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Multi-modality deep learning model
reaches high prediction accuracy in the
diagnosis of ovarian cancer

Zimo Wang,1,5 Shuyu Luo,1,5 Jing Chen,1,5 Yang Jiao,1 Chen Cui,2,3 Siyuan Shi,2,3 Yang Yang,2,3 Junyi Zhao,4

Yitao Jiang,2,3 Yujuan Zhang,1 Fanhua Xu,1 Jinfeng Xu,1,* Qi Lin,1,* and Fajin Dong1,6,*
SUMMARY

We evaluated the diagnostic performance of a multimodal deep-learning (DL) model for ovarian mass
differential diagnosis. This single-center retrospective study included 1,054 ultrasound (US)-detected
ovarian tumors (699 benign and 355 malignant). Patients were randomly divided into training (n = 675),
validation (n = 169), and testing (n = 210) sets. The model was developed using ResNet-50. Three
DL-based models were proposed for benign-malignant classification of these lesions: single-modality
model that only utilized US images; dual-modality model that used US images and menopausal status
as inputs; and multi-modality model that integrated US images, menopausal status, and serum indicators.
After 5-fold cross-validation, 210 lesions were tested. We evaluated the three models using the area un-
der the curve (AUC), accuracy, sensitivity, and specificity. Themultimodal model outperformed the single-
and dual-modality models with 93.80% accuracy and 0.983 AUC. The Multimodal ResNet-50 DL model
outperformed the single- and dual-modality models in identifying benign and malignant ovarian tumors.

INTRODUCTION

Ovarian cancer is the most lethal gynecological malignancy, with a low five-year survival rate of 46%.1 Due to the lack of effective screening,

70% of patients with ovarian cancer are already in advanced stages when diagnosed, with only a 28% five-year survival rate. However, early

detection of ovarian cancer can improve the survival rate.2,3 The treatment strategies and prognoses of benign andmalignant ovarian tumors

vary significantly. For benign lesions, follow-up programs are recommended to minimize stress and ovarian function damage caused by inva-

sive biopsies and surgeries.4,5 For malignant masses, gynecological oncologists must perform a comprehensive assessment of tumor staging

and design reasonable treatment strategies.6–8 Therefore, preoperative differentiation between benign and malignant ovarian tumors is

essential for effective treatment.

Ultrasonography is a safe and cost-effective method for identifying ovarian tumors. This is the preferred choice for identifying adnexal

masses.9 However, its accuracy can be affected by the ovarian tissue complexity and the doctor subjectivity, leading to misdiagnoses.10,11

According to current research, the effective diagnosis of ovarian cancer remains a challenge.2 Artificial Intelligence (AI) has shown significant

potential in the medical field, assisting in the diagnosis of various cancers, including ovarian cancer.12,13 Deep learning (DL) is a branch of AI

that can automatically learn mid- and high-level abstract features from raw data such as ultrasound (US), mammograms, and magnetic reso-

nance imaging, thereby replacing the traditional time-consuming manual extraction method.14 Convolutional neural network (CNN)-based

architectures have been successfully implemented for automaticmedical image analysis.15 Studies have shownAI’s diagnostic performance in

ovarian tumor detection is comparable to that of human experts.16–18

Previous studies have shown that the use of molecular features can improve the diagnostic accuracy for ovarian cancer. However, these

studies mainly focused on single sources of information.19–21 In clinical practice, ovarian cancer diagnosis should include imaging methods,

serum tumor markers, and patient age. For example, the United States Food and Drug Administration recommends using CA125 to assess

treatment response and monitor residual disease or recurrent hazards after first-line treatment. A link between the CA125 clinical stage and

survival rate has been reported in several studies.22–24 HE4 is a promising ovarian cancer biomarker with higher specificity for diagnosing

ovarian cancer than CA125.25–27 Thus, these markers could be used to screen for ovarian cancer.3
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Table 1. Demographic and clinical variables of patients in the training, validation, and test sets

