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Abstract: The well documented decline in the regenerative ability of ageing human skin has been
attributed to many factors including genomic instability, telomere shortening, poor nutrient sensing,
cellular senescence, and stem cell exhaustion. However, a role for the dermal cellular and molecular
microenvironment in skin ageing is just emerging. We previously showed that dermal pericytes
co-operate with fibroblasts to improve human skin regeneration in an organotypic skin culture
model, and even do so in the absence of fibroblasts. Here, we report that the number of dermal cells,
particularly pericytes, declines significantly in human skin of donors aged > 50 years. Notably, aged
pericytes promoted epidermal regeneration of neonatal keratinocytes in organotypic cultures and the
resulting epithelium exhibited a Ki67+/∆Np63+ basal layer and terminal differentiation. However,
the epithelium lacked several features of homeostasis displaying lower levels of ∆Np63 expression,
decreased LAMA5 deposition at the dermo-epidermal junction, and the absence of basement mem-
brane and hemi-desmosome assembly. We conclude that a decline in pericyte incidence and function
contribute to an impaired epidermal microenvironment and poor skin regeneration with ageing in
the human skin.
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1. Introduction

It is well accepted that the dermis acts as a niche for the interfollicular and hair follicle
epidermis of the skin, mediated by an array of extracellular matrix (ECM) proteins and
growth factors [1]. The epidermal niche also extends to neighbouring epidermal cells in the
proliferative basal and suprabasal layers into which they migrate during differentiation.
Thus, changes in mechanical stress and cell density also act as signals for cell replacement
in development and homeostasis [2,3]. Key regulatory pathways that govern epidermal
regeneration have been identified using elegant, genetically engineered mouse models,
and 3D organotypic cultures (OCs), reinforcing the idea that microenvironmental signals
including the wnt, Notch, Shh, insulin, TGFB, IL-1, and KGF/FGF-7 pathways are critical
in tissue maintenance and repair [4–13] reviewed in [14].

At a cellular level, the role of dermal fibroblasts in promoting epidermal cell prolif-
eration and differentiation ex-vivo in both 2D [15] and 3D OC models [16] was clearly
demonstrated by the absolute dependence of epidermal cells on dermally secreted fac-
tors, including ECM proteins, e.g., collagens, laminins, and proteoglycans, and paracrine
growth factors. Attempts to identify functionally relevant fibroblast subsets that promote
epidermal regeneration during development, wound repair, and homeostasis have been
undertaken based on physical location, lineage mapping, and RNA seq analysis [17–24].
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In mice, a subset of perivascular fibroblasts has been identified that contribute to scarring
by excess collagen production [25]. Our studies in neonatal human skin revealed a new
class of dermal cells, i.e., pericytes, known to have mesenchymal stem-cell like properties,
that promote epidermal regeneration in 3D OCs [26] more potently than dermal fibrob-
lasts. Specifically, pericyte populated OCs exhibited a high epidermal proliferative index
attributed to an increase in planar cell divisions mediated by BMP-2 secretion, retaining
more cells in the proliferative compartment; and increased LAMA5 deposition evident
in basement membrane/hemi-desmosome assembly at the epidermal–dermal junction
of OCs, consistent with the demonstration that pericytes secrete LAMA5 [26]—features
not observed in fibroblast co-cultures [27]. Thus, we demonstrated a novel function for
dermal pericytes as microenvironmental regulators of skin regeneration in addition to
their classic role in regulating blood vessel structural stability and permeability [28,29].
Our findings are consistent with the emerging role for pericytes in regenerative medicine,
i.e., their widespread distribution via the vasculature enabling contribution to tissue repair
through transdifferentiation into other mesenchymal cell types and secretion of paracrine
mediators [30]. Our previous work has focused on neonatal skin pericytes; thus here,
we sought to determine if skin pericytes exhibited altered functional characteristics with
ageing, specifically the ability to promote skin regeneration.

2. Materials and Methods
2.1. Human Tissue Collection

Human neonatal (1–4 weeks old) foreskin tissue was collected following routine
elective circumcision with informed parental consent. Adult human mammary skin was
collected from female donors (17–61 years old) without cancer history, undergoing elective
plastic surgery for breast reduction with patient consent and ethics approval.

