzae is much smaller [94].

Nevertheless, it is reasonable to assume that fatty acids would be

freely available in BALF and their synthesis would not be required

[95]. MerR transcriptional regulators have similar N-terminal

helix-turn-helix DNA binding regions and C-terminal effector

binding regions specific to the effector. Most of these regulators

respond to oxidative stress and the presence of heavy metals and

antibiotics in the medium [96]. The down-regulation of a MerR

transcriptional regulator is consistent with the absence of stressors

in the medium.

Similarly, the precise role of protein folding and stabilization

proteins in A. pleuropneumoniae has not been reported, but in other

systems, proteins such as HtpG and HtpX are usually up-regulated

during stress such as nutrient deprivation and their down-

regulation is consistent with BALF being a comparatively non-

stressful environment [97,98].

In the current study, genes encoding 22 ‘‘unclassified or

unknown’’ proteins were up-regulated while genes encoding a

further 19 ‘‘unclassified or unknown’’ proteins were down-

regulated. This large set of gene encoding unknown proteins

could have a significant role in the survival and pathogenesis of A.

pleuropneumoniae. In the future, it may be possible to predict

functions of unknown genes by using bioinformatic approaches

such have been developed for analysis of human microarray data

[99].
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In summary, incubation in BALF appears to simulate in vivo

conditions and may provide a useful medium for the discovery of

novel vaccine or therapeutic targets. In this environment, A.

pleuropneumoniae is actively involved in protein and cell envelope

biosynthesis and in general, BALF appears to provide a

comparatively favorable and nutrient replete environment.

Although more than 40% of the genes that were up-regulated

following a 30 min exposure to BALF had been reported in earlier

in vivo studies (Table 3), we have described an additional 70 genes

whose precise role in survival and virulence of A. pleuropneumoniae is

unknown and merit further study.

Materials and Methods

Collectin and concentration of bronchoalveolar fluid
(BALF)

BALF was obtained from ten specific pathogen free pigs, each

weighing about 15 kg. The pigs were euthanized, and the lungs

were lavaged in situ using a catheter passed through a

bronchoscope to instill 100 ml of sterile PBS into the trachea.

After ,1 min, lung washings were collected and centrifuged to

remove cell debris. The cell-free lavage was concentrated with a

5 kDa molecular weight cut off ultrafiltration device, Vivacell 70

(Vivascience Ltd., Stonehouse, Gloucestershire,UK). A total of

about 100 ml of BALF was collected from each pig and

concentrated to a final volume of 5 ml. Concentrated BALF from

each pig was pooled and sterilized by passage through a 0.22 mm

membrane filter. From collection to concentration, BALF was kept

at 4uC; the concentrated BALF was stored at 280uC for long-term

storage. Molecules less than 5 kDa in molecular weight were not

concentrated by this method; nevertheless, the fluid still contained

these substances in concentrations found before ultrafiltration and

the concentrated BALF represents alveolar epithelial fluid better

than unprocessed BALF. The procedure used for BALF collection

received approval from the Animal Care Committee of the

University of Guelph and was consistent with the Guidelines of the

Canadian Council on Animal Care.

Assessment of bacterial survival in BALF
Exponential growth phase cultures of A. pleuropneumoniae CM5

and Escherichia coli DH5a were incubated in 2 ml of concentrated

BALF at 37uC. As a control, bacteria were also incubated in

phosphate-buffered saline (PBS). A 50-ml aliquot was taken from

each of the cultures after 15 and 30 min of incubation in BALF

and PBS and plated onto brain heart infusion (BHI; Becton,

Dickinson and Company, Sparks, MD, USA) agar supplemented

with 0.01% (wt/vol) b-nicotinamide adenine dinucleotide (NAD).

The number of colony-forming units (CFU) was counted after

incubation overnight at 37uC. The number of bacteria surviving in

BALF at each time point was expressed as the percent of number

of bacteria surviving in PBS.

The data were analyzed using one-way analysis of variance

(ANOVA); the means were compared using Tukey’s method.

Culture conditions for identification of differentially
expressed genes in BALF

The virulent A. pleuropneumoniae serotype 1 strain CM5 was

grown in BHI (Becton, Dickinson and Company) broth supple-

mented with 0.01% (wt/vol) NAD, at 37uC to an OD600 of 0.7

(approximately 107 CFU/ml). The cell suspension was split into

two equal parts and centrifuged at 10,000 xg for 1 min to pellet

the cells. One pellet was suspended in pre-warmed concentrated

BALF and the other in fresh pre-warmed BHI broth supplemented

with NAD. The volume of BALF and BHI broth used to suspend

the cell pellets was equal to that of the culture from which the

pellets were obtained, so that the resulting cell suspension

contained approximately 107 CFU/ml. The cell suspensions were

incubated with constant agitation at 37uC for 30 min and

harvested by centrifugation for RNA extraction.