Characteristics Training cohort (n = 675) Validation cohort (n = 169) Test cohort (n = 210)

Age (years)a 40.8 (15–81) 41.8 (15–79) 42.4 (14–86)

Histologic tumor type

No. of benign 447 (66.2%) 112 (66.3%) 140 (66.7%)

No. of malignant 228 (33.7%) 57 (33.7%) 70 (33.3%)

CA-125 median, range (U/mL)a 186.55 (3.6–5832) 283.07 (5.9–3419) 239.20 (3.6–4837)

CA-125 (U/mL)

%35 380 (56.2%) 89(52.6%) 119 (56.7%)

>35 295 (43.7%) 80(47.3%) 91 (43.3%)

HE4 median, range (pmol/L)a 188.39 (9.86–4492) 212.40 (11.78–1500) 167.34 (11.34–4609)

HE4 (pmol/L)

%140 510 (75.6%) 123 (72.8%) 162 (77.1%)

>140 165 (24.4%) 46 (27.2%) 48 (22.9%)

Menopause

Pre 493 (73.0%) 117 (69.2%) 147 (70%)

Post 182 (27.0%) 52 (30.8%) 63 (30%)

Unless otherwise specified, data in parentheses are percentages.

CA-125, carbohydrate antigen 125; HE4, human epididymal protein 4.
aNumbers in parentheses are the range.
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Therefore, improving the US diagnostic accuracy for ovarianmasses is necessary. Our study aimed to build amultimodalmodel to improve

AI diagnostics for benign and malignant ovarian tumors.

RESULTS

Study population

As shown in Table 1 and Figure 1, we obtained 4,542 US images and clinical data from 1,054 patients with primary ovarian tumors screened

between January 2015 andMarch 2022 at the Shenzhen People’s Hospital. Of the 1,054 tumors evaluated, 699 (2,611 images) were benign and

355 (1,931 images) were malignant, according to the pathological results. The average patient age was 40.8 years (range, 15–81 years) for the

training set, 41.8 years (range, 15–79) years for the validation set, and 42.4 years (range, 14–86 years) for the test set. No statistically significant

differences in baseline information were observed among the training, validation, and test sets (p > 0.05). The model architecture is shown in

Figure 2. The histopathological subtypes of all tumors are detailed in Table S1.

Performance of the three ResNet-50 models in the benign-malignant classification

As shown in Table 2, a 5-fold cross-validation was performed on the training set. Each fold reported the AUCs of the models as well as the

mean AUC and standard deviation. Model 3 had the highest AUC for each fold, best mean AUC, and narrowest standard deviation. This was

followed by Model 2, which outperformed the single US image-based model in all evaluation metrics.

These results are consistent with those of the 5-fold cross-validation of the training set. Compared with the single US imaging

modality and menopausal status-embedded models, Model 3 showed the best performance in predicting lesion malignancy. Model

1 achieved an AUC of 0.957 (95% confidence interval [CI] = 0.930–0.984). Model 2 achieved an AUC of 0.969 (95% CI = 0.946–0.992).

With the additional serum tumor marker data, Model 3 attained a significantly better AUC of 0.984 (95% CI = 0.969–0.998) with

p < 0.05 (Figure 3).

Table 3 shows the accuracy, sensitivity, and specificity of each ResNet-50 model for the test set. The accuracy, sensitivity, and spec-

ificity of Model 1 were 90.00%, 94.28%, and 87.62%, respectively. The model’s performance increased stepwise with the integration of

menopausal status and serum tumor markers. The accuracy, sensitivity, and specificity of Model 3 were 94.76%, 94.28%, and 95.00%,

respectively.

We compared the sensitivity and specificity of the three models with different cutoff values to evaluate the benefits of embedding clinical

information into AI systems. At the sensitivity level of Models 1 and 3 (94.28%), Model 3 had significantly higher specificity (95.00% for Model 3

and 87.62% for Model 1). To improve the detection rate, we set a default sensitivity level of 90.00% with specificities of 88.57%, 94.28%, and

97.14% for Models 1, 2, and 3, respectively.