2.2. Isolation and Culture of Keratinocytes, Dermal Pericytes, and Fibroblasts

Neonatal foreskin and adult female breast skin tissue were digested enzymatically to
obtain epithelial sheets which were trypsinised with vigorous pipetting for 5 min to obtain
a basal keratinocyte cell suspension, as described previously [31]. Primary keratinocytes
without prior culture were used in all experiments. The corresponding dermal tissue pieces
were minced further and incubated in dispase and collagenase at 37 ◦C for 90 min (neonatal
foreskin) or 2 h (adult breast skin) to obtain dermal cell suspensions; and the pericyte and
fibroblast fractions obtained by FACS; 1 × 107 dermal cells/mL incubated with antibodies
to VLA-1 (1:20, Serotec, Oxford, UK; MCA1133F) and CD45 (1:40, Beckton Dickinson, East
Rutherford, NJ, USA; D555483) for an hour and propidium iodide (1:200, Life Technologies,
Carlsbad, CA, USA; P3566) to permit exclusion of dead cells. CD45− cells were fractionated
into VLA-1bri dermal pericytes and VLA-1dim fibroblasts as validated previously [26,27]
and the dermal subsets were reanalyzed to verify purity. Pericytes and fibroblasts were
cultured in EGM-2 (Lonza, Basel, Switzerland; CC-3162) and DMEM containing 10% fetal
bovine serum (DMEM-10), respectively, at 37 ◦C with 5% CO2.

2.3. Organotypic Cultures

OCs were conducted as described [27]. Bovine collagen type I was a kind gift from
Organogenesis Inc., Boston, MA, USA. Briefly, cultured neonatal or adult pericytes from
skin donors aged ~50 years or over or neonatal fibroblasts between p4 and p6 were har-
vested at ~90% confluence to prepare DEs. For this, 7.5 × 104 pericytes or fibroblasts were
used per DE; or both fibroblasts and pericytes at the ratios indicated for each experiment;
5 × 104 primary uncultured human neonatal keratinocytes, resuspended in 30 µL of EpiLife
(Life technologies, M-EPI-500-CA and S-001-5) were seeded on top of each DE. OCs were
maintained in Epidermalization Medium for a week and then at an air–liquid interface in
Cornification Medium for a week and then Maintenance Medium for another week prior
to harvest [31].
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2.4. Immunostaining

OCs and skin tissue (~12 × 3 mm pieces) were fixed in 10% neutral buffered forma-
lin (45 min at room temperature/RT), and paraffin embedded to obtain 4-µm sections.
Sections were de-waxed and hydrated prior to performing antigen retrieval in a pressure
cooker at 125 ◦C for 3 min in Tris-EDTA buffer, pH 9.0. Sections were stained for Ki67
(1:200, Dako, Carpinteria, CA, USA; M7240), ∆N-p63 (1:400, BioLegend, San Diego, CA,
USA; 619001), PDGFRβ (1:50, Abcam, Cambridge, UK; ab32570) and collagen IV (1:400,
Abcam, ab6586, a kind gift from Dr Mark Fear, University of Western Australia, Crawley,
Austrilia). Immunohistochemistry or immunofluorescence was performed using Imm-
PRESS™ kits (Vector Laboratories, Burlingame, CA, USA), Rabbit Specific HRP/AEC (ABC)
Detection IHC Kit (ab93705) for collagen IV or 1 µg/mL DAPI and fluorophore-conjugated
antibodies (Life Technologies, A-21241, A-21134, A-21428, A-11006 or A-21124) at 1:200 for
1 h at RT. For LAMA5 detection, paraformaldehyde fixed tissue was processed to obtain
10-µm cryosections incubated with 4C7 monoclonal hybridoma supernatant and secondary
fluorescent antibody.

2.5. Transmission Electron Microscopy

Subsequently, 3 × 6 mm pieces of OCs from two independent experiments were fixed
in 2.5% glutaraldehyde, 2% paraformaldehyde in 0.1 M cacodylate buffer for 2 h at RT.
They were then washed in cacodylate buffer (3 × 10 min), post-fixed in 2% OsO4 and the
washes repeated. After rinsing in distilled water (3 × 10 min), OC pieces were dehydrated
in ethanol, treated with acetone (2 × 30 min), and 1:1 Acetone/Spurr’s resin (2 × 2 h)
prior to impregnation with 100% Spurr’s resin (2 × 2 h) under vacuum and embedded for
ultrathin sectioning. Transmission electron microscopy was performed using a JEOL 1011
(JEOL USA, Inc., Tokyo, Japan).