RNA extraction
RNA was extracted using Trizol Reagent (Invitrogen, Carlsbad,

CA, USA) according to the instructions of the manufacturer. RNA

quantity and quality was determined using an RNA 6000 Nano

LabChip read in a Bioanalyzer 2100 instrument (Agilent

Technologies, Santa Clara, CA, USA). RNA was treated with

Turbo DNA-free (Ambion, Austin, TX, USA) to remove traces of

contaminating DNA. For hybridization in microarray experi-

ments, RNA was extracted from 3 independent biological

replicates.

Labeling of cDNA and microarray hybridizations
cDNA synthesis was carried out as described previously [100].

Briefly, RNA (15 mg per reaction) from target (BALF-incubated

bacteria) and reference (BHI-incubated bacteria) samples was used

to synthesize cDNA in the presence of amino-allyl-dUTP (Sigma-

Aldrich, St. Louis MO, US), random octamer primers (Biocorps,

Montreal, QC, Canada), and SuperScript II transcriptase

(Invitrogen, Carlsbad, CA, US). cDNAs were labeled indirectly

with mono-functional NHS-ester Cy3 or Cy5 dye (GE Healthcare,

Buckinghamshire, UK) and the efficiency of the labeling reactions

was determined spectrophotometrically. RNA from three inde-

pendent biological replicates was used in the labeling reaction.

Four hybridizations, including the dye-swap experiment, were

carried out between the target and the reference samples. The

microarray data from this study were submitted to the Gene

Expression Omnibus repository at NCBI and assigned accession

number GEO: GSE13006.

Microarray chip design
The AppChip2 microarray chip used in this study is an evolved

version of the AppChip1 chip, and like its predecessor, was a part of

the A. pleuropneumoniae 5b L20 genome sequencing project [101]. For

construction of AppChip2, open-reading-frame (ORF) PCR

fragments of 160-nucleotide length and above were spotted in

duplicate on microarray slides. The spots represent 2033 ORFs,

covering 95% of the total ORFs, from the complete genome

sequence of the organism. Spotted sheared genomic DNA from A.

pleuropneumoniae L20 and porcine DNA are used as controls (http://

ibs-isb.nrc-cnrc.gc.ca/glycobiology/appchips_e.html). Other de-

tails concerning chip production are described elsewhere [102].

Microarray data analysis
Microarray image and data analysis were carried out using the

TM4 Suite [103] of software. Briefly, images were analyzed with

Spotfinder v3.1.1. Background intensity was subtracted from the

integrated intensity of each spot, and the spots that were less than

one standard deviation above background intensity were elimi-

nated, as were ones with total intensity less than 10,000. Replicate

spots were analyzed subsequent to LOWESS (locally weighted

linear regression) normalization of the data. Genes that were

represented by good quality spots on a minimum of three replicate

slides were considered for downstream analysis using SAM

(significance analysis of microarray) to identify differentially

expressed genes. A median false discovery rate (FDR = expected

rate of falsely identified up- or down-regulated genes [104]) of

1.07% was used to generate a list of differentially expressed genes,
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which were classified into various functional classes using the JCVI

Comprehensive Microbial Resource [105] tool.

Quantitative real-time PCR
RNA capacity (the maximum RNA concentration that can be

used without affecting efficiency of reverse transcription), optimum

primer concentration (list of primers is given in Table S2), and

gene dynamic ranges were determined before carrying out real-

time PCR for relative quantification of target genes. Synthesis of

template cDNA was carried out in a 20-ml reaction mixture

containing 500 ng RNA, using High Capacity cDNA Reverse

Transcription Kit (Applied Biosystems, Streetsville, ON, Canada).

SYBR-Green-dye-based real-time PCR methodology was carried

out using MicroAmp Optical 96- well plates (Applied Biosystems)

in a StepOnePlus thermocycler (Applied Biosystems) for relative

quantification of target genes. The 20-ml PCR reaction mixtures

contained 10 ml of 26 Power SYBR Green PCR Master Mix

(Applied Biosystems), 100 nM of forward and reverse primer, and

5 ml of template cDNA. The real-time PCR thermal profile

included heat-activation of AmpliTaq Gold DNA Polymerase at

95uC for 10 min, and three-step 40-cycle PCR of denaturation at

95uC for 15 sec, primer annealing and extension at 60uC for

1 min.

The Comparative CT (or DD CT) method [106] where DD
CT = (CT, target2CT, syp)BALF2(CT, target2CT, syp)BHI was used to

determine the relative gene expression of the target genes in

BALF. As an endogenous control, the level of prolyl-tRNA-

synthetase gene expression was used to normalize target gene

expression levels, since this gene exhibited the least variation in

expression across various conditions in both the microarray and

real-time PCR experiments. Three independent biological repli-

cates were tested in triplicates in the PCR experiments for the

relative quantification of target genes.

Supporting Information

Table S1

Found at: doi:10.1371/journal.pone.0006139.s001 (0.26 MB

DOC)

Table S2

Found at: doi:10.1371/journal.pone.0006139.s002 (0.04 MB

DOC)
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