To analyze the classification regions of interest of the network model on ovarian US images, we used gradient-weighted class activation

maps to visualize the classification decisions of themodel.28 The feature-attention heatmaps for US images are shown in Figure 4. Color-scale
2 iScience 27, 109403, April 19, 2024



Figure 1. Flowchart of eligibility criteria and the procedure for deep learning
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maps were obtained by overlapping the attention of the network on different features in the original images. By comparing the attentionmap

of the lesion area traced by a senior sonographer with that of a DL network, it was found that, through network learning, the generated atten-

tion was similar to that of a senior sonographer all around the lesion and its surrounding area.
DISCUSSION

Using ResNet-50 DL neural networks, we successfully developed a multimodal model to differentiate between benign andmalignant ovarian

tumors. Model 3 produced the most accurate predictions on the test set, with an AUC of 0.984, a sensitivity of 94.28%, and a specificity of

95.00%. Our results demonstrate that it outperform ResNet-50 at predicting benign and malignant ovarian tumors. This study used a multi-

modal DL model that incorporated US images, menopausal status, and tumor markers to predict and analyze benign and malignant ovarian

lesions.

In this classification task, we used transfer learning methods. Specifically, in the backbone section of ResNet-50 described in the STAR

methods section, we transferred the pre-trained weights to ImageNet. This approach offers advantages such as alleviating data scarcity

(the annotation cost of medical images is high), reducing overfitting, and accelerating model convergence. In addition, because of the

domain differences between natural and medical images, we did not freeze the transferred weights post-transfer to alleviate the potential

decrease in classification performance caused by these differences; hence, all parameters of the entire network model participated in

training.

In our study, Model 1 used only US images, with an AUC of 0.957. After adding menopausal status, we found that the diagnostic efficiency

was slightly higher, and the AUC reached 0.969, which may be essential for assessing the risk of complicated ovarian tumors. As shown in

Figures 5A and 5B, this patient was a premenopausal woman; the masses were solid with clear boundaries, and blood flow signals were

apparent. Although the images demonstrated malignant characteristics, the patient was pathologically diagnosed as having a theca cell tu-

mor. Model 2 correctly classified it as benign, whereas Model 1 generated an inaccurate malignant classification. Therefore, the addition of

menopausal status can improve the efficiency of the model and assist in the diagnosis of benign andmalignant lesions. This is consistent with

previous findings that most ovarian cancers are prone to occur in postmenopausal women, while the incidence rate of ovarian cancer is low in

premenopausal women.29

Model 3 may assist in addressing the main disadvantages of US in clinical use, which are its high rate of false positives and low specificity.

With the aid of additional clinical indicators, Models 2 and 3 obtained higher specificities than single-modality Model 1. When we reviewed

the cases correctly predicted by Model 3 but misdiagnosed by Models 1 and 2, we discovered that only 7 of the 18 cases were benign. This

result highlights that CA125 and HE4 can help the AI model better diagnose ovarian masses, improve diagnostic specificity, and reduce un-

necessary surgery and patient burden. With more clinical information, AI systems can perform better.
iScience 27, 109403, April 19, 2024 3



Figure 2. Architecture of models

(A) Flowchart of the multimodal input and overall workflow for deep learning-based methods.

(B) Image feature extractor network structure.

ll
OPEN ACCESS

iScience
Article
As shown in Figures 5C and 5D,Model 3 classified the case as benign, butModels 1 and 2 classified it asmalignant. The pathological result

was mucinous cystadenoma, which is difficult to diagnose even by experienced US physicians because the misleading solid components in

the cyst demonstrate suspicious malignant characteristics. In this study, we combined clinical indicators to build a multimodal DL model that

can be used as an auxiliary diagnostic tool for sonographers. Before obtaining histopathological results, sonographers can use the model’s

probabilities to better define the nature of the tumor.