2.6. Quantification and Statistics

Pericyte numbers in breast skin from donors aged 17–50 years were quantitated
by immunofluorescent staining of paraffin-embedded sections for the pericyte marker
PDGFRβ and DAPI. The upper part of the dermis defined as the area within a depth
of 0.2 mm from the epidermal–dermal junction was selected as the region of interest
and the area determined by ImageJ. The total number of cells (DAPI+) and PDGFRβ+

pericytes within the region of interest was counted and normalized against the area as
number of cells per mm2 dermis. Data was obtained from 9 random fields derived from
3 individual donors within specific age groups, i.e., 17–30 years, 31–40 years, and >50 years.
Epidermal thickness of OCs and staining for Ki67 and ∆N-p63 was quantitated per length
(µm) of the epithelium or stratum basale in OCs using ImageJ. Quantitative results from
immunostaining and OC experiments were replicated in at least 3 independent experiments,
and representative samples displayed when reproducible results were obtained.

Statistical analysis was performed using unpaired t-test; p values < 0.05 were consid-
ered statistically significant. Error bars represent standard deviation (SD). All statistical
analyses were performed using the software Prism version 6.0.

3. Results
3.1. Aged Human Skin Exhibits a Decline in Pericyte Incidence

Initially, we assessed dermal cellularity and the incidence of pericytes in human breast
skin from older adult donors (~50 years old) compared to neonatal human foreskin. Flow
cytometric analysis of freshly disaggregated dermal cells isolated from neonatal (n = 13)
and older adult skin donors aged ~50 years or over (n = 8; donors aged 48, 50, 54, 54, 54,
58, 59, and 60 years old [yo]; mean = 54.6 yo) was performed after immunostaining for
CD45 and CD49a to identify the CD45−CD49adim dermal fibroblast population and the
CD45−CD49abri pericyte population, previously validated by us [26,27]. Analysis of both
single representative samples of adult versus neonatal skin samples (Figure 1A), multiple
samples from each age group (Figure S1A,B), and pooled samples (Figures 1B,C and S1C)
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revealed that: (i) CD45− dermal cells were present in higher numbers in neonatal foreskin
(~90%) compared to adult breast skin (~40%), concomitant with an increase in CD45+

cells in adult skin (~55%) compared to neonatal skin (~8%; Figure 1B; p < 0.001); whereas
(ii) the CD45−CD49abri pericyte fraction was significantly lower in older adult breast skin
(4.2 ± 1.1%) compared to neonatal foreskin (21.5 ± 1.6%) expressed as a percentage of
CD45− dermal cells (Figure 1B; Figure S1C; Figure 1C, right panel; p < 0.0001); and (iii) the
CD45−CD49adim fibroblast fraction was similar in both (Figure 1A, right panel; Figure 1C,
left panel). Since this difference in pericyte numbers could potentially be attributed to
differences in anatomical site (foreskin versus breast), adult breast skin samples from
donors aged 17–61 yo were analysed by in situ immunostaining for the well accepted
pericyte marker PDGFRβ (Figure 1D), quantitating the numbers of PDGFβR+ cells using
Image J, and restricting our analysis to a depth of 0.2 mm from the dermo-epidermal
junction to ensure minimal variation. A significant decrease in pericyte numbers was
observed in skin samples from donors aged over 50 years compared to skin from 17–30 yo
and 31–40 yo donors (Figure 1E, left panel; 9 random fields from each of 3 donors per
age group, p < 0.001), when expressed as the number of PDGFRβ+ pericytes/dermal area.
Interestingly, enumerating the %PDGFRβ+ pericytes as a function of CD45− dermal cells
revealed a statistically significant decrease in dermal pericyte incidence as early as 31–40 yo,
with a further decrease in donors aged over 50 years (Figure 1E, right panel, p < 0.05).

3.2. The Functional Capacity of Aged Pericytes to Promote Skin-Regeneration in Co-Operation
with Neonatal Fibroblasts Is Affected by Their Lower Incidence

Previously, we reported that neonatal pericytes can significantly enhance the skin
regenerative properties of neonatal keratinocytes that have exited the stem/progenitor
compartment of the basal layer and committed to differentiation, over and above that ob-
served with neonatal fibroblasts alone in OCs [26]. In order to test whether aged pericytes
had similar or diminished epidermal regenerative properties, we established OCs with
dermal equivalents populated with aged pericytes (donors aged > 50 yo), seeded with
neonatal keratinocytes. The underlying strategy was to keep all other cellular elements
besides pericytes of neonatal origin i.e., highly regenerative, while testing pericytes from
ageing donors. Given the decrease in pericyte numbers in aged skin, we seeded OCs
with either (i) 2% pericytes reflecting their incidence in aged skin; or (ii) 20%, the average
pericyte incidence in neonatal skin, to ask if their functional capabilities were retained and
not simply a reflection of their dwindling numbers. Figure 2A–C shows the epidermis
regenerated from neonatal keratinocytes in a dermal microenvironment of neonatal fibrob-
lasts and either 2 or 20% 54 yo freshly isolated uncultured pericytes in OCs. Histological
and quantitative evaluation of the regenerated epidermis indicated virtually no impact
of including 2% 54 yo primary pericytes (Figure 2A vs. Figure 2B), whereas increasing
the number of pericytes to 20% pericytes (Figure 2C), yielded a significant increase in
epidermal thickness compared to fibroblasts alone (Figure 2D). This increased epidermal
regenerative ability obtained by the artificial inclusion of greater numbers (20%) of primary
pericytes was also observed with a second skin 55 yo donor (Figure 2E vs. Figure 2F,G).
In subsequent experiments, we observed that cultured pericytes (p4) from a 54 yo donor
also retained the ability to promote epidermal regeneration from neonatal keratinocytes
(Figure 2H–J). These data were replicated with 2% versus 20% cultured pericytes (p5) from
a second skin donor aged 59 yo (data not shown), suggesting that the decline in pericyte
numbers impacts their ability to restore skin regeneration as a function of age compared to
fibroblasts alone.
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Figure 1. Dermal pericyte numbers decrease with increasing age in the skin. (A). Incidence of CD45+ cells is lower
in neonatal (left panel) versus adult (middle panel) skin dermal cell suspensions in representative plots. Significantly
lower incidence of CD45−CD49abri dermal pericytes in 58 yo versus neonatal skin dermal cell isolates (right panel).
(B). Percentage of CD45+ versus CD45− dermal cells in neonatal (n = 13) and aged adult skin donors aged ~50 years or over
(n = 8 from 48–60 yo; mean of 54.6 yo) illustrating fewer CD45− dermal cells in aged skin (p < 0.001). (C). Percentage of
CD45−CD49adim fibroblasts was similar in neonatal versus adult skin (left panel; p = n.s.); however, a significantly lower
number of CD45−CD49abri pericytes was evident in ageing adult skin (50–60 yo, n = 8) compared to neonatal skin (right
panel; p < 0.0001). (D). Representative PDGFRβ immunostaining in adult breast skin from 18, 34, and 61 yo donors showing
fewer PDGFRβ+ pericytes in aged (61 yo) skin. Scale Bar: 100µm. (E). Quantitative analysis of pericytes in adult breast
skin from individuals aged 17–30 yo, 31–40 yo, and >50 yo expressed as number of PDGFRβ+ pericytes/mm2 dermis
(left) or as %PDGFRβ+ of total dermal cells (right) demonstrating a decline in pericyte numbers particularly notable in
skin from donors > 50 yo. Data from 9 random fields from each of 3 donors per age group. *** = p < 0.001, * = p < 0.05,
n.s. = not significant.