Model 3 also showed a few false negatives and false positives. As shown in Figures 6A and 6B, Model 3 classified this case as benign,

whereas the pathological result was a serous cystadenocarcinoma, and the US image showed suspicious malignant features, such as a solid

mass with blood flow signals. However, HE4 in this case was negative (56.3 pmol/L), CA125 was positive (63.2 U/mL), and the patient was pre-

menopausal (43 years old). The reason for the missed diagnosis may be that the HE4 and menopausal conditions of the patient affected the

judgment of themodel. By contrast, as shown in Figures 6C and 6D,Model 3 classified this case asmalignant; however, the pathological result

was an ovarian endometriosis cyst. The US image shows a cystic mass that appears to be a solid mass, but in fact, it has dense dotted echoes

inside. The HE4 of this case was negative (13.7 pmol/L), the CA125 was positive (108.3 U/mL), and the patient was premenopausal (23 years

old). The probable cause of themisdiagnosismay have been the static image andCA125 value of this case, resulting in the incorrect judgment
Table 2. Performance of 5-fold cross-validation on training set with different modal inputs

AUC Modality Fold-1 Fold-2 Fold-3 Fold-4 Fold-5 Mean G 1 std.dev

Model 1 US 0.909 0.959 0.962 0.923 0.938 0.937 G 0.021

Model 2 US + menopausal status 0.943 0.977 0.983 0.952 0.957 0.960 G 0.015

Model 3 US + menopausal status+serum tumor markers 0.964 0.993 0.986 0.954 0.977 0.971 G 0.014

4 iScience 27, 109403, April 19, 2024



Figure 3. Comparison of diagnostic efficacy in the testing set

Model 1 (using US images only), Model 2 (Model 1+ menopausal status), Model 3 (Model 2+ serum tumor makers). ROC, receiver operating characteristic; AUC,

area under the curve.
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of the model. The presented cases illustrates that, in practical applications, we can combine models with dynamic images and clinical expe-

rience to improve diagnostic efficiency.

In conclusion, the multimodality model outperformed the single-modality model by integrating menopausal status and serum tumor

markers with US images. We anticipate that this multimodality model will be an effective tool for improving US performance in identifying

benign and malignant ovarian tumors in clinical practice.
Limitations of the study

Our study has some limitations. First, this was a retrospective study, and the results were influenced by limited data. However, large-scale

prospective studies are required for further improvements. We will continue to conduct prospective research in the next step to avoid selec-

tion bias. Second, this was a single-center study.Withmore participating centers, we can further improve and validate ourmodel using amore

diverse population. Third, the experiment did not include a comparison with the experts’ subjective evaluations, potentially limiting the

generalizability of the diagnostic performance evaluated using our multimodality model. However, literature15,17 reports the consistency

of expert subjective and DL model evaluations, alleviating this concern. Fourth, this study did not evaluate the importance of imaging versus

demographic and laboratory factors in the Model 3 prediction.

Fifth, due to the malignant tendency of borderline tumors, follow-up is not recommended. Misclassification as benign may cause physi-

cians tomisjudge and affect treatment. The existing 38 cases of borderline ovarian tumors are not sufficient to illustrate the problem. In future

research, we will attempt to focus on borderline ovarian tumors by expanding the sample size.
STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
Table 3. Comparison of the efficacy of AI model in the testing set

Modality AUC (95%CI) Cut-off Sensitivity (%) Specificity (%) Accuracy (%) p value

Model 1 0.957 (0.930–0.984) 0.341 94.28 87.62 90.00 <0.001

Model 2 0.969 (0.946–0.992) 0.397 97.14 93.57 94.76 <0.001

Model 3 0.984 (0.969–0.998) 0.590 94.28 95.00 94.76 <0.001

Model 1 0.957 (0.930–0.984) 0.385 90.00 88.57 89.04 <0.001

Model 2 0.969 (0.946–0.992) 0.479 94.28 92.91 <0.001

Model 3 0.984 (0.969–0.998) 0.802 97.14 94.76 <0.001
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Figure 4. US images and heat maps of two cases with ovarian lesions

(A and B) Images of a 36-year-old female with mucinous cystadenoma. US image (A) showed a 6.8-cm cystic anechoic mass with irregular separation inside. The

overlaid heatmap (B) shows that the attention is on the cystic anechoic part, which is consistent with the focus of the senior sonographers.