3.3. Pericytes from Ageing Human Skin Retain the Ability to Promote Epidermal Regeneration as
the Sole Mesenchymal Element in OCs

We recently reported that neonatal pericytes not only promote neonatal epidermal
regeneration as the sole element of the dermal equivalents in OCs, but also confer features
of homeostatic proliferation, tissue renewal, and differentiation [27], not observed in der-
mal fibroblast co-cultures. We therefore compared the effects of pericytes from donors
aged ~50 yo versus neonatal pericytes, to ascertain any intrinsic functional changes in their
ability to regulate epidermal regeneration derived from neonatal keratinocytes, includ-
ing neonatal fibroblasts as a control. OCs populated with aged pericytes from 3 different
donors (48, 54, and 58 yo) and neonatal keratinocytes revealed that despite ageing, pericytes
retained the ability to promote epidermal regeneration as judged by histological analysis,
i.e., a multilayered epithelium (Figure 3A) with a distinct, polarized basal layer (Figure 3B),
giving rise to a multilayered, stratified epidermis exhibiting terminal differentiation, com-
parable to that induced by neonatal pericytes, but exceeding the inductive properties of
neonatal fibroblasts, the latter reported by us previously [27]. Immunostaining for epi-
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dermal cell proliferation markers Ki67 and ∆Np63 (Figure 3C,D) showed no difference
in the number of Ki67+ or ∆Np63+ cells/mm within the basal layer of the epidermis in
OCs established with neonatal versus aged pericytes (Figure 3E,F), although both Ki67+

or ∆Np63+ cell numbers were statistically significantly higher than those observed with
neonatal fibroblasts, as expected [27]. However, the levels of ∆Np63/cell were much lower
in all OCs populated with aged pericytes compared to those populated with neonatal
pericytes (Figure 3D). Consequently, we investigated whether other indicators of epidermal
homeostasis were perturbed in the OCs containing aged pericytes.

Figure 2. Epidermal regeneration ability of neonatal keratinocytes can be enhanced by increasing the incidence of aged
pericytes in OCs. (A–J). Thickness of the epidermis reformed by neonatal keratinocytes was consistently greater when
20% dermal pericytes from aged donors (54 and 55) were included in the dermal equivalent (D,E) compared to neonatal
fibroblasts alone ((A) vs. (C); (E) vs. (F); (H) vs. (I); n = 3). 2% 54 yo dermal pericytes (B) did not increase epidermal
thickness over fibroblasts (B,D). Cultured pericytes (p4) were used in H–I, whereas uncultured pericytes were used in (A–G).
Quantitation of epidermal thickness (D,G,J) was obtained from 6–8 random fields/OC. Error bars represent mean ± SD.
* = p < 0.05, ** = p < 0.01, n.s. = not significant. Scale Bar: 100 µm.
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Figure 3. Some features of epidermal regeneration can be restored by aged pericytes in OCs. (A,B) Histological sections
stained with haematoxylin and eosin; and (C,D) immunohistochemical staining of 3D skin cultures seeded with dermal
pericytes from donors aged ~50–60 yo demonstrating their ability to promote epithelial tissue regeneration to a similar extent
as neonatal pericytes (A) with re-establishment of proliferative and polarised basal keratinocytes compared to neonatal
fibroblasts (B). Comparable Ki67 staining of basal keratinocytes was obtained with aged and neonatal pericytes but not
fibroblasts (C); however, lower ∆N-p63+ staining intensity was evident in organotypics seeded with aged pericytes (D).
Scale Bar: 100 µm. (E,F). Quantitation of Ki67 (E) and ∆N-p63 (F) immunostaining confirming no statistically significant
differences (n.s.) in the numbers of Ki67+ and ∆N-p63+ basal cells obtained with neonatal versus aged pericytes, whereas
their incidence was lower in fibroblast-seeded 3D cultures (*** = p < 0.001). Error bars represent mean ± SD. Data collected
from 14–16 random fields from 2 (E) or 3 (F) independent experiments.

3.4. Aged Pericytes Do Not Restore Epidermal Cell Homeostasis

We have reported that recombinant LAMA5 restores the skin regenerative ability
of differentiated neonatal human keratinocytes co-cultured with fibroblasts in OCs [32].
Moreover, LAMA5 is secreted by both basal keratinocytes and dermal pericytes, but not
fibroblasts in native neonatal human skin [26]. Our recent work suggests that the amount of
LAMA5 synthesised by neonatal keratinocytes is rate-limiting for hemi-desmosome/basement
membrane assembly and skin regeneration in OCs—a limitation that can be overcome by
co-culture with neonatal pericytes [27]. We therefore assessed LAMA5 deposition in OCs re-
constituted with aged skin pericytes by immunostaining and hemi-desmosome/basement
membrane assembly by electron microscopy in OCs seeded with neonatal keratinocytes
and aged pericytes from three separate skin donors (48, 54 and 58 yo). LAMA5 deposition
at the dermo-epidermal junction occurred at a much lower level in aged pericytes OCs
(Figure 4A) compared to neonatal pericyte OCs (Figure 4B). Similarly co-cultures with
neonatal fibroblasts did not have an inductive effect on LAMA5 deposition [27], and thus,
unsurprisingly, no changes were observed when aged fibroblasts were substituted in the
dermal equivalent (Figure 4B). Notably, native human skin from older donors exhibits
decreased LAMA5 immunostaining (Figure 4C), which may be attributed to the observed
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decline in pericyte numbers in ageing skin (Figure 1) [33]. Immunostaining for other
markers of the basement membrane zone, i.e., α6 integrin and collagen IV, revealed no
significant differences in α6 integrin expression in OCs populated with neonatal vs. aged
pericytes (data not shown); but interestingly, while both neonatal pericytes and neonatal
fibroblast populated OCs exhibited strong collagen IV expression (Figure S2B), it was not
detectable in OCs populated with aged pericytes (48 yo, 54 yo and 58 yo) as shown in
Figure S2C. Notably, despite its detection in the basement membrane region in neonatal
human skin (and in the dermis Figure S2A), none of the OCs, even those with neonatal
pericytes, exhibited deposition in the epidermal–dermal junction. These data suggest
improper assembly of collagen IV in the OC model.

Figure 4. Aged pericytes do not promote LAMA5 deposition nor basement membrane/hemi-desmosome assembly at
the dermal–epidermal interface in OCs. (A–C). LAMA5 immunostaining (red fluorescence; nuclei blue) in OCs seeded
with aged 48–58 yo (A) versus neonatal pericytes; or neonatal versus aged fibroblasts (B); and neonatal versus 21 yo or
55 yo skin tissue in situ (C). (D,E). Quadruplicate transmission electron micrographs of the dermal–epidermal junctions of
OCs illustrating the absence of basement membrane/hemi-desmosome assembly in OCs seeded with aged 48–58 yo skin
pericytes (D). Similarly, aged 54 yo fibroblast co-cultures did not exhibit basement membrane assembly ((E), left panels)
whereas neonatal pericytes did ((E), right panel). Epi = epidermis; der = dermis; white arrows indicate rare initiation of
hemi-desmosomes in cultures with aged pericytes (D), fibroblasts (D) as compared to abundant hemi-desmosomes in
cultures with neonatal pericytes ((E), right panel). Scale bar: 100 µm (A–C); 0.5 µm (D,E).

Ultrastructural analysis of OCs populated with aged pericytes (n = 3), consistently
revealed a lack of hemi-desmosome and basement membrane assembly (Figure 4D), compa-
rable to that observed with aged fibroblasts (Figure 4E, two left panels), whereas neonatal
pericytes consistently conferred both features (Figure 4E) as shown previously [27].

4. Discussion

Our previous findings implicated dermal pericytes as potent microenvironmental
regulators of neonatal human skin regeneration [26,27]. Given that keratinocytes from aged
human skin exhibit poor regenerative ability both in vitro and in vivo [15,34,35], we asked
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whether this may be partially due to degenerative changes in the dermal microenvironment
with ageing, both qualitatively or quantitatively. Our analysis of CD45+ versus CD45− cells
in aged versus neonatal skin (Figure 1A,B) was consistent with previous studies reporting
an increase in the CD45+ dermal population using quantitative in situ immunohistological
staining [36,37]—leading to the conclusion that an elevated immune response exists in
the dermis with ageing. Moreover, our FACS analysis with CD45−VLA-1bri and in situ
PDGFBR immunostaining data provided strong evidence for a decline in pericyte numbers
in the skin with increasing age. These data demonstrate that the cellular microenvironment
of epidermal cells changes dramatically with human skin ageing with a significant drop
in cellularity in the non-immune dermal cells, notably in the pro-epithelial regenerative
pericyte population, particularly when comparing young versus aged skin, from the same
tissue (Figure 1D,E; Supplementary Figure S1). Our results confirmed a previous study
reporting a decrease in dermal microvessel density, and in the pericyte to endothelial
cell ratio in the ageing human skin irrespective of gender or anatomical site, based on
in situ immunostaining with a different marker, i.e., a ganglioside detected by the 3G5
antibody [33]. Previous studies have also reported a decrease in the number and size of
dermal fibroblasts from older donors [38] and a decline in their replicative capacity in
culture [39], suggesting that this might also contribute to the lower regenerative capacity
of the skin.