(C and D) Images of a 55-year-old female with serous cystadenocarcinoma. US image (C) shows a 9.0-cm cystic solid mass with irregular solid masses. Overlaid

heatmap (D) shows the irregular real space occupying part of the attention in the package, which is consistent with the concerns of senior sonographers.
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Figure 5. US images of two cases with ovarian lesions

(A and B) Images of a 44-year-old woman with a solid mass in the right ovary. (A) Grayscale US image showing the maximal size plane of the mass.

(B) Color Doppler US image. The pathological diagnosis was cell tumor. This was categorized correctly by Model 2, but not by Model 1.

(C and D) Images of a 38-year-old woman with a unilocular cyst and solid component in the left ovary.

(C) Grayscale US image showing the maximal plane of the mass, and (D) color Doppler US image of the solid component. A pathological diagnosis of mucinous

cystadenoma was established. This was misdiagnosed using Models 1 and 2, whereas Model 3 was correct.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Python van Rossum,30 https://www.python.org/

Tensorflow Abadi et al.31 https://www.tensorflow.org/

NumPy Harris et al.32 https://numpy.org/

Code for this paper Yang,33 https://doi.org/10.17632/f5p4h32p46.2
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Fajin Dong (dongfajin@

szhospital.com).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� Data are not publicly shared but is available upon reasonable request from the lead contact.
� All original code has been deposited at Mendeley Data and is publicly available as of the date of publication. DOIs are listed in the key

resources table (https://doi.org/10.17632/f5p4h32p46.2).

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Ethics

This study was approved by the ethics committee of Shenzhen People’s Hospital, and the requirement for informed consent was waived due

to the retrospective data collection. This study was conducted in accordance with the principles of the Declaration of Helsinki.

Patients and datasets

The data flow is shown in Figure 1. We retrospectively enrolled 1351 patients who underwent US examinations within two weeks prior to sur-

gery, biopsy, or other antineoplastic treatments and had pathological results and associated clinical information at Shenzhen People’s Hos-

pital from January 2015 to March 2022. The inclusion criteria were as follows: (a) patients with ovarian tumors who had undergone surgical

resection or biopsy; (b) patients who had undergone grayscale and color Doppler US within two weeks before surgery, biopsy, or other anti-

neoplastic treatments; and (c) the examination of serum tumor markers was completed before treatment and surgery. The exclusion criteria

were as follows: (a) patients with non-primary ovarian tumors, (b) patients with recurrent ovarian cancer who had previously undergone ovari-

ectomy, (c) patients with poor US image quality, (d) missing grayscale US or CDFI data, (e) patients without CA125 or HE4, and (f) repeated

cases. Finally, 1054 patients were included and randomly divided into training (675), validation (169), and testing (210) sets. Clinical data,

including age, menopausal status, pathological findings, serum tumor markers (CA125 and HE4), and US diagnosis reports, were collected

from the picture archiving and communication system (PACS) of Shenzhen People’s Hospital.

Ultrasound image collection protocol

Two physicians with more than five years of experience in gynecological ultrasonography reviewed and filtered the US images based on the

inclusion and exclusion criteria. All images were annotated by the two doctors to manually segment the lesion region from the input US im-

ages using an open-source, commonly used labeling tool (LabelMe; http://labelme.csail.mit.edu/Release3.0/).