Functional analysis of the epidermal regenerative capacity of young versus aged
pericytes in the context of neonatal fibroblasts and keratinocytes in a 3D OC reconstitu-
tion model illustrated that the introduction of 2% pericytes derived from older donors
aged > 50 years old (this being the incidence in aged skin) resulted in no significant in-
crease in epidermal regenerative capacity over fibroblasts alone (Figure 2A vs. Figure 2B)
with respect to epidermal thickness; however, this could be compensated by increasing
the number of pericytes to 20% an incidence found in neonatal human skin (Figure 2C–J).
Although it is not possible to completely rule out the effect of difference of the anatomical
site origin of the cells, these results suggest that pericytes from older skin donors exhibit a
significantly decreased ability to co-operate with neonatal fibroblasts in eliciting epidermal
regeneration from neonatal keratinocytes in vitro, in addition to their decreased numbers
in aged skin in vivo. Ideally, we would have liked to perform OC experiments comparing
young breast skin donor (20–30 yo) derived pericytes with aged donors (50 yo or above).
However, it has been difficult to obtain tissue from younger subjects who tend not to
undergo elective surgery as often as older ones.

Previously, we had demonstrated that in OCs, neonatal dermal pericytes were capable
of stimulating more homeostatic epidermal regeneration from neonatal keratinocytes
at least in part through the secretion of paracrine factors such as LAMA5 and BMP-2;
specifically, pericytes restored cell polarity, planar cell divisions, LAMA5 deposition at the
dermo-epidermal junction in vitro, and basement membrane/hemi-desmosome assembly
not observed with fibroblasts [27]. Notably, the basal layer had a higher complement
of ∆Np63+Ki67+K15+ in the presence of pericytes compared to fibroblasts, indicative of
homeostatic maintenance of the proliferative compartment/basal layer [27]. Analysis of
some of these parameters in OCs populated with pericytes from older donors in this study
revealed that although some aspects of epidermal homeostasis are evident, e.g., polarised
appearance of the basal layer; %Ki67+ and %∆Np63+ basal cells (Figure 3), other features
of the regenerated epidermis were absent including LAMA5 and collagen IV deposition
and basement membrane/hemi-desmosome assembly (Figures 4 and S2).

Notably, ∆Np63 regulates both epidermal cell proliferation and differentiation-related
stratification [40,41]. Interestingly, fewer suprabasal cells were ∆Np63+ in OCs populated
with aged versus neonatal pericytes (Figure 3D), consistent with the observation that p63
null mice display fewer perpendicular/asymmetric epidermal cell divisions [42]. Thus,
we hypothesise that the ability of aged pericytes to retain epidermal cells in the undif-
ferentiated basal layer may be compromised by decreased ∆Np63 expression. Moreover,
given that neonatal keratinocytes were used in these experiments, the lack of hemidesmo-
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some/basement membrane assembly can be attributed solely to changes in the aged
pericytes—especially in the context of our previous demonstration that neonatal pericyte–
neonatal keratinocyte OCs display both these ultrastructural features consistently [27].
These data indicate that LAMA5 synthesis and/or deposition at the dermo-epidermal
junction—a critical regulator of skin regeneration—occurs as a co-operative interaction
between keratinocytes and pericytes and that its observed decrease in the ageing skin may
contribute to its declined regenerative ability.

5. Conclusions

This study demonstrates a potential role for the dermal microenvironment particularly
pericytes in the decreased skin regenerative ability observed in the human ageing skin
correlated with poorer healing of skin wounds with age. It is likely that the latter is
a complex multifactorial process involving various cell types found in the skin, both
epidermal and dermal such as stem cell ageing, oxidative stress, and poor health due to
systemic ageing not originating in the skin.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cells10113051/s1, Figure S1: Incidence of dermal pericytes in neonatal and adult human
skin. Figure S2: Collagen IV immunostaining in neonatal human skin and OCs populated with
neonatal versus aged pericytes.
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