For each lesion, three to seven images were selected, including grayscale US images (one image), images with calipers enclosed at the

edge of the lesion (one image), and images with color Doppler (one image). Other images with specific US characteristics were also selected,

including those with solid components, irregular walls, and papillary projections in the tumor (one to four images, if any). These US images

were recorded by trained physicians in real clinical workflow using the following commercially available units (GE Voluson E10 and E9, GE

Healthcare; Philips EPIQ7, Philips Healthcare; and Mindray Resona7, Mindray) equipped with 5.0–9.0 MHz, 4.0–8.0 MHz, and 3.0–10.0 MHz
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transvaginal probes, and 1.0–5.0 MHz transabdominal probes. In total, 4,542 US images of the enrolled patients were used to train, validate,

and test the proposed DL model.
Image processing

Object detectionwas performed for each input US image to extract the region of interest using the YOLOmodel.34 Padding and resizingwere

performed on the ROIs to reshape them to 224 3 224 pixels. The reshaped ROIs were the inputs for the ResNet-50-based models.
Architecture of models

ResNet-50 is a DLmodel proposed byMicrosoft Research in 2015. This model is characterized by introducing "Residual Blocks" in each layer,

where new transformations are added based on the previous layer while preserving the original input. This enables the network to learn the

differences between the inputs and outputs better, thus improving the model’s performance. Compared with other models, ResNet-50 in-

troduces the idea of residual learning, which addresses the issue of vanishing gradients in DL. By design, Residual Blocks allow for better

model training. Additionally, the model’s depth should be adapted to the scale of the data; in our case, a depth of 50 layers achieved the

best results.

Figure 2Adepicts the architecture of ourmodels. In the top branch, we used ResNet-50 to extract features from the images. It contains four

stages and downsamples the image five times to create a final image feature matrix with a shape of 73 732048. As shown in Figure 2B, strip

pooling followed by nonanisotropic convolution was used to convolve the feature in both the height and width dimensions to capture the

long-range context. The results of the non-anisotropic convolution are added together, followed by a sigmoid function to generate a spatial

attention map. The attention map is then used to scale the original image feature matrix. Clinical information on the lower branch, such as

menopausal status and serum tumor markers (CA125 and HE4), are used to assist in prediction. A multilayer perceptron extracts information

from the clinical data and projects it onto a feature vector of 128 sizes.

To fuse the information from the images and clinical data, we performed a 13 1 convolution to project the featurematrix of the image onto

the clinical space. The image feature matrix, whose shape was 73 732048, became 73 73128 after a 13 1 convolution layer, and we com-

bined the first two dimensions; thus, its final shape was 493 128. The reshaped image features (493 128) and clinical data features (13 128)

were concatenated in the channel dimensions, resulting in a merged feature with a shape of 503 128. The concatenated features are passed

to the multihead self-attention module, where three heads are used to conduct interactive feature fusion. Subsequently, max pooling and

average pooling were utilized on the fused features, and the results were added to create a 128-size feature vector for classification. Finally,

a fully connected layer is used as the classifier for the final prediction.
Models

Threemodels were constructed using diverse inputmodalities. Model 1 used only US images, with no clinical data for classification. The lower

branch in Figure 2B was removed fromModel 1. Menopausal status is utilized as additional clinical information for model 2 to assist diagnosis

with US images. In Model 3, menopausal status and serum tumor markers (CA125 and HE4) were used in the clinical data branch to share

information with the image branch.
QUANTIFICATION AND STATISTICAL ANALYSIS

Sensitivity, specificity, and accuracy are the primary metrics of themodels based on differentmodalities. The receiver operating characteristic

curves of the models were obtained to assess their ability to classify benign malignancies. The AUC and binomial-accurate 95% CI were re-

ported to quantitatively describe the performance of themodels. Statistical differences betweenAUCs were compared using a Delong test,35

with p values <0.05 considered significant. All statistical analyses were performed using R 3.4.3 software (https://cran.r-project.org/) and Py-

thon v3.9. Borderline ovarian tumors were considered malignant based on statistical analyses.36